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Preface

My career as a young scientist perhaps started on the day that I attended a meeting
between several researchers, among others Marieke Huisman, from the Universiteit
Twente (UT) and Anton Wijs from the Technische Universiteit Eindhoven (TU/e). At
the time, I was working on my bachelor thesis, and this was the first time I witnessed
science from the inside. During the next two years, though, I was still convinced that
I wanted to find a job in industry. This did not significantly change during my three
month internship at the Institute of Software, Chinese Academy of Sciences (ISCAS),
which was made possible by the great support of Lijun Zhang. However, on my first
day in Eindhoven, when I had just started working on my master thesis under the
supervision of Anton Wijs, the PhD students who were around immediately tried to
convince me to do a PhD. This did not have any effect until I started realising how
rewarding it is to do (successful) research, and so I asked Jan Friso Groote about the
available positions.

One thing led to another, and now I find myself with a completed thesis, which I
could not have managed alone. Therefore, I want to thank several people who helped
me along the way. First of all, my gratitude goes out to the people who supported
me during my time as a bachelor and master student: Marieke Huisman, Jaco van
de Pol, Lijun Zhang, Anton Wijs and Dragan Bošnački. You have all been a great
example to me, and helped me discover the beauty of computer science.

Next, I want to thank Jan Friso Groote and Tim Willemse, my promotors. I
will start off, however, by giving some insight into how my relation with each of
them developed throughout my PhD. Since Jan Friso was responsible for creating my
position, he naturally acted as my supervisor from the beginning. We had weekly
meetings on Wednesdays, when we saw each other at ASML. Our initial aim was to
improve the ability to model check real-time systems in mCRL2, perhaps building
on the work that he started with the tool lpsrealelm. I worked on this for several
months, first creating the tool lpsrealzone, for reasoning about timed automata
with zones, and later lpssymbolicbisim. Since we were not satisfied with their
scalability (Jan Friso: “we should be able check models with more than six trains!”),
I went looking for alternatives and ended up porting the symbolic technique to
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parameterised Boolean equations systems (PBESs). This was no coincidence, since
PBESs are the favourite formalism of Tim, who acted as my co-supervisor. The magic
power of PBESs also captured me, so after finishing our paper on symbolic PBES
solving, I found myself working on quantifier manipulation techniques for PBESs and
partial-order reduction for PBESs. Naturally, this meant that I was working more
closely with Tim during the second half of my PhD.

Jan Friso, since you once told me “I am not supervising you, we are collaborating”,
I will use your words and say: thanks for the incredible collaboration. Even though
I have always been ambitious, you reinforced my strive for excellence. Your desire
to make real steps forward motivated me to focus more on theory and less on small
optimisations that are irrelevant on the grander scale. The time you took to discuss
topics not related to my research helped me gain valuable insights into the inner
workings of the academic world.

Tim, when you asked me to serve as a co-supervisor and have weekly meetings, I
did not really understand the purpose, since I thought I would mostly be working
under Jan Friso anyway (now I know it is very common to have multiple supervisors).
Looking back, I am very glad I accepted your offer: your supervision has been nothing
but outstanding: you always guided me in the right direction. During our weekly
discussions, you were always quick to understand the problems I was facing. The time
you took to play around with our experimental tools resulted in valuable insights and
the writing you contributed to our papers significantly improved their presentation.
Your positivity and sense of humour helped a great deal whenever the results of the
research were disappointing.

There are also several other people who directly contributed to my thesis in some
way. Firstly, I want to thank my co-authors Wieger Wesselink, for helping with
the implementation of several ideas in the mCRL2 tool set, and Antti Valmari, for
providing the sharpest feedback I could wish for. The two chapters on partial-order
reduction would not have been the same without your help. To the members of my
committee, Rance Cleaveland, Wan Fokkink, Radu Mateescu, Marieke Huisman and
Antti Valmari, thanks for devoting your precious time to read the result of my work.
Your comments have helped to resolve the remaining issues in the text and in the
formalisations.

My thanks goes out to ASML and the people involved in the IMPULS II/ASOME2

project. My fellow PhDs in the project, Kousar Aslam, Ruben Jonk and Nan Yang,
you were great office mates and board game rivals. Ramon Schiffelers, thank you for
giving me the opportunity to follow my own path and focus on fundamental research;
I truly enjoyed the freedom that I had during my PhD. The meta-discussions I had
with Jeroen Voeten were valuable to me, and changed my perspective on the academic
world; thanks!

As a PhD candidate, I was responsible for helping with two courses: Design Based
Learning Embedded Systems and Automotive Software Engineering. I learned a great
deal myself, thanks to my colleagues Pieter Cuijpers, Erik de Vink, Jan Friso Groote,
Tim Willemse and Jeroen Keiren.

In the Formal Systems Analysis (FSA) group, the mCRL2 model checking toolset
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is a great foundation for research activities. The fact that many basic algorithms
were already provided saved me a lot of time implementing my own ideas. I enjoyed
working on several parts of the toolset in a development team where everybody had
their own approach to development. Jan Friso Groote, the main driving force behind
the toolset for over 15 years, always manages to surprise by producing enormous
amounts of code over the weekend, if he thinks a certain feature really should be
implemented. The most beautiful code and documentation comes from the hand of
Wieger Wesselink, who set an example for all of us. Maurice Laveaux’s knowledge of
C++ and OpenGL led to many fundamental improvements in the toolset, including
a complete rewrite of the ATerm library and its binary storage format and also a
refactoring of ltsgraph. Olav Bunte deserves a lot of credit for single-handedly
creating the user-friendly mCRL2ide tool, which made my job teaching mCRL2 that
much easier. Ferry Timmers has a great eye for detail and his first contributions have
been the introduction of often-requested features to ltsgraph. Our unofficial tester
is Tim Willemse, who always managed the find the most curious bugs.

My time at the TU/e would not have been as enjoyable without all the fellow PhDs
in the Model-Driven Software Engineering (MDSE) cluster. I am truly grateful to
Sander de Putter and Mahmoud Talebi, who welcomed me into the group when I
was working on my master thesis; you really made me feel at home in Eindhoven.
Out of all the things we have done together, our trip to Iran was a most memorable
experience, not least witnessed by all the food we got to try. Weslley Silva Torres,
you were single-handedly responsible for making the office as lively as it could be.
The fact that we disagreed on so many topics always created the most interesting
discussions at the lunch table. But above all you are a great friend; you even entrusted
some of the organisation of your wedding to me. I hope you will enjoy life in the
Netherlands together with Giovanni Calheiros. Omar al Duhaiby, thanks for all the
interesting discussions, both about science and about life. Felipe Ebert and Camila
Kokkosi, thanks for the amazing barbecues where we ate picanha with farofa and
drank guaraná. Priyanka Karkhanis and Markus Klinik, you were always eager to
join activities; we had some great fun during various Friday afternoon drinks and
random dinners and certainly during the Christmas parties.

Amazingly, I also did sports once in a while, and some of my colleagues even
managed to involve me in a couple of new sports. Dan Zhang, thanks for motivating me
to try BBB and joining me several times. Rick Erkens, your passion for weightlifting
is inspiring. We must have done something wrong the first time, since the second
time we tried to go to the gym, the door was locked. In the last year of my PhD, I
discovered bouldering through Nathan Cassee and Lars van den Haak. Thanks for
teaching me the beginnings!

To my (former) office mates, Alexander Fedotov, Mauricio Verano Merino, Maurice
Laveaux, Olav Bunte, Muhammad Osama, Ruud van Vijfeijken and Jan Martens,
thanks for making it such a pleasant workspace. I would also like to thank all the
other people in MDSE that spent time with me: Fei Yang, Rodin Aarssen, Sarmen
Keshishzadeh, Ferry Timmers, Mark Bouwman, Sangeeth Kochanthara and Ayushi
Rastogi, Yaping (Luna) Luo and Valcho Dimitrov, Önder Babur, Kousar Aslam, Nan
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Yang, Miguel Botto Tobar, Mahdi Saeedi Nikoo, Ana-Maria and Alex Şut̂ıi, Ulyana
Tikhonova, Yanja Dajsuren, Gema Rodriguez Perez, Lina Ochoa, Tukaram Muske,
Raquel Álvárez Ramirez, Josh Mengerink, Arash Khabbaz Saberi, Jouke Stoel and
Yuexu (Celine) Chen. All the experiences we had together made my PhD time truly
enjoyable.

There are also several important people outside the university that I want to thank.
Saurab Rajkarnikar and Megha Vaidya, thanks for inviting Bulgaa and me regularly
and cooking your delicious momos. Tamir Tsedenjav and Bayasgalan Baatar, thanks
for welcoming me into your home, even during the hardest times. Robert van de
Vlasakker, thanks for all the great memories (lasagnebadminton etc.). I am happy
that we are still in contact.

Finally, the time has come to thank my family. First of all, to my brother Laurens,
who is an inexhaustible source of trivia, thanks for being the best companion, especially
during the time we lived together in Eindhoven. My parents, Jos and Margreet,
supported my never-ending curiosity during my childhood and continued encouraging
me when I entered university and later started my scientific career. I owe them for
giving me the best upbringing I could wish for. Bulgaa, my love, thanks for sharing
your life with me. We will soon embark on a new adventure together, and I could
wish for no better partner to share it with.

Thomas Neele, July 2020
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Introduction

1
Ch

apt
er

One of the major inventions of the twentieth century is the electronic computer.
Running a computer requires loading it with a program that it can execute, also
called software. The task of designing and implementing software programs is called
programming. Already in the early days of computing, the problem of writing high-
quality software that meets all expectations was identified [1, 39]. This is known as
the software crisis. Its consequences can be manyfold: software projects run over
time and budget and bugs in end products such as cars, air planes and medical
devices can endanger lives. Since the amount of software is increasing rapidly [40],
the software crisis has a growing impact on society.

In the past half century, many different approaches to tackling the software crisis
have been proposed. These range from the use of high-level programming languages,
integrated development environments with many programmer aides and software
development paradigms such as agile to intensive testing with continuous integration.
Although the latter can address some of the issues [134], the problem is far from
solved.

In modern day industry, software testing is still the most popular way of validating
whether a given piece of software meets its intended purpose [120]. However, testing
is very much an empirical approach: the software is executed a number of times,
subject to different scenarios. Afterwards, one checks whether the results meet the
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1 Introduction

expectations. For most software, only an infinite number of test runs, each with a
different input, can give absolute certainty about its correctness.

These issues are compounded when developing multi-threaded software. Tests of
single-threaded software are largely reproducible: two runs with the same input will
most likely result in the same output. However, the behaviour of multi-threaded
software can depend on the order in which the threads are scheduled. This ordering
is influenced by many external factors, which may include hardware performance
and current system load. As a result, multi-threaded software can seemingly behave
non-deterministically, resulting in a different result every test run. This makes the
probability of finding all bugs in concurrent software close to zero. For such software,
testing is thus an inadequate method of establishing the correctness.

1.1 Formal Methods

Whereas testing is an empirical process, formal methods rely on theory to prove that
a given piece of software is correct. This is achieved by mathematically reasoning
about behaviour of software. Such an approach is more rigorous than testing: it does
not depend on the creativity of the test engineer to come up with scenarios that
require testing or the number of runs that one performs, but it checks all possible
scenarios. In this way, formal methods provide a higher degree of certainty on the
correctness of software.

Reasoning about the behaviour of software is often based on a definition of its
semantics: a set of mathematical rules that precisely define what the effect of each
element of a program is. We highlight several different types of semantics and
techniques that apply them [6]. Firstly, techniques that use axiomatic semantics
reason, based on certain axioms and proof rules, what is true before and after each
program statement. This includes deductive verification [45, 61] with Hoare logic or
separation logic. Secondly, in denotational semantics, every program is represented
by a corresponding abstract object. For simple programs, these objects can take
the shape of a function from input to output. Abstract interpretation [32] is a
technique that employs denotational semantics. Lastly, there are techniques based
on operational semantics, where the behaviour of a program is typically represented
as a directed graph. For every state of the program, this graph contains a node; the
edges indicate possible changes in the program state. This thesis focusses on model
checking techniques that are based on operational semantics.

1.2 Model Checking

Model checking [9] is an automated technique for establishing whether certain prop-
erties hold for a given system. The behaviour of the system under consideration is
typically modelled by a specification, which is a compact representation of a transition
system, in the form of a directed graph. Common examples of specification formalisms
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are process algebras [7, 98], Petri nets [113], timed [4] and hybrid automata [3] and
various kinds of probabilistic models, such as Markov chains [94]. The formal proper-
ties are usually given as a formula in some temporal logic, such as linear temporal
logic (LTL) [116], computation tree logic (CTL) [30] or the modal µ-calculus [83].
Apart from software systems, model checking can also be applied to many other types
of systems, such as logic circuits, network protocols, planning problems, board games
and critical infrastructure like railroads.

The most straightforward model checking procedures take a specification and
iteratively generate the underlying transition system, starting from the initial state.
This process is commonly known as state-space exploration. Evaluating the temporal
formula on the resulting transition system answers the question whether the specifi-
cation satisfies the property under consideration. Sometimes this evaluation can even
be performed on-the-fly, i.e., during the exploration process.

A fundamental problem in model checking is the size of the state space, which tends
to be very large. In a system specification containing multiple concurrent processes,
the independent behaviour of two or more processes can be interleaved in an arbitrary
order. Consequently, any combination of states of these processes is a state of the
system as a whole. A linear increase in the number of concurrent processes thus
leads to a combinatorial (exponential) increase in the size of the state space. This
phenomenon is commonly known as the state-explosion problem [129]. Moreover, if a
model contains data of an infinite domain and does not restrict its values, the state
space also becomes infinite. Timed automata are a prime example: their real-valued
clocks cause the state space size to be uncountably large. Such formalisms often
require specialised model checking algorithms or abstraction methods.

Several possible solutions have been proposed in the literature to address these
issues, such as various symbolic model checking techniques (e.g. model checking
with BDDs [25, 27, 89] and bounded model checking [19]), abstraction methods
(e.g. counter-example guided abstraction refinement [29] and time-abstracting bisim-
ulation [124]) and techniques that specifically address the arbitrary interleaving
of independent behaviour (e.g. symmetry reduction [67] and partial-order reduc-
tion [52, 111, 127]).

Many of these techniques apply to specifications only and do not take any knowledge
of the property into account. This limits the reduction potential, which can only
be fully exploited by also considering the property [96]. Other techniques support
only (a fragment of) LTL or CTL, and cannot be used when one wants to check a
property in a more expressive logic, such as the µ-calculus.

1.3 Parameterised Boolean Equation Systems

The logical framework of parameterised Boolean equation systems (PBESs) [55, 59, 95]
can partially resolve these issues. Apart from model checking queries [55], PBESs can
encode many different types of decision problems, such as the question whether two
specifications are related according to some behavioural equivalence/preorder [28],
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software verification problems [80], satisfiability of µ-calculus formulae [24] and several
string problems [66]. Solving a PBES yields the answer to the decision problem it
encodes. It should be noted, though, that the problem of solving a PBES is in general
undecidable.

Similar to how a behavioural specification compactly represents a transition system,
a PBES abstractly represents a directed graph, typically in the form of a parity
game [43, 97]. A common way of solving a PBES, is to instantiate its underlying
parity game through a process similar to state-space exploration [114]. The parity
game can be solved with one of many solving algorithms from literature, such as
Zielonka’s recursive algorithm [140]. Parity game solving is one of a few problems
which are in UP and co-UP, but not known to be in P. The existence of an algorithm
that can solve a parity game in polynomial time is a major open problem.

The versatility of PBESs and their relation to game theory alone justify further
study of PBESs and how to solve them. In [59], Groote and Willemse envision PBESs
to become a universal framework that can encode many different types of problems
from theoretical computer science. In this way, they can fulfil the same role that
differential equations have in other engineering disciplines.

However, PBESs by no means resolve the state-explosion problem in model checking,
since the encoded parity games also grow exponentially with the number of concurrent
processes. Therefore, we need similar state space reduction techniques to combat the
blow up. Since PBESs and parity games encode the combination of a specification
and a property, any technique that we apply to them automatically considers both
the specification and the property, potentially increasing the amount of reduction.
We thus have the following aim:

Improve existing PBES solving procedures by means of reduction techniques,
and either speed up PBES solving or extend the class of PBESs that can
be solved.

This ultimately improves the applicability of model checking and can assist in
addressing some aspects of the software crisis. Furthermore, our improved PBES
solving routines may be efficient (semi-)decision procedures for problems other than
model checking.

The application of existing state space reduction techniques to PBESs and parity
games is not trivial, however. Firstly, the predicate formulae contained in a PBES
may have an arbitrary structure, making it difficult to statically determine which
transitions exist in the parity game underlying a PBES. Secondly, it is not obvious
that a state space reduction technique, which preserves a certain class of properties
of a transition system, also preserves the solution of parity games that encode the
same class of properties. Lastly, existing techniques do not automatically exploit all
the reduction potential in a PBES; we may thus need to introduce new optimisations
to achieve the best reduction.
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1.4 Contributions

The main topic of this thesis is the study of three kinds of reduction techniques
for PBESs and parity games: PBES quotienting for solving PBESs with an infinite
underlying parity game, the application of partial-order reduction (POR) to PBESs
and a number of syntactical transformations for PBESs that aim to reduce the
underlying parity game. Furthermore, the thesis also discusses a correctness issue in
existing partial-order reduction theory for the setting of behavioural specifications.
These contributions are discussed in more detail below.

First, Chapter 2 introduces the notions that are required to understand the rest
of the thesis. The main concepts introduced in Chapter 2 are labelled transition
systems, linear processes, the modal µ-calculus, parity games and parameterised
Boolean equation systems. We also show how these concepts relate to each other.

The main body of the thesis starts with investigating the issue that, although
PBESs themselves offer a clear structure, the predicate formulae contained in PBESs
can take any form, complicating the analysis of dependencies within a PBES. PBES
dependencies roughly correspond to parity game transitions. Hence, precise knowl-
edge of dependencies is essential for the application of many state space reduction
techniques. Although previous works show how to capture some of this knowledge in
so called dependency graphs [37], these cannot capture both positive dependencies and
negative dependencies at the same time. Therefore, we pose the following research
question:

RQ1 What is an effective way of obtaining all dependencies within a PBES?

The solution proposed in Chapter 3 consists of two new normal forms for PBESs:
standard recursive form and clustered recursive form. These normal forms offer the
structure that ordinary PBESs lack and enable one to capture all (positive and
negative) dependencies in a structure called dependency space. The ideas of Chapter 3
are fundamental for the techniques proposed in subsequent chapters.

Next, we discuss symbolic techniques for PBESs that have an infinite underlying
parity game. Although several procedures to deal with this type of PBES have
been proposed [81, 100], they can only handle a fragment of the PBES logic, due
to a lack of the necessary normal form. This limits their applicability to checking
linear-time (LTL) properties. Hence, we ask ourselves whether these ideas can be
generalised:

RQ2 Is it possible to perform automated infinite-state model checking of
arbitrary µ-calculus properties with PBESs?

By leveraging the normal forms from Chapter 3, Chapter 4 demonstrates how to
perform PBES quotienting on arbitrary PBESs, which takes ideas from minimal
model generation [22] for transition systems. Furthermore, the setting of PBESs
allows two more optimisations that are not possible in the traditional setting of
transition systems. Experiments with an implementation of PBES quotienting show
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that these ideas work well for several model checking and equivalence checking
examples. Our tool is, to our knowledge, the first to implement a semi-decision
procedure for bisimilarity checking of infinite systems.

We continue with a discussion on partial-order reduction, a technique that aims
to reduce the number of interleavings (and hence the number of states) explored
by prioritising the behaviour of some process whenever this does not impact which
sequences of labels are observed. Although there are many different variants of POR,
among which are ample sets [111], persistent sets [52] and stubborn sets [127], a
common theme is that they all reason about actions, which label transitions, while
they aim to preserve all sequences of state labels. Due to this disparity, correctness
of POR is not obvious, and we investigate the following:

RQ3 What are the correctness implications of the way POR deals with
actions and state labels?

Chapter 5 shows that two early works [126, 128], which propose a technique for
stubborn sets to preserve LTL without the next operator, do not properly deal with
the distinction between actions and state labels. As a consequence, the application
of these ideas in state-space exploration may yield a transition system that satisfies
different properties than the original transition system captured in the specification.
We refer to this as the inconsistent labelling problem. We propose updated stubborn set
conditions that resolve the issue and discuss multiple related works that are affected.
The impact on most practical implementations is limited, since they compute an
approximation of stubborn sets.

After we established a correct POR theory for the setting of transition systems,
we subsequently investigate its application to parity games. POR has seen many
successful applications in the past, but most approaches share the limitation that
they at best preserve CTL without the next operator. Designing a POR technique
that operates on parity games and that preserves the winner in any given game would
resolve this issue. This invites the following long standing open question [73, 114,
115, 138]:

RQ4 How can partial-order reduction be applied to PBESs and parity
games?

The approach presented in Chapter 6 builds on the corrected conditions of Chapter 5
and leverages the standard recursive form for PBESs (Chapter 3). This results in the
first POR technique that can be applied while checking any µ-calculus formula, includ-
ing stutter-sensitive formulae. Experiments indicate that, for non-trivial examples,
substantial reductions can be achieved.

The last topic we discuss are syntactical transformations for PBESs that aim
to reduce the effort spent in solving them. One possible reason for a PBES to
have a large underlying parity game is the occurrence of quantifiers whose bound
variable can take arbitrary values. These typically occur when one wants to check a
certain property for multiple (similar) processes in a specification. Existing static
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analysis techniques [106, 74] deal poorly with quantifiers. Thus, there may be a lot
of unexploited reduction potential, and we consider the following question:

RQ5 How can quantifiers in a PBES be manipulated such that the underlying
parity game is smaller?

Chapter 7 proposes two possible techniques, called quantifier propagation and global
propagation. The latter is a completely automated procedure, which ensures quanti-
fiers only occur in those places where the value selected for its variable is relevant.
Global propagation generalises the constant elimination algorithm from [106].

The same chapter also considers the concept of guards, which are a useful tool
in most static analysis techniques. A guard is an expression that characterises a
dependency within a PBES. However, the guards computed by [74] over-approximate
those dependencies. If we can compute more precise guards, this will support more
powerful static analysis. Hence, we investigate:

RQ6 Can we efficiently compute more precise guards or even exact guards?

The first half of this question is answered affirmatively: the computation presented in
Section 7.6 computes stronger guards than existing works. We prove that the guards
we compute are compositional : strengthening a formula with a guard does not change
other guards. However, to answer the second half of the question, we demonstrate
that exact guards, which exactly characterise PBES dependencies, do not have this
desirable property. As a result, computing and applying exact guards is infeasible for
large PBESs.

To conclude the thesis, we review each of the proposed techniques and we try to
answer the following question:

RQ7 What are the advantages and disadvantages of the application of
existing reduction techniques to PBESs?

The main advantage discussed in Chapter 8 is the fact that PBESs often facilitate
larger theoretical reductions. However, most information related to the individual
processes is lost, which can make static analysis challenging in practice. Chapter 8
ends with suggestions for future work.

1.5 Origin of the Chapters

The main content of the thesis is divided up into three parts which can mostly be
read independently. The only interdependence is the introduction of the concept of
standard recursive form in Chapter 3 and its use in Chapter 6.

The first part contains Chapters 3 and 4, which both originate from the following
two publications.
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[103] T. Neele, T. A. C. Willemse, and J. F. Groote, Solving Parameterised Boolean
Equation Systems with Infinite Data Through Quotienting. In FACS 2018, vol.
11222 of LNCS, pp. 216–236, 2018. Best paper award.

[104] T. Neele, T. A. C. Willemse, and J. F. Groote, Finding Compact Proofs for
Infinite-Data Parameterised Boolean Equation Systems. Science of Computer
Programming (FACS 2018 special issue), vol. 188, 102389, 2020.

The latter publication extends the former with an explanation of minimal model
generation, a larger running example, full correctness proofs and a more compre-
hensive experimental evaluation. The theory of these papers is completely based on
dependency graphs and proof graphs. For consistency, the thesis presents the same
ideas in terms of parity games. The contributions of [103] were recognised with the
FACS 2018 best paper award.

The second part of the thesis consists of Chapters 5 and 6, which respectively
originate from the following publications.

[102] T. Neele, A. Valmari, T. A. C. Willemse, The Inconsistent Labelling Problem
of Stutter-Preserving Partial-Order Reduction. In FoSSaCS 2020, vol. 12077
of LNCS, pp. 482–501, 2020. Twice nominated for best paper award;
won EATCS best paper award.

[105] T. Neele, T. A. C. Willemse, W. Wesselink, Partial-Order Reduction for Parity
Games with an Application on Parameterised Boolean Equation Systems. In
TACAS 2020, vol. 12079 of LNCS, pp. 307–324, 2020.

The observations presented in Chapter 5 originated while developing the theory
of Chapter 6. In the thesis, Chapter 6 is presented as an application of (part of)
the fundamental theory in Chapter 5. Chapter 5 is largely independent of the
preliminaries presented in Chapter 2; it only relies on labelled transition sytems and
its related concepts presented in Section 2.2. The main counter-example in Chapter 5
was contributed by Antti Valmari and the tool used in the experiments of Chapter 6
was implemented with the help of Wieger Wesselink. The paper [102] received the
EATCS award for the best ETAPS 2020 paper in theoretical computer science and
was also nominated for the EASST award for the best ETAPS 2020 paper related to
the systematic and rigorous engineering of software and systems.

Chapter 7 forms the last part of the thesis. This chapter is unpublished.
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This chapter introduces basic notions that are used throughout the thesis. These
include abstract data, labelled transition systems as a basic representation of be-
haviour and parity games to encode several types of decision problems on transition
systems. Furthermore, we introduce linear processes and parameterised Boolean
equation systems as compact representations of transition systems and parity games,
respectively. To express formal properties of an LTS, we use the modal µ-calculus.

2.1 Abstract Data

Throughout the thesis, we work with abstract data types and expressions over those
data types. We distinguish their syntax and semantics. Data sorts are denoted with
the letters D,E, . . . . The corresponding semantic domains are D,E, . . . ; we assume
that these semantic domains are non-empty. In addition, we use B to denote the
Booleans and N to denote the natural numbers {0, 1, 2, . . . }, which have the semantic
counterparts B and N respectively. Booleans and natural numbers are primarily used
in the examples. We also have a singleton sort D? = {?} on which no operations are
defined. Furthermore, we have a set of data variables V. In syntax, variables are
typically denoted with the letters d and e, while semantic values are denoted with v
and w. To indicate that the type of variable d is D, we write d:D. Expressions not
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containing variables are called ground terms.
To interpret expressions that contain variables, we have a data environment δ that

maps each variable in V to an element of the corresponding domain. We use J·K as
the interpretation function, i.e., the semantics of an expression f in the context of a
data environment δ is denoted JfKδ. If f is a ground term, we may also write JfK,
since the data environment is not relevant for the semantics of f . The set of all data
environments is ∆. Updates to an environment δ are denoted by δ[v/d], which is
defined as δ[v/d](d) = v and δ[v/d](d′) = δ(d′) for all variables d, d′ satisfying d′ 6= d.

We sometimes write f(d) to emphasise that the expression f only depends on d.
Remark that the value of Jf(d)Kδ[v/d] does not depend on δ. For those cases, we
assume the existence of some fixed data environment δ0, and write Jf(d)Kδ0[v/d].

Example 2.1. Let m and n be variables of type N and δ a data environment. We
consider the value v = Jm(n+ 1)Kδ[6/n]. If δ(m) = 2, we have v = 14.

2.2 Transition Systems and Processes

The atomic elements of behaviour that we consider are actions, typically denoted
with a. Each action represents an event in the real world, such as “a key is pressed”
or “the variable x is set to 1”. Thus, the occurrence of an action most often coincides
with a change in the state of the system that we are considering. The relation between
actions and system states is captured in a labelled transition system (LTS) [76]. This
is a possibly infinite, directed graph where the edges are labelled with actions. Here,
we assume the existence of a fixed set of actions Act , which may be infinite.

Definition 2.2. A labelled transition system (LTS) is a three-tuple TS = (S,→, ŝ),
where

• S is a set of states, which we refer to as the state space;

• →⊆ S ×Act × S is the transition relation; and

• ŝ ∈ S is the initial state.

Below, we will use the terms LTS and transition system interchangeably. We
write s a−→ t whenever (s, a, t) ∈→. An action a is enabled in a state s, notation
s a−→, iff there exists a state t such that s a−→ t. Given an LTS TS , the set of all
enabled actions in a state s is denoted enabledTS (s). We call a state s a deadlock iff
enabledTS (s) = ∅. A path is a (finite or infinite) alternating sequence of states and
actions: s0

a1−→ s1
a2−→ s2 . . . . We sometimes omit the intermediate and/or final states

if they are clear from the context or not relevant, and write s a1...an−−−−→ t or s a1...an−−−−→
for finite paths and s a1a2...−−−−→ for infinite paths. A path that starts in the initial state
ŝ is called an initial path.

We say a state s is deterministic if and only if s a−→ t and s a−→ t′ imply t = t′,
for all states t and t′ and actions a. An LTS is deterministic iff all its states are
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Figure 2.1: An LTS modelling an ATM. Each circle represents a state and arrows
represent transitions. The initial state ŝ is indicated with an incoming arrow.

deterministic. We call the occurrence of a state s and an action a such that s a−→ t
and s a−→ t′ where t 6= t′ a non-deterministic choice. Non-determinism is often used as
an abstraction method: instead of precisely modelling a complex (possibly unknown)
process that can have multiple outcomes, one can abstractly represent the choice
that the process makes with non-determinism.

To make the ideas more concrete, we present an example of a small LTS. This
system will serve as a running example throughout the current chapter.

Example 2.3. We consider the LTS drawn in Figure 2.1, which models the behaviour
of an ATM. States are depicted with circles and transitions with arrows. The initial
state has an incoming arrow. After inserting a bank card and entering a PIN, the
ATM decides whether the PIN was correct. Since we do not want to model the
existence of different cards and their PINs, this process is modelled abstractly with
a non-deterministic choice, represented by the action τ . Of course the actual ATM
contains some internal routine to decide whether the PIN was correct. If the PIN is
wrong, it has to be entered again; if the PIN is correct, one can choose an amount of
cash to withdraw. Here, the action cash(50) represents the machine ejecting 50 units
of cash and returning the bank card. When the ATM is out of cash, it performs the
action empty , which leads to a deadlock state. Otherwise, it returns to the initial
state.

Typically, one does not specify an LTS directly, but through a higher level modelling
language. One family of such languages are process algebras [7]. Popular examples
are CCS [98] and ACP [16]. In process algebra, actions are also considered as
behavioural atoms. They can be combined with one or more operators to form
complex specifications of behaviour, known as processes. Note that an action by
itself is also a process. In this thesis, we restrict ourselves to linear processes. The
combination of a linear process and an initial state is a linear process specification
(LPS). In the definition, we use some domain D to represent the state of the system.
Furthermore, actions consist of an action label and an action parameter, taken from
some domain Dpar , which represents some data that is associated with the action. For
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example, in a process modelling a networking protocol, the action label send ack may
be accompanied by an action parameter that indicates which message is acknowledged.

Definition 2.4. A linear process specification (LPS) is a tuple L = (P, d̂), where d̂
is the initial state, given by a ground term of sort D, and P is a recursive process of
the shape

P (d:D) =
∑
i∈I

∑
ei:Ei

(
ci(d, ei)→ ai(fi(d, ei)) · P (gi(d, ei))

)
where I is a finite (possibly empty) index set, ei is a summation variable ranging
over the non-empty domain Ei, ci is a boolean condition, ai is an action label that
has the parameter fi(d, ei) of type Dpar and gi(d, ei) is an expression of type D.

Intuitively, in every state represented by variable d, a linear process offers a (non-
deterministic) choice to perform an action ai(fi(d, ei)) that is enabled, i.e., for which
ci(d, ei) evaluates to true for some value of ei. After performing this action, the state
is updated to gi(d, ei). This is captured in the LTS that forms the semantics. In
the definition below, the set of actions Act follows from the action labels and action
parameters in the LPS, so we have Act = A× Dpar for some finite set A containing
the action labels of the LPS.

Definition 2.5. Let L = (P, d̂) be an LPS in the shape of Definition 2.4. Then

the LTS associated with L is defined as TSL = (D,→, Jd̂K), where → is the
set satisfying for all v ∈ D, i ∈ I and vi ∈ Ei, (v, (ai, Jfi(d, ei)Kδ0[v/d, vi/ei]),
Jgi(d, ei)Kδ0[v/d, vi/ei]) ∈→ if and only if Jci(d, ei)Kδ0[v/d, vi/ei] holds.

Remark that in the LTS associated with an LPS, not all states in D are necessarily
reachable from the initial state. In most of our analyses, we are only concerned with
the reachable part of the state space.

Linear processes are a subset of the mCRL2 process algebra [56]. However, most
mCRL2 processes can be translated into an LPS through a process called lineari-
sation [125]. The structure of LPSs facilitates efficient state space generation and
also other transformations. Contrarily, reasoning about mCRL2 processes with an
arbitrary structure, e.g., determining which actions are enabled, can be complex.

The assumption that a linear process has only one state parameter d of type D does
not impact generality. After all, the corresponding semantic domain D can always
be chosen such that D = {⊥} ∪ D1 ∪ (D2 × D3) ∪ . . . . The same applies to action
parameters, which come from a single domain Dpar . In the examples, we regularly
consider LPSs with multiple state parameters and LPSs or LTSs where action labels
carry a different number of parameters, or no parameter at all. Furthermore, in LPSs,
we also unfold the first sum operator by using the choice operator (notation +) and
we omit the second sum operator when ei is not used.
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Example 2.6. We revisit the LTS of Example 2.3. This LTS can be modelled with
the LPS (ATM , (idle, 0)), where ATM is the following linear process.

ATM (s:State, n:N) =

(s = idle)→ insert card ·ATM (await pin, n) (1)

+ (s = await pin)→ enter pin ·ATM (check pin, n) (2)

+
∑
b:B

(s = check pin)→ τ ·ATM (if (b, await amount ,wrong pin), n) (3)

+ (s = wrong pin)→ wrong ·ATM (await pin, n) (4)

+
∑
m:N

(s = await amount ∧ (m = 50 ∨m = 100 ∨m = 200)) (5)

→ amount(m) ·ATM (deliver cash,m)

+ (s = deliver cash)→ cash(n) ·ATM (check cash, 0) (6)

+ (s = check cash)→ empty ·ATM (no cash, n) (7)

+ (s = check cash)→ done ·ATM (idle, n) (8)

In this linear process, the parameter s stores the current control state of the ATM; its
sort State can take the values idle, await pin, check pin, wrong pin, await amount ,
deliver cash, check cash and no cash. The amount of cash that is to be withdrawn
is stored in parameter n, which is a natural number. Note that the value n is only
relevant just after the amount has been entered; after delivering the cash, it is reset
to 0 and not used any more until another customer enters an amount.

To decide which actions can occur, we check the current value of s. On line 5, we
allow one of three amounts to be entered by restricting the value of sum variable m
in the condition. The non-deterministic choice whether to accept the PIN is modelled
by introducing a Boolean sum variable b (line 3), whose value is not restricted by the
condition. The value of b determines what the next state is, as per the expression
if (b, await amount ,wrong pin).

Although we aimed to model a finite LTS, the LTS TS that is associated with
(ATM , (idle, 0)) is infinite. However, the reachable part of TS exactly coincides with
the LTS of Example 2.3. An example of an unreachable state in TS is (await pin, 21).

2.3 Modal µ-calculus

To express formal properties, we rely on the first-order modal µ-calculus [55], an
expressive logic which finds its roots in Hennessy-Milner logic (HML) [64]. HML is a
multi-modal logic; for each action a, there are two modal operators: the diamond,
or “possibly”, operator (〈a〉) and the box, or “necessarily”, operator ([a]). The
µ-calculus [83, 84] extends this with fixpoint operators, which allow distinguishing
between finite or infinite behaviour. Finally, the first-order µ-calculus [55] introduces
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data; this enables specifying properties that involve data and infinite sets of actions.
The expressiveness of the modal µ-calculus is due to the fact that all operators,
including modalities and fixpoints, can be nested arbitrarily.

Before we formalise the µ-calculus itself, we first consider action formulas, which
provide a syntactic way of specifying, possibly infinite, sets of actions. Here, and in
the rest of this section, we again assume that each action is comprised of a label and
a parameter, i.e., Act is of the shape A× Dpar .

Definition 2.7. Action formulas are generated by the following grammar:

α, β ::= a(f) | α | ⊥ | > | α ∩ β | α ∪ β | ud:D α | td:D α

where a is an action label and f is a term of type Dpar . The interpretation of an
action formula α under a data environment δ, notation JαKδ, is a set of actions. It
follows the inductive definition:

Ja(f)Kδ = {(a, JfKδ)} JαKδ = Act \ JαKδ
J⊥Kδ = ∅ J>Kδ = Act

Jα ∩ βKδ = JαKδ ∩ JβKδ Jα ∪ βKδ = JαKδ ∪ JβKδ

Jud:D αKδ =
⋂
v∈D

JαKδ[v/d] Jtd:D αKδ =
⋃
v∈D

JαKδ[v/d]

Definition 2.8. A formula φ is a formula in the modal µ-calculus iff it is generated
by the following grammar:

φ, ψ ::= b | ¬φ | φ ∧ ψ | φ ∨ ψ | ∀d:D.φ | ∃d:D.φ |
[α]φ | 〈α〉φ | µX. φ | νX. φ | X

Here, b is a term of type B, α is an action formula and X ∈ F is a fixpoint variable,
taken from some countable set F . Every fixpoint variable represents a set of states;
µX. φ and νX. φ are the least and greatest fixpoints over X respectively.

Since we do not need fixpoints with parameters in the examples, our definition
excludes fixpoint parameters. This is a slight deviation from the standard definition
of the first-order µ-calculus.

On top of the operators defined above, we also use the implication operator φ⇒ ψ
as an abbreviation of ¬φ ∨ ψ. The binding of the modal operators [α] and 〈α〉 takes
precedence over the binding of logical operators, i.e., [α]φ ∧ ψ should be interpreted
as ([α]φ) ∧ ψ.

To ensure the semantics is well-defined and for the purpose of model checking, we
place several practical restrictions on the shape of µ-calculus formulae. Firstly, we
say the occurrence of a data variable d (resp. fixpoint variable X) is bound iff it
occurs within the scope of a formula Qd:D.φ, with Q ∈ {∀,∃} (resp. σX. φ, with
σ ∈ {µ, ν}). Otherwise, the occurrence is free; the set of all data variables that
occur freely in φ is denoted vars(φ). A µ-calculus formula φ is closed iff no data

14



2.3 Modal μ-calculus

variables and no fixpoint variables occur freely in φ. We say a µ-calculus formula is
well-named iff data variables and fixpoint variables are not bound more than once,
i.e., the variable d (resp. X) in the binding Qd:D.φ (resp. σX. φ) is not bound
anywhere else. Finally, a µ-calculus formula is monotone iff the number of negations
(including those arising from implications) that occurs between every fixpoint variable
X and its binding σX. φ is even. From here on, we only consider µ-calculus formulae
that are well-named and monotone. Furthermore, the formulae we consider in the
examples are also closed. Any monotone µ-calculus formula can be transformed into
an equivalent normalised formula, in which only Boolean expressions b may occur in
the scope of a negation.

Semantics Formulae in the µ-calculus are interpreted over a labelled transition
system (S,→, ŝ) and can be evaluated in each state s ∈ S. We first give the intuition
behind the semantics; a formal definition follows. The box modality [a]φ expresses
that after every a-transition starting from s, φ must hold. If no a-transition is enabled
in s, then [a]φ vacuously holds in s. The diamond modality 〈a〉φ is true if and only
if an a-transition is possible in s after which φ holds. The least fixpoint µX. φ is
true for the smallest set of states X such that φ holds for all states in X (hence
the name ‘least fixpoint’). Dually, νX. φ is true for the largest set X that satisfies
φ. In a typical formula with fixpoints, X occurs in the body φ of its binding σX. φ
and in the scope of a modal operator. An example is νX.〈a〉X, “there is an infinite
path consisting only of a actions”. In this way, the greatest fixpoint operator is used
to express infinite behaviour, while the least fixpoint operator is can express finite
behaviour.

These ideas are formalised below. In this definition, we use a fixpoint environment
η : F → 2S to interpret the semantics of fixpoint variables.

Definition 2.9. Given an LTS (S,→, ŝ), the semantics of a µ-calculus formula φ
in the context of a fixpoint environment η and a data environment δ is JφKηδ ⊆ S,
defined inductively as follows:

JbKηδ =

{
S if JbKδ
∅ otherwise

J¬φKηδ = S \ JφKηδ

Jφ ∧ ψKηδ = JφKηδ ∩ JψKηδ Jφ ∨ ψKηδ = JφKηδ ∪ JψKηδ

J∀d:D.φKηδ =
⋂
v∈D

JφKηδ[v/d] J∃d:D.φKηδ =
⋃
v∈D

JφKηδ[v/d]

J[α]φKηδ = {s | ∀a ∈ JαKδ, t ∈ S. s a−→ t⇒ t ∈ JφKηδ}
J〈α〉φKηδ = {s | ∃a ∈ JαKδ, t ∈ S. s a−→ t ∧ t ∈ JφKηδ}

JµX. φKηδ =
⋂
{T ⊆ S | JφKη[T/X]δ ⊆ T}

JνX. φKηδ =
⋃
{T ⊆ S | T ⊆ JφKη[T/X]δ}

JXKηδ = η(X)
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Remark that JφKηδ does not depend on η and δ if φ is a closed formula. In those
cases, we will also write JφK. An LTS TS = (S,→, ŝ) satisfies a closed formula φ,
notation TS |= φ, iff ŝ ∈ JφK. By extension, an LPS satisfies a formula φ iff its LTS
satisfies φ.

The existence of the smallest and largest fixpoints in the complete lattice (2S ,⊆)
follows from the monotonicity of φ and the Knaster-Tarski theorem [78, 123]. Note
the duality between 〈α〉φ and [α]φ and also between µX. φ and νX. φ.

Example 2.10. Recall again the LTS from Example 2.3. We want to check several
properties on this LTS.

Firstly, to check for deadlocks, we use the formula

νX.([>]X ∧ 〈>〉true) (2.1)

which expresses “at every point in every trace, there exists some action after which
true holds”. This is equivalent to stating that in any reachable state, at least one
action is enabled. This formula does not hold for the LTS of the ATM, since the
state reached after performing empty is a deadlock.

Secondly, consider the property “after the ATM is empty, it will never allow
inserting the card again”. An equivalent wording is “after any sequence of actions
that ends with empty , there is no finite trace that ends with the action insert card”,
which can be formalised as

νX.
(

[>]X ∧ [empty ]¬µY. (〈>〉Y ∨ 〈insert card〉true)
)

Remark that this formula is monotone: the only negation does not occur between a
fixpoint variable and its binding. The equivalent normalised formula is

νX.
(

[>]X ∧ [empty ]νY. ([>]Y ∧ [insert card ]false)
)

(2.2)

The LTS of the ATM satisfies this property.
To check whether the ATM always ejects the desired amount of cash, we use the

formula
νX. ([>]X ∧ ∀n, n′:N. [amount(n)][cash(n′)](n = n′)) (2.3)

which requires that whenever two actions amount(n) and cash(n′) happen successively,
their parameters n and n′ have the same value. This is indeed the case, so the formula
holds.

Lastly, we have the property “after inserting a card, and not entering the PIN
incorrectly infinitely often, cash will unavoidably be ejected”. Rephrasing this
requirement in terms of actions and traces yields: “after insert card happens, all
traces contain wrong infinitely often or perform cash after a finite number of steps,
while no deadlock occurs in the meantime”, which can be formalised as follows:

νX.
(

[>]X ∧ [insert card ] (2.4)

νY. µZ.
(
[wrong ]Y ∧ [ wrong ∪ tn:N cash(n) ]Z ∧ 〈>〉true

))
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This property is also satisfied by the ATM LTS.

The complexity of a µ-calculus formula can be formalised by the concept of
alternation depth: the more alternations between least fixpoints µ and greatest
fixpoints ν a formula contains, the harder it is to check and, incidentally, to understand.
Formally, the alternation depth of a fixpoint variable X within a normalised formula
φ, notation AltDepthφ(X), is the length of the longest sequence σ1X1. φ1 . . . σnXn. φn
of subformulae of φ such that X = X1 and, for all 1 < i ≤ n, we have σi 6= σi−1

and Xi−1 occurs freely in σiXi. φi. The alternation depth of a normalised formula φ
is the maximum alternation depth of the fixpoint variables that occur in it, or 0 if
there are none. In Example 2.10, the first three formulas have an alternation depth
of one and the last formula has an alternation depth of two, due to variable Y . Most
real-world formulas have a small alternation depth, typically not larger than three.

Other Temporal Logics Other popular logics for verification include linear temporal
logic (LTL) [116], computation tree logic (CTL) [30] and extended computation tree
logic (CTL∗) [41]. We will not formalise them here, but informally describe which
fragment of the µ-calculus they represent.

Firstly, as the name indicates, LTL only considers linear behaviour, i.e., single
paths. The semantics is such that an LTL formula holds in a state iff it holds for
all paths in that state. Furthermore, the semantics limits the number of meaningful
fixpoint alternations. Thus, LTL roughly corresponds to the µ-calculus without the
diamond operator 〈α〉 and with a maximum alternation depth of two. Secondly, CTL
does consider branching behaviour, but further limits fixpoint alternations. Hence,
the expressive power of CTL is roughly similar to the µ-calculus without fixpoint
alternations.

Since LTL and CTL are incomparable [41], their combination, CTL∗, is strictly
more expressive than either logic. However, the µ-calculus is even more expressive:
every CTL∗ formula can be translated into an equivalent µ-calculus formula with a
worst-case exponential increase in the size of the formula [18] (or a linear increase if
first-order constructions are allowed [35]). An important practical difference between
µ-calculus and LTL/CTL is that µ-calculus is often applied in the setting of action-
based semantics, i.e., an LTS. LTL and CTL, on the other hand, are typically used
in the verification of models with state-based semantics, where the states are labelled
instead of the edges.

2.4 Parity Games

In this section, we introduce parity games [43, 97] and the related concepts. Parity
games can encode various decision problems, among them µ-calculus model checking
of LTSs (see Section 2.4.1). A parity game is played by two players, even (3) and
odd (�), on a directed graph.

Definition 2.11. A parity game is a directed graph G = (V,E,Ω,P), where
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• V is a set of nodes, called the state space;

• E ⊆ V × V is a transition relation;

• Ω : V → N is a function that assigns a priority to each node; and

• P : V → {3,�} is a function that assigns an owner to each node.

Our definition deviates slightly from the standard formalisation: we use the function
P to define the owner of each node, instead of two sets V3 and V� that partition V .
We write s → t whenever (s, t) ∈ E. The set of successors of a node s is denoted
with succ(s) = {t | s→ t}. We use # to denote an arbitrary player and #̄ to denote
its opponent. In the parity games we consider, the set of priorities assigned by Ω is
bounded.

A parity game is played as follows: initially, a token is placed on some node of the
graph. Next, the owner of the node can decide where to move the token; the token
must be moved along one of the outgoing edges and ends up in the corresponding
target node. This either continues ad infinitum or until the token gets stuck in a
node that does not have any outgoing edges. The resulting maximal sequence of
nodes that the token has moved through is called a play. Finite plays are won by
whichever player does not own the last node on the play. An infinite play is won by
player 3 iff the minimal priority that occurs infinitely often along the play is even.
Otherwise, it is won by player �. On every infinite play, there must be at least one
priority that occurs infinitely often, due to boundedness of Ω.

Remark 2.12. The parity games that we consider in this thesis are min parity games,
meaning that smaller priorities dominate larger priorities. Max parity games, where
the parity of the largest priority that occurs infinitely often determines the winner of
a play, also occur frequently in the literature. The concepts of min and max parity
games coincide when the priority function Ω is bounded [54].

To reason about moves that a player may want to take, we use the concept of
strategies. A strategy σ# : V + → V for player # is a partial function that determines
where # moves the token next, after the token has passed through a finite sequence
of nodes that ends in a node owned by #. More formally, for all sequences s1 . . . sn
such that P(sn) = #, it holds that σ#(s1 . . . sn) ∈ succ(sn). If sn belongs to #̄,
σ#(s1 . . . sn) is undefined. A play s1, s2, . . . is consistent with a strategy σ if and
only if σ(s1 . . . si) = si+1 for all i such that σ(s1 . . . si) is defined. A player # wins a
node s if and only if there is a strategy σ# such that all plays that start in s and
that are consistent with σ# are won by player #.

Example 2.13. Consider the parity game in Figure 2.2. Here, priorities are inscribed
in the nodes and the nodes are shaped according to their owner (3 or �). Let π
be an arbitrary, possibly empty, sequence of nodes. In this game, the strategy σ3,
partially defined as σ3(πs1) = s2 and σ3(πs2) = s1, is winning for 3 in s1 and s2.
After all, the minimal priority that occurs infinitely often along (s1s2)ω is 0, which is
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1s1 0

s2

1 s3

1s4 2 s5

3
�

even
odd

Figure 2.2: A parity game with five nodes, three belonging to player 3 and two
belonging to player �. Priorities are inscribed in the nodes.

even. Alternatively, player 3 can choose to move the token from s2 to s3, at which
point player � gets stuck and loses.

Player � can win node s4 with the strategy σ�(πs4) = s5. Note that player 3 is
always forced to move the token from node s5 to s4.

In case a parity game has a total transition relation, in which every node has at
least one outgoing edge, we call that game total. In the literature, parity games
are commonly restricted to be total, since it means one only has to reason about
infinite plays. Note that a parity game with a non-total transition relation can easily
be transformed into a parity game with a total transition relation: by adding two
nodes 0 and 1 , and forcing all finite plays that are winning for player 3,
respectively �, to those nodes.

Dominions and Subgames Given a strategy σ for player #, a set of nodes U is
called a σ-dominion if and only if every play which starts in U and is consistent with
σ, stays in U and is won by #. Furthermore, U is called a #-dominion iff U is a
σ-dominion for some #-strategy σ. If U is a #-dominion for some player #, then we
simply call it a dominion.

Given a game G = (V,E,Ω,P), we consider two types of subgames. Firstly, we
have subgames where the set of nodes is restricted by a set U ⊆ V : G ∩ U denotes
the subgame (U,E ∩ (U × U),Ω|U ,P|U ), where f |A denotes the function f with its
domain restricted to A. Note that G ∩ U is not necessarily total, even if G is total.
However, when G is total and U is a dominion, then G ∩ U is also a total parity
game.

Secondly, we consider subgames where the edge relation is restricted by a strategy
σ. This is denoted G ∩ σ, which is defined as (V,Eσ,Ω,P), where Eσ is such that,
for each node s ∈ V , the successor set sEσ of s is defined as

sEσ =

{
{σ(s)} if σ(s) is defined

sE otherwise

Remark that in G ∩ σ, only one player can make non-trivial choices. Such a game is
called solitaire.
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Solving A nice property of parity games is that they are determined [43]: every node
is won by one of the players. Moreover, they are also positionally determined [140],
which means that every node is won by one of the players with a memoryless strategy
σ : V → V . A memoryless strategy directs the token based only on the current node,
and does not take previous moves of the token into account. In most of the thesis we
use memoryless strategies; in only a few proofs we require strategies with memory.

Solving a parity game means computing a partitioning {W3,W�} of the nodes into
those nodes won by player 3 (W3) and those won by player � (W�). A witness to a
solution is a pair of strategies (σ3, σ�) such that W3 is a σ3-dominion and W� is a
σ�-dominion. Parity game solving is one of the few problems that is in UP and in
co-UP [68], but for which no polynomial time algorithm is known (yet). A recursive
algorithm for solving parity games follows directly from Zielonka’s proof of positional
determinacy [140].

2.4.1 Application in Model Checking

One of the applications of parity games is model checking: given an LTS TS = (S,→
, ŝ) and a µ-calculus formula φ, one can construct a corresponding parity game which
contains a node (s, δ, ψ) for every combination of state s, subformula ψ and data
environment δ (the latter is not relevant if φ is closed). Since the node (ŝ, δ, φ) is won
by player 3 if and only if TS � JφKδ, solving the parity game also answers the model
checking problem [24]. Below, Φ is the set of all µ-calculus formulae and φ[e/d] (resp.
φ[ψ/X]) denotes the substitution of d by e (resp. X by ψ) in φ. Recall that ∆ is the
set of all data environments.

Definition 2.14. Given an LTS TS = (S,→, ŝ) and a closed and normalised µ-
calculus formula φ, the corresponding parity game is G = (S×∆×Φ, E,Ω,P), where
E, Ω and P are defined in Table 2.1.

Remark that the recursion in Table 2.1 never arrives at a formula X, since we always
replace those by their binding subformula. Furthermore, the nodes corresponding
to a least fixpoint µX. φ are always assigned an odd priority and, νX. φ-nodes are
assigned an even priority. This is in accordance with the semantics of the µ-calculus,
as per the following theorem.

Theorem 2.15 ([24]). Let TS = (S,→, ŝ) be an LTS and φ a closed and normalised
µ-calculus formula. Then, TS |= φ iff player 3 wins (ŝ, δ, φ), where δ is arbitrary, in
the corresponding parity game.

We conclude this section by encoding our running example into a parity game.

Example 2.16. We revisit the LTS of an ATM from Example 2.3 and the properties
specified in Example 2.10, specifically formula 2.4. A compacted representation of
the corresponding parity game is displayed in Figure 2.3. Here, formulas of the shape
[a]φ ∧ [b]ψ are represented by one node belonging to player �, instead of three nodes.
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Table 2.1: Translation scheme of an LTS and a formula φ into a parity game. Below,
N denotes the alternation depth of φ.

node successors Ω P

(s, δ, b) ∅ N

{
� if JbKδ
3 if ¬JbKδ

(s, δ, ψ1 ∧ ψ2) {(s, δ, ψ1), (s, δ, ψ2)} N �

(s, δ, ψ1 ∨ ψ2) {(s, δ, ψ1), (s, δ, ψ2)} N 3
(s, δ,∀d:D.ψ) {(s, δ[v/d], ψ) | v ∈ D} N �

(s, δ,∃d:D.ψ) {(s, δ[v/d], ψ) | v ∈ D} N 3
(s, δ, [α]ψ) {(t, δ, ψ) | a ∈ JαKδ ∧ s a−→ t} N �

(s, δ, 〈α〉ψ) {(t, δ, ψ) | a ∈ JαKδ ∧ s a−→ t} N 3
(s, δ, µX.ψ) {(s, δ, ψ[µX.ψ/X])} 2bN −AltDepthφ(X)/2c+ 1 �

(s, δ, νX. ψ) {(s, δ, ψ[νX.ψ/X])} 2bN −AltDepthφ(X)/2c �

Furthermore, we omitted the nodes corresponding to the subformula 〈>〉true, since
they are not relevant for the solution of the parity game.

Remark that fixpoint X covers the complete state space of the LTS; fixpoints Y
and Z only cover the part that is related to entering the PIN and receiving cash. All
nodes in the game are won by player 3, since all paths either end in a node owned
by � or the priority 0 occurs infinitely often on them. Thus, we again conclude that
the ATM unavoidably delivers cash after entering the correct PIN.

2.5 Parameterised Boolean Equations Systems

In the previous section, we saw how the model checking problem can be reduced
to solving parity games by first generating an LTS and then constructing the cor-
responding parity game based on the µ-calculus formula. This section introduces
parameterised Boolean equations systems (PBESs) [55, 59, 95], which can serve as a
high-level representation of parity games.

Definition 2.17. A predicate formula is defined by the following grammar:

φ, ψ ::= b | ¬φ | φ ∧ ψ | φ ∨ ψ | ∀e:E. φ | ∃e:E. φ | X(f)

where b is a data term of sort B, e is a variable of sort E, X is a predicate variable
of sort D → B, which is taken from some set X of sorted predicate variables and
argument f is an expression of sort D. The interpretation of a predicate formula φ
in the context of a predicate environment η : X → 2D, providing an interpretation
for predicate variables from X , and a data environment δ is denoted by JφKηδ and
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Figure 2.3: Parity game corresponding to checking formula 2.4 on the LTS of
Figure 2.1. The dashed lines demarcate the nodes that originate from the fixpoints
X, Y and Z.

inductively defined as follows:

JbKηδ ⇔ JbKδ holds J¬ϕKηδ ⇔ JϕKηδ does not hold

Jϕ ∧ ψKηδ ⇔ JϕKηδ and JψKηδ hold Jϕ ∨ ψKηδ ⇔ JϕKηδ or JψKηδ holds

J∀d:E.ϕKηδ ⇔ for all v ∈ E, JϕKηδ[v/d] holds

J∃d:E.ϕKηδ ⇔ for some v ∈ E, JϕKηδ[v/d] holds

JX(f)Kηδ ⇔ JfKδ ∈ η(X)

A couple of concepts for predicate formulae are defined analogously to those for
µ-calculus formulae. Firstly, we again use φ ⇒ ψ as a shorthand for ¬φ ∨ ψ. A
predicate formula is monotone iff all predicate variables occur in the scope of an
even number of negations. Furthermore, we say a predicate formula is normalised iff
negations only occur before a Boolean term b. Note that every monotone formula
can be normalised by distributing negation over the other operators and eliminating
double negations. Bound and free occurrence of data variables is defined similar as
in the µ-calculus; vars(ϕ) again denotes the set of variables that occur freely in ϕ. A
predicate formula is called simple iff no predicate variables occur in it.

Definition 2.18. A parameterised Boolean equation system (PBES) is a sequence of
equations as defined by the following grammar:

E ::= ∅ | (νX(d:D) = ϕ)E | (µX(d:D) = ϕ)E

where ∅ is the empty PBES, µ and ν denote the least and greatest fixpoint operator,
respectively, and X ∈ X is a predicate variable of sort D → B. The right-hand side ϕ
is a syntactically monotone predicate formula. Lastly, d ∈ V is a parameter of sort D.

As with LPSs, in the majority of the thesis, we only consider parameterised Boolean
equation systems where each equation carries the same single parameter of a given
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data sort D. This does not affect the generality of the theory we develop. The
examples may contain equations with multiple parameters.

We use bnd(E) to denote the predicate variables bound in E , i.e., those variables
occurring at the left-hand side of an equation. For an equation for X, dX denotes
its parameter and ϕX denotes its right-hand side predicate formula. We omit the
trailing ∅. We say a PBES is closed iff it does not contain free variables, i.e., all data
variables that occur in a right-hand side ϕX are either bound by a quantifier or as a
data parameter of X, whereas all predicate variables belong to bnd(E). A PBES E
is called a Boolean equation system (BES) [92] iff all predicate variables bound by
E have type D? → B and every right-hand side only contains the operators ∧ and
∨, constants true and false and X(?). We say that a PBES E is well-formed iff for
every X ∈ bnd(E) there is exactly one equation in E . In the remainder of the thesis
we only reason about well-formed, closed PBESs.

Definition 2.19. The solution JEKηδ of a PBES E in the context of a predicate
environment η and a data environment δ, is a predicate environment that is defined
inductively:

J ∅ Kηδ = η

J(µX(d:D) = ϕX)EKηδ = JEKη[µTX/X]δ

J(νX(d:D) = ϕX)EKηδ = JEKη[νTX/X]δ

with TX(R) = {v ∈ D | JϕXK(JEKη[R/X]δ)δ[v/d]}.

Intuitively, the solution of a PBES gives priority to fixpoints that occur early
in the PBES, while satisfying the equalities that are specified by each equation.
The monotonicity of the transformer TX : 2D → 2D, which follows from syntactic
monotonicity of ϕX , guarantees the existence of the least fixpoint µTX and greatest
fixpoint νTX in the complete lattice (2D,⊆). Also, note that the solution of a bound
variable in a closed PBES does not depend on the environments η and δ. For this
reason, we often omit η and δ and simply write JEK instead of JEKηδ. Finally, for a
PBES E and some X ∈ bnd(E) we sometimes say that (the solution to) X(v) is true
iff v ∈ JEK(X).

Example 2.20. Consider the following PBES E consisting of an equation for X and
an equation for Y , both carrying a single parameter. Furthermore, the equation for
X has a least fixpoint, and the equation for Y has a greatest fixpoint.

µX(n:N) = (∃m:N.m ≥ n ∧X(m)) ∧ Y (false)

νY (b:B) = Y (¬b)

By applying the semantics of predicate formulae, we can derive the predicate trans-
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former for Y as follows:

TY (R) = {v ∈ B | JY (¬b)K(J∅Kη[R/Y ]δ)δ[v/b]}
= {v ∈ B | JY (¬b)Kη[R/Y ]δ[v/b]}
= {v ∈ B | J¬bKδ[v/b] ∈ η[R/Y ](Y )}
= {v ∈ B | ¬v ∈ R}

The largest set that satisfies TY (R) = R is B, hence νTY = B. We can apply a similar
reasoning to X to obtain its predicate transformer.

TX(R) = {v ∈ N | J(∃m:N.m ≥ n ∧X(m)) ∧ Y (false)K
(JνY (b:B) = Y (¬b)Kη[R/X]δ)δ[v/n]}

= {v ∈ N | ∃v′ ∈ N. v′ ≥ v ∧ v′ ∈ R}

We derive that µTX = ∅. The application of Definition 2.19 yields JEKηδ = η[µTX/X]
[νTY /Y ]. The solution of E thus satisfies JEK(X) = ∅ and JEK(Y ) = B. Note that
since this particular example is not mutually recursive, the order of the equations
does not influence the solution.

2.5.1 Dependency Graphs and Proof Graphs

Although the semantics for PBESs given in Definition 2.19 is sufficient to compute the
solution and reason about the correctness of PBES transformations, its denotational
nature is not very intuitive. This is also demonstrated by Example 2.20, which required
relatively complex reasoning, even for a small PBES. To provide an operational view
on PBESs and their solution, Cranen et al. developed the notion of dependency
graphs [37]. Before we introduce these graphs formally, we need some additional
concepts.

First, sig(E) is the signature of E , defined as sig(E) = {(X, v) | X ∈ bnd(E), v ∈ D}.
For a given set S ⊆ sig(E), the predicate environment env(S, true) that follows
from it is defined as env(S, true)(X) = {v ∈ D | (X, v) ∈ S}. Dually, we define
env(S, false)(X) = D \ env(S, true)(X). Furthermore, every predicate variable bound
in E is assigned a rank, where rankE(X) ≤ rankE(Y ) if X occurs before Y in E , and
rankE(X) is even if and only if X is labelled with a greatest fixed point. We assume
every PBES has a fixed rank function.

Definition 2.21. Let E be a PBES and G = (V,E) be a directed graph, where
V ⊆ sig(E). We say G is a dependency graph for r ∈ B iff for every (X, v) ∈ V and for
all δ, JϕXKη(δ[v/dX ]) = r with η = env((X, v)E, r), where sE denotes the successor
set of a node, defined as sE = {t | sE t}.

We distinguish positive dependency graphs, where r is true, from negative de-
pendency graphs, where r is false. Intuitively, in a positive dependency graph,
η = env((X, v)E, true) is a predicate environment that maps all successors of (X, v)
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(X, 0) (X, 5)

(Y, false) (Y, true)

(a) A positive dependency graph

(X, 0) (X, 1) (X, 2) ...

(Y, false) (Y, true)

(b) A negative dependency graph

Figure 2.4: Dependency graphs for the PBES from Example 2.20.

to true and all other nodes to false. Then, the requirement is that ϕX (and thus
X(v)) is true under η and a data environment that maps dX to v. In other words, the
successors of a node (X, v) being true must imply that (X, v) is true as well. Dually,
a negative dependency graph indicates a node (X, v) is false, when its successors are
all false.

Example 2.22. Recall the PBES from Example 2.20. Figure 2.4 depicts a positive
and a negative dependency graph for this PBES. We focus on node (X, 0) in the
positive dependency graph of Figure 2.4a. Its successors are (X, 5) and (Y, false).
The environment η induced by these successors is given by env((X, 0)E, true), which
sets these successors to true; i.e., η is such that η(X) = {5} and η(Y ) = {false}.
When we evaluate the right-hand side of the equation for X in the context of η and
parameter n set to 0, we obtain J(∃m:N.m ≥ n∧X(m))∧ Y (false)Kη(δ[0/n]) = true.
Therefore, the positive dependency graph condition is satisfied for node (X, 0). A
similar reasoning applies to the other nodes, showing that the dependency graph
condition is satisfied by each of them.

Note that nodes (Y, false) and (Y, true) are dependent on each other in both
dependency graphs. Furthermore, in the negative case (Figure 2.4b), (X, 0) needs
no dependency on (Y, false) as long as it depends on all (X, i) with i ∈ N. Hence,
this particular dependency graph is infinite. A finite negative dependency graph for
(X, 0) is (X, 0) (Y, false) (Y, true) .

A dependency graph captures the logical structure of a PBES; it does not include the
fixpoint semantics. If we want to reason about the actual solution of a PBES, we need
an additional restriction on the infinite paths in a dependency graph. Dependency
graphs that meet these restrictions are called proof graphs.

Definition 2.23. Let G = (V,E) be a positive (respectively negative) dependency
graph for a PBES E . Then G is a positive proof graph (respectively negative proof
graph) iff for all infinite paths π in G, the number min{rankE(X) | X ∈ V∞(π)} is
even (respectively odd), where V∞(π) is the set of predicate variables that occur
infinitely often along π.

Observe that predicate variables with a lower rank dominate those with a higher
rank. This reflects the fact that fixpoint symbols that occur early in an equation
system take priority over later ones (cf. Definition 2.19).
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(Y, false) (Y, true)

(a) A positive proof graph

(X, 0) (X, 1) (X, 2) ...

(b) A negative proof graph

Figure 2.5: Proof graphs for the PBES from Example 2.20.

Example 2.24. Recall again the PBES from Example 2.20. In this PBES, the rank
of X is 1, and the rank of Y is 2. Figure 2.5 depicts a positive and a negative proof
graph for this PBES. Note that Figure 2.5a depicts the smallest positive proof graph
proving that Y (false) is true. Larger proof graphs can be obtained by adding a self
loop to (Y, false) or (Y, true). Similarly, the proof graph in Figure 2.5b is the smallest
negative proof graph explaining that X(0) is false. However, there is a subgraph
which shows that X(1) = false, viz. the graph that does not include (X, 0). Note
that for every i ∈ N, the proof graph for (X, i) is infinite, since (X, i) depends on all
(X, j) with j ≥ i.

The next theorem formally states the relationship between proof graphs and the
solution of a PBES.

Theorem 2.25 ([37]). Let E be a PBES with X ∈ bnd(E). Then v ∈ JEK(X) iff there
is a positive proof graph (V,E) such that (X, v) ∈ V . Dually, v /∈ JEK(X) iff there is
a negative proof graph containing (X, v).

2.5.2 Application in Model Checking

In Section 2.4.1, we saw that parity games can encode model checking problems on
LTSs. Similarly, a PBES can encode the combination of an LPS and a µ-calculus
formula [55, 58].

Definition 2.26. Let L = (P, d̂) be an LPS and ϕ a closed and normalised µ-calculus
formula, where P is defined as

P (d:D) =
∑
i∈I

∑
ei:Ei

(
ci(d, ei)→ ai(fi(d, ei)) · P (gi(d, ei))

)
Furthermore, let (σ1X1. ϕ1) . . . (σnXn. ϕn) be the sequence of fixpoint binding sub-
formulae of ϕ such that i < j iff σiXi. ϕi occurs before σjXj . ϕj in ϕ. Then, the
corresponding PBES is

νX(d:D) = rhs(ϕ)

σ1X1(d:D, vars(ϕ1)) = rhs(ϕ1)

...

σnXn(d:D, vars(ϕn)) = rhs(ϕn)
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where the function rhs constructs the right-hand side of an equations as follows:

rhs(b) = b

rhs(ψ1 ∧ ψ2) = rhs(ψ1) ∧ rhs(ψ2)

rhs(ψ1 ∨ ψ2) = rhs(ψ1) ∨ rhs(ψ2)

rhs(∀e:E.ψ) = ∀e:E. rhs(ψ)

rhs(∃e:E.ψ) = ∃e:E. rhs(ψ)

rhs([α]ψ) =
∧
i∈I
∀ei:Ei. (ci(d, ei) ∧ ai(fi(d, ei)) ` α)⇒ rhs(ψ)[gi(d, ei)/d]

rhs(〈α〉ψ) =
∨
i∈I
∃ei:Ei. ci(d, ei) ∧ ai(fi(d, ei)) ` α ∧ rhs(ψ)[gi(d, ei)/d]

rhs(Xi) = Xi(d, vars(ϕi))

rhs(µXi. ψ) = Xi(d, vars(ϕi))

rhs(νXi. ψ) = Xi(d, vars(ϕi))

and where a(f) ` α is a predicate formula that represents whether a(f) ∈ JαK,
inductively defined as:

a(f) ` a′(f ′) =

{
f = f ′ if a = a′

false otherwise
a(f) ` α = ¬(a ` α)

a(f) ` ⊥ = false a(f) ` > = true

a(f) ` α ∩ β = a(f) ` α ∧ a(f) ` β a(f) ` α ∪ β = a(f) ` α ∨ a(f) ` β
a(f) ` ud:D α = ∀d:D. (a(f) ` α) a(f) ` td:D α = ∃d:D. (a(f) ` α)

In the resulting PBES, the equation for X is a “dummy fixpoint”, meant to capture
the satisfaction of ϕ, in case it does not start with a fixpoint. Data variables bound
in quantifiers may occur freely in a subformula σX.ϕ, and need to be captured as a
parameter in the corresponding equation.

In practice, the predicate formulae emanating from the modal operators [α] and
〈α〉 can become very large. Therefore, they are often simplified during construction:
if the formula ai(fi(d, ei)) ` α is unsatisfiable (which can often be decided based
on action labels alone), then the whole clause corresponding to ai is removed. The
model checking PBESs we give in the examples are constructed in this way.

We have the following theorem on the correspondence between µ-calculus model
checking of LPSs and solving PBESs:

Theorem 2.27 ([55]). Let L = (P, d̂) be an LPS, ϕ a closed and normalised µ-
calculus formula and E be the corresponding PBES. Then, L � ϕ if and only if
Jd̂K ∈ JEK(X).

We revisit the running example one last time and apply the above theorem.
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Example 2.28. We construct the PBES that corresponds to the ATM LPS given in
Example 2.6 and formula 2.4 from Example 2.10. We distinguish five subformulae that
are significant for the predicate formulae contained in the PBES; they are indicated
below.

νX.
( φ1︷ ︸︸ ︷

[>]X

∧ [insert card ]νY. µZ.
( φ3︷ ︸︸ ︷
[wrong ]Y ∧

φ4︷ ︸︸ ︷
[ wrong ∪ tn:N cash(n) ]Z ∧

φ5︷ ︸︸ ︷
〈>〉true

)︸ ︷︷ ︸
φ2

)

The corresponding PBES is:

νX(s:State, n:N) =

(s = idle)⇒ X(await pin, n)

∧ (s = await pin)⇒ X(check pin, n)

∧ ∀b:B. (s = check pin)⇒ X(if (b, await amount ,wrong pin), n)

∧ (s = wrong pin)⇒ X(await pin, n)

∧ ∀m:N. (s = await amount ∧ (m = 50 ∨m = 100 ∨m = 200))

⇒ X(deliver cash,m)

∧ (s = deliver cash)⇒ X(check cash, 0)

∧ (s = check cash)⇒ X(no cash, n)

∧ (s = check cash)⇒ X(idle, n)



φ1

∧ (s = idle)⇒ Y (await pin, n)
}
φ2

νY (s:State, n:N) =

Z(s, n)

µZ(s:State, n:N) =

(s = wrong pin)⇒ Y (await pin, n)
}
φ3

∧ (s = idle)⇒ Z(await pin, n)

∧ (s = await pin)⇒ Z(check pin, n)

∧ ∀b:B. (s = check pin)⇒ Z(if (b, await amount ,wrong pin), n)

∧ ∀m:N. (s = await amount ∧ (m = 50 ∨m = 100 ∨m = 200))

⇒ Z(deliver cash,m)

∧ (s = check cash)⇒ Z(no cash, n)

∧ (s = check cash)⇒ Z(idle, n)


φ4

∧ (s = idle ∨ s = await pin ∨ (∃b:B. s = check pin) ∨ s = wrong pin

∨ (∃m:N. s = await amount ∧ (m = 50 ∨m = 100 ∨m = 200))

∨ s = deliver cash ∨ s = check cash ∨ s = check cash ∨ s = idle)

φ5
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2.5 Parameterised Boolean Equations Systems

The predicate formulae that correspond to each of the µ-calculus subformulae are
indicated on the right. The right-hand side of Y only consists of Z(s, n). This
is in accordance with the µ-calculus formula, where the fixpoint of Z is a direct
subformula of the fixpoint Y . In the subformula that corresponds to φ5, the condition
s = check cash occurs twice, since there are two actions which are guarded by this
condition in the LPS. The solution of E is such that (idle, 0) ∈ JEK(X), and we again
conclude that the ATM satisfies the property that cash is unavoidable ejected if one
enters the PIN correctly.

The relationships between the concepts we have discussed so far are summarised
in Figure 2.6. The exact relation between PBESs and parity games will be studied in
the next chapter.

LPS

µ-calculus formula

PBES

LTS PG 4/7
solve

Figure 2.6: Model checking with PBESs (dashed arrows) as alternative for model
checking with LTSs (dotted arrows). Vertical arrows correspond to state space
exploration or instantiation, and may be impacted by the state explosion problem.
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∃
f

The previous chapter introduced dependency graphs and proof graphs, which provide
an operational explanation for the solution of a PBES. However, given the fact that
a PBES can induce many different dependency graphs, it is hard to deduce what
exactly the dependencies of a node (X, v) are. This is caused by the arbitrary nesting
of operators that can occur in the right-hand side ϕX , meaning that many different,
possibly overlapping successor sets (X, v)E may satisfy the dependency condition
in (X, v). Furthermore, a dependency graph for the PBES (νX = X)(νY = Y ) may
contain the the edge XEY , which is not related to any syntactic element of the
PBES. Finally, each dependency graph captures only the positive or only the negative
dependencies of a PBES. Knowledge about dependencies, both positive and negative,
is a critical element of many techniques that aim to reduce the size of the underlying
graph.

To address these issues, this chapter introduces two new normal forms for PBESs,
called standard recursive form (SRF, Section 3.1) and clustered recursive form (CRF,
Section 3.4). These normal forms facilitate the construction of a predicate formula that
characterises whether a node (X, v) depends on some other node (Y,w). Using this,
SRF allows us to construct a special kind of dependency graph, called dependency
space (Section 3.2), which exactly describes positive and negative dependencies
(Theorem 3.7). In that way, the new normal forms provide a framework that simplifies
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3 Normal Forms for PBESs

reasoning about dependencies. Since dependency spaces coincide with parity games
(Section 3.3), we can use existing solving techniques to find a proof graph within
the dependency space and solve the PBES. Our normal forms generalise existing
normal forms for BESs and improve over other normal forms for PBESs (Section 3.5).
Whereas earlier normal forms may cause a quadratic blow-up in the size of the
resulting PBES, the overhead of the SRF and CRF normal forms is limited: the
number of new equations they introduce is bounded by the total size of all right-hand
sides in the original PBES.

3.1 Standard Recursive Form

Standard recursive form for PBESs requires every right-hand side to be either
disjunctive or conjunctive, as formalised below.

Definition 3.1. Let E be a PBES. Then E is in standard recursive form (SRF) iff
for all (σiXi(d:D) = φ) ∈ E , where σi ∈ {µ, ν}, φ is either disjunctive or conjunctive,
i.e., this equation for Xi has the shape

σiXi(d:D) =
∨
j∈Ji

∃ej :Ej . fj(d, ej) ∧Xj(gj(d, ej))

or
σiXi(d:D) =

∧
j∈Ji

∀ej :Ej . fj(d, ej)⇒ Xj(gj(d, ej))

We call each of the disjuncts or conjuncts of a right-hand side a clause. For a
PBES E in SRF, we define a function opE : bnd(E)→ {∧,∨} that indicates, for each
predicate variable, whether its equation is conjunctive or disjunctive. We say a PBES
in SRF is total if and only if for every (Xi, v) ∈ sig(E), at least one condition fj should
evaluate to true, i.e., there is a j ∈ Ji and a v ∈ Ej such that Jfj(d, ej)Kδ0[v/d, vj/ej ]
holds. Henceforth, we assume that all PBESs in SRF are total.

We proceed to show how an arbitrary PBES can be transformed to a PBES in SRF.
The intuition behind this transformation is as follows. Nested conjunctions, disjunc-
tions and quantifiers are eliminated by introducing new predicate variables and extra
equations for these variables. For instance, an equation (µX(d:D) = ∀e:E. Y (d, e) ∨
Z(d, e)) can be replaced by two equations (µX(d:D) = ∀e:E. X̃(d, e)) (µX̃(d:D, e:E) =
Y (d, e)∨Z(d, e)) for some fresh variable X̃. Note that this results in at most a linear
blow-up of the size of E , since the number of new equations introduced is at most
equal to the number of disjunctive/conjunctive alternations in all right-hand sides
of E . Furthermore, the number of new parameters introduced is bounded by the
number of variables that occur in quantifiers.

The resulting SRF-PBES is made total by adding the equations (νXtrue(d:D?) =
Xtrue(?)) and (µXfalse(d:D?) = Xfalse(?)) to E , and adding a clause true ⇒ Xtrue(?)
to every conjunctive right-hand side and a clause true ∧Xfalse(?) to every disjunctive
right-hand side (recall from Section 2.1 that D? = {?} is a singleton data sort).
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3.1 Standard Recursive Form

Alternatively, the SRF-PBES can be made total by adding a clause fneg ⇒ Xtrue(?)
(resp. fneg ∧Xfalse(?)), where fneg is the complement of all other conditions. The
condition fneg can grow significantly, however, and effectively double the size of the
right-hand side.

Before we formalise the SRF transformation, we first introduce a larger example,
which we revisit several times in the rest of this chapter.

Example 3.2. Consider the PBES below.

µY (n:N, b:B) = ¬b ∧ (¬(n > 0) ∨X(n− 1)) ∧ (¬(n > 5) ∨X(1))

νX(n:N) = (¬(0 < n ∧ n ≤ 3) ∨ Y (n, true)) ∧ (X(0) ∨ Y (7, false))

Observe that the right-hand side of the equation for X contains an alternation
between the operators ∧ and ∨. The right-hand side of Y is purely conjunctive, but
the expression ¬b occurs without a predicate variable. An equivalent PBES in SRF is

µY (n:N, b:B) = (b⇒ Xfalse)

∧ (n > 0⇒ X(n− 1))

∧ (n > 5⇒ X(1))

∧ (true ⇒ Xtrue)

νX(n:N) = (0 < n ∧ n ≤ 3⇒ Y (n, true))

∧ (true ⇒ X̃(n))

νX̃(n:N) = (true ∧X(0))

∨ (true ∧ Y (7, false))

µXfalse =Xfalse

νXtrue =Xtrue

The equation for X̃ has been introduced to eliminate the alternation in the right-hand
side of X. The clause true ⇒ Xtrue is necessary for (Y, (0, false)) to satisfy the
restriction on totality.

The transformation of arbitrary PBESs to SRF-PBESs is formalised by the rewriter
R defined below. Here, we assume that the input PBES is normalised, i.e., every
right-hand side is a normalised predicate formula. The rewriter employs a number
of auxiliary rewrite functions, R∨ and R∧, that transform a normalised predicate
formula to become disjunctive or conjunctive, respectively. Each of these rewriters
returns a tuple with the transformed formula and a sequence of new equations that
have to be added to the equation system.

In the following definitions, V,W ⊆ V are sets of typed variables, f and g are
simple formulae and X̃ ∈ X is a fresh predicate variable not occurring anywhere
else in the PBES. We need to reason about the set of variables that are bound in
a quantifier and, given a set V = {d1, . . . , dn}, write ∃V. ϕ instead of ∃d1, . . . , dn. ϕ
(and similarly for ∀W.ϕ). To avoid name clashes, we assume that variables are never
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3 Normal Forms for PBESs

bound more than once (as a parameter or in a quantifier). The rewriters R∨ and R∧
carry a fixpoint symbol σ ∈ {µ, ν} that is the fixpoint of the equation the current
predicate formula appears in. The definition of R∨ is stated below. In four cases, we
perform recursive calls on ϕ and/or ψ.

R∨,σ(f, V ) = 〈∃d:D?. f ∧Xtrue(?), ∅〉
R∨,σ(X(e), V ) = 〈∃d:D?. true ∧X(e), ∅〉
R∨,σ(ϕ ∧ f, V ) = 〈

∨
i∈Iϕ ∃Wi. f ∧ fi ∧Xi(gi), Eϕ〉
where 〈

∨
i∈Iϕ ∃Wi. fi ∧Xi(gi), Eϕ〉 = R∨,σ(ϕ, V )

R∨,σ(f ∧ ϕ, V ) = 〈
∨
i∈Iϕ ∃Wi. f ∧ fi ∧Xi(gi), Eϕ〉
where 〈

∨
i∈Iϕ ∃Wi. fi ∧Xi(gi), Eϕ〉 = R∨,σ(ϕ, V )

R∨,σ(ϕ ∧ ψ, V ) = 〈∃d:D?. true ∧ X̃(V ), (σX̃(V ) = ϕ ∧ ψ)〉
where 〈

∨
i∈Iϕ ∃Wi. fi ∧Xi(gi), Eϕ〉 = R∨,σ(ϕ, V )

〈
∨
i∈Iψ ∃Wi. fi ∧Xi(gi), Eψ〉 = R∨,σ(ψ, V )

R∨,σ(ϕ ∨ ψ, V ) = 〈
∨
i∈Iϕ∪Iψ ∃Wi. fi ∧Xi(gi), EϕEψ〉

R∨,σ(∀W. f, V ) = 〈∃d:D?. (∀W. f) ∧Xtrue(?), ∅〉
R∨,σ(∀W.ϕ, V ) = 〈∃d:D?. true ∧ X̃(V ), (σX̃(V ) = ∀W.ϕ)〉
R∨,σ(∃W.ϕ, V ) = 〈

∨
i∈Iϕ ∃W ∪Wi. fi ∧Xi(gi), Eϕ〉
where 〈

∨
i∈Iϕ ∃Wi. fi ∧Xi(gi), Eϕ〉 = R∨,σ(ϕ, V ∪W )

R∧ is defined dually to R∨:

R∧,σ(f, V ) = 〈∀d:D?.¬f ⇒ Xfalse(?), ∅〉
R∧,σ(X(e), V ) = 〈∀d:D?. true ⇒ X(e), ∅〉
R∧,σ(ϕ ∧ ψ, V ) = 〈

∧
i∈Iϕ∪Iψ ∀Wi. fi ⇒ Xi(gi), EϕEψ〉

R∧,σ(ϕ ∨ f, V ) = 〈
∧
i∈Iϕ ∀Wi. (¬f ∧ fi)⇒ Xi(gi), Eϕ〉
where 〈

∧
i∈Iϕ ∀Wi. fi ⇒ Xi(gi), Eϕ〉 = R∧,σ(ϕ, V )

R∧,σ(f ∨ ϕ, V ) = 〈
∧
i∈Iϕ ∀Wi. (¬f ∧ fi)⇒ Xi(gi), Eϕ〉
where 〈

∧
i∈Iϕ ∀Wi. fi ⇒ Xi(gi), Eϕ〉 = R∧,σ(ϕ, V )

R∧,σ(ϕ ∨ ψ, V ) = 〈∀d:D?. true ⇒ X̃(V ), (σX̃(V ) = ϕ ∨ ψ)〉
where 〈

∧
i∈Iϕ ∀Wi. fi ⇒ Xi(gi), Eϕ〉 = R∧,σ(ϕ, V )

〈
∧
i∈Iψ ∀Wi. fi ⇒ Xi(gi), Eψ〉 = R∧,σ(ψ, V )

R∧,σ(∀W.ϕ, V ) = 〈
∧
i∈Iϕ ∀W ∪Wi. fi ⇒ Xi(gi), Eϕ〉
where 〈

∧
i∈Iϕ ∀Wi. fi ⇒ Xi(gi), Eϕ〉 = R∧,σ(ϕ, V ∪W )

R∧,σ(∃W. f, V ) = 〈∀d:D?. (∃W. f)⇒ Xfalse(?), ∅〉
R∧,σ(∃W.ϕ, V ) = 〈∀d:D?. true ⇒ X̃(V ), (σX̃(V ) = ∃W.ϕ)〉

Furthermore, we define an auxiliary function R? that transforms a formula ϕ with
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3.2 Dependency Space

one of the rewriters R∨ or R∧, depending on the structure of ϕ. This function also
adds a clause with a condition that always evaluates to true.

R?,σ(ϕ, V ) =


〈ϕ ∨ (∃d:D?. true ∧Xfalse(?)), E〉 where 〈ϕ, E〉 = R∨,σ(ϕ, V )

if ϕ has the shape ϕ1 ∨ ϕ2, X(e) ∧ f, f ∧X(e) or ∃e:E.ϕ′

〈ϕ ∧ (∀d:D?. true ⇒ Xtrue(?)), E〉 where 〈ϕ, E〉 = R∧,σ(ϕ, V )

otherwise

Now we can define the function R to transform a PBES:

R(∅) = (µXfalse(d:D?) = Xfalse(?))(νXtrue(d:D?) = Xtrue(?))

R((σX(V ) = ϕ)E) = (σX(V ) = ϕr)R(EϕE)

where 〈ϕr, Eϕ〉 = R?,σ(ϕ, V )

The next proposition states that SRF is a proper normal form, i.e., every PBES
can be transformed into SRF with the rewriter R, while preserving the solution of
bound variables.

Proposition 3.3. For every PBES E, there is an E ′ in SRF such that JEK(X) =
JE ′K(X) for every X ∈ bnd(E).

Proof. We sketch an inductive proof, which shows that logical equivalence of a
predicate formula ϕ is preserved when applying one of the rewriters R∨ or R∧. A case
distinction is made for every case defined by R∨ and R∧. For the cases that perform
a recursive call to R∨ or R∧, we assume as induction hypothesis that the resulting
formula is logically equivalent to the original formula. For those cases where a new
variable X̃ and corresponding equation are introduced, we can apply the substitution
rule for PBESs [59, Lemma 18]. Termination of R can be proved by showing that
every rewrite step decreases the number of disjunctive/conjunctive alternations.

3.2 Dependency Space

The structure offered by SRF enables us to reason about the edges that must exist in
proof graphs. Intuitively, a non-redundant outgoing edge from a node (Xi, v) is based
on some clause j ∈ Ji whose guard fj(v, ej) evaluates to true for some value of ej .
The target node of that edge is associated to predicate variable instance Xj(gj(v, ej)).
The following definition formalises this.

Definition 3.4. Let E be a PBES in SRF, where each equation has the same structure
as in Definition 3.1. Then, the dependency space of E is a graph G = (sig(E), E),
where E is the set satisfying (Xi, v)E(Y,w) for given Xi, Y , v and w iff for some
j ∈ Ji and vj ∈ Ej , we have Y = Xj and both Jfj(d, ej)Kδ0[vj/ej , v/d] and w =
Jgj(d, ej)Kδ0[vj/ej , v/d] hold.
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X̃(0)

Y (7, false)

X(1)

X̃(1)

X(0)

X(6)

X̃(6)

Xtrue

Y (1, true) Xfalse

Figure 3.1: Fragment of the dependency space of the SRF-PBES from Example 3.2.

Definition 3.4 generalises the definition of a dependency space from [81], since
it is applicable to all PBESs (after translation to SRF), not only to disjunctive or
conjunctive PBESs.

Example 3.5. Recall again the SRF-PBES from Example 3.2. Figure 3.1 depicts the
part of the dependency space that is reachable from the node (X, 1). For readability,
we write the node labels as X(v) instead of (X, v).

Note that every node in a dependency space has an outgoing edge; this follows
from the assumption that SRF-PBESs are total. This is necessary for the validity of
the next lemma.

Lemma 3.6. The dependency space G = (sig(E), E) of an SRF-PBES E is both a
positive and a negative dependency graph.

Proof. Let G = (sig(E), E) be the dependency space of some SRF-PBES E . Here,
we prove that G is a positive dependency graph; the proof that G is a negative
dependency graph is dual. For G to be a positive proof graph, we need to show for
every node (X, v) that JϕXKηδ[v/d] = true, with η = env((X, v)E, true). Remark
that d is the only free variable in ϕX (since E is closed), so we use our fixed data
environment δ0 and prove that JϕXKηδ0[v/d] = true.

Let (Xi, v) be some node of G. From the definition of env(S, true) (see Defini-
tion 2.21) and the definition of a dependency space we know the following:

env((Xi, v)E, true)(Xj) (†)

=
⋃

k∈Ji,vk∈Ek

{Jgk(d, ek)Kδ0[vk/ek, v/d] | Xj = Xk ∧ Jfk(d, ek)Kδ0[vk/ek, v/d]}

We distinguish two cases based on the right-hand side of Xi.

Case 1: the equation for Xi is conjunctive. Using the semantics of predicate
formulae and (†), we can follow the reasoning below to deduce that JϕXiKηδ0[v/d] =
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3.2 Dependency Space

true, where η = env((Xi, v)E, true).

JϕXiKηδ0[v/d] = J
∧
j∈Ji

∀ej :Ej . fj(d, ej)⇒ Xj(gj(d, ej))Kηδ0[v/d]

=
∧
j∈Ji

∀vj ∈ Ej . Jfj(d, ej)Kηδ0[vj/ej , v/d]⇒ JXj(gj(d, ej))Kηδ0[vj/ej , v/d]

=
∧
j∈Ji

∀vj ∈ Ej . Jfj(d, ej)Kδ0[vj/ej , v/d]⇒ Jgj(d, ej)Kδ0[vj/ej , v/d] ∈ η(Xj)

(†)
=
∧
j∈Ji

∀vj ∈ Ej . Jfj(d, ej)Kδ0[vj/ej , v/d]⇒ Jgj(d, ej)Kδ0[vj/ej , v/d] ∈

⋃
k∈Ji,vk∈Ek

{Jgk(d, ek)Kδ0[vk/ek, v/d] | Xj = Xk ∧ Jfk(d, ek)Kδ0[vk/ek, v/d]}

⇐
∧
j∈Ji

∀vj ∈ Ej . Jfj(d, ej)Kδ0[vj/ej , v/d]⇒ Jgj(d, ej)Kδ0[vj/ej , v/d] ∈

⋃
v′j∈Ej

{Jgj(d, ej)Kδ0[v′j/ej , v/d] | Jfj(d, ej)Kδ0[v′j/ej , v/d]}

=
∧
j∈Ji

∀vj ∈ Ej . Jfj(d, ej)Kδ0[vj/ej , v/d]⇒

∃v′j ∈ Ej . v′j = vj ∧ Jfj(d, ej)Kδ0[v′j/ej , v/d]

=
∧
j∈Ji

∀vj ∈ Ej . Jfj(d, ej)Kδ0[vj/ej , v/d]⇒ Jfj(d, ej)Kδ0[vj/ej , v/d]

=
∧
j∈Ji

∀vj ∈ Ej . true

= true

Case 2: the equation for Xi is disjunctive. We again use the semantics of predicate
formulae and (†), and follow a similar reasoning as before.

JϕXiKηδ0[v/d] = J
∨
j∈Ji

∃ej :Ej . fj(d, ej) ∧Xj(gj(d, ej))Kηδ0[v/d]

=
∨
j∈Ji

∃vj ∈ Ej . Jfj(d, ej)Kηδ0[vj/ej , v/d] ∧ JXj(gj(d, ej))Kηδ0[vj/ej , v/d]

=
∨
j∈Ji

∃vj ∈ Ej . Jfj(d, ej)Kδ0[vj/ej , v/d] ∧ Jgj(d, ej)Kδ0[vj/ej , v/d] ∈ η(Xj)

(†)
=
∨
j∈Ji

∃vj ∈ Ej . Jfj(d, ej)Kδ0[vj/ej , v/d] ∧ Jgj(d, ej)Kδ0[vj/ej , v/d] ∈

⋃
k∈Ji,vk∈Ek

{Jgk(d, ek)Kδ0[vk/ek, v/d] | Xj = Xk ∧ Jfk(d, ek)Kδ0[vk/ek, v/d]}
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⇐
∨
j∈Ji

∃vj ∈ Ej . Jfj(d, ej)Kδ0[vj/ej , v/d] ∧ Jgj(d, ej)Kδ0[vj/ej , v/d] ∈

⋃
v′j∈Ej

{Jgj(d, ej)Kδ0[v′j/ej , v/d] | Jfj(d, ej)Kδ0[v′j/ej , v/d]}

=
∨
j∈Ji

∃vj ∈ Ej . Jfj(d, ej)Kδ0[vj/ej , v/d]∧

∃v′j ∈ Ej . v′j = vj ∧ Jfj(d, ej)Kδ0[v′j/ej , v/d]

=
∨
j∈Ji

∃vj ∈ Ej . Jfj(d, ej)Kδ0[vj/ej , v/d] ∧ Jfj(d, ej)Kδ0[vj/ej , v/d]

=
∨
j∈Ji

∃vj ∈ Ej . Jfj(d, ej)Kδ0[vj/ej , v/d]

From assumption that E is total, we have that for every node (X, v), at least one
condition fj evaluates to true (cf. Definition 3.1), we conclude that JϕXiKηδ0[v/d] =
true. With this, the condition on transitions in a positive dependency graph is
satisfied.

Theorem 3.7. The dependency space of an SRF-PBES E is the unique smallest
dependency graph with V = sig(E) that is both positive and negative.

Proof. By contradiction. Let G = (sig(E), E) be the dependency space for some
SRF-PBES E and let G′ = (sig(E), E′) be a dependency graph that is both positive
and negative such that E * E′, i.e., G is not a subgraph of G′. That means that
there is at least one edge in E that is missing from E′. Let (X, v)E(Y,w) be such an
edge. From the definition of a dependency space, we can deduce that Y = Xj for
some j ∈ Ji. Furthermore, for some vj ∈ Ej , the condition Jfj(d, ej)Kδ0[vj/ej , v/d]
holds and Jgj(d, ej)Kδ0[vj/ej , v/d] has value w. Therefore, (X, v) depends on (Y,w)
in one of two ways:

• In case the equation for X is conjunctive, (Y,w) necessarily has to hold in
order for (X, v) to hold. This is not reflected by G′, which is therefore not a
positive dependency graph.

• In case the equation for X is disjunctive, (Y,w) necessarily has to be false in
order for (X, v) to be false. This is not reflected by G′, which is consequently
not a negative dependency graph.

We conclude that G′ is either not a positive or not a negative dependency graph,
which contradicts our initial assumption.

We conclude from Lemma 3.6 and Theorem 3.7 that a dependency space exactly
captures all positive and negative dependencies.
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2X̃(0)

1

Y (7, false)

2

X(1)

2

X̃(1)

2 X(0)

2 X(6)

2
X̃(6)

1

Y (1, true)

3

Xfalse

4

Xtrue

Figure 3.2: Parity game corresponding to the SRF-PBES of Example 3.2.

3.3 Relation to Parity Games

Similar to parity games, every node in a dependency space has an associated operator
(player) and rank (priority). Furthermore, the infinite path condition of a proof
graph corresponds to the winning condition of infinite plays in a parity game. This
indicates that there is a close relation between dependency spaces and parity games.
We investigate this relationship in this section.

Definition 3.8. Let G = (V,E) be the dependency space of an SRF-PBES E . The
parity game corresponding to E is (V,E,Ω,P), where:

• Ω((X, v)) = rankE(X); and

• P((X, v)) = 3 if and only if opE(X) = ∨.

To demonstrate the construction, we revisit our running example.

Example 3.9. We take the dependency space from Example 3.5 and construct the
parity game that corresponds to the SRF-PBES of Example 3.2. Again, we only
consider the nodes that are reachable from (X, 1); this subgame is depicted in
Figure 3.2. Player � wins nodes Xfalse , Y (1, true), X(1) and Y (7, false); player 3
wins the other nodes.

It turns out that, given a PBES E , the existence of a positive (resp. negative) proof
graph within the dependency space of E coincides with the existence of a winning
strategy for 3 (resp. �) in the parity game that corresponds to E . This is formalised
in the next theorem.

Theorem 3.10. Let E be a PBES in SRF, G = (V,E) its dependency space and
G′ = (V,E,Ω,P) the corresponding parity game. Then, v ∈ JEK(X) iff (X, v) is won
by player 3 in G′.
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3 Normal Forms for PBESs

Proof. Let E , G and G′ be as above and let (X, v) be an arbitrary node in G′. Here,
we only consider the case where (X, v) is won by player 3, the other case is analogous.
Let σ be a winning strategy for 3 in (X, v) and let U be some σ-dominion that
contains (X, v). Consider the subgame G′∩U ∩σ = (U,Eσ ∩ (U ×U),Ω|U ,P|U ). The
corresponding proof graph is Gσ = (U,Eσ ∩ (U × U)), which is a subgraph of G. We
show that Gσ is indeed a positive proof graph. Since conjunctive nodes have the same
successors in G and Gσ and disjunctive nodes have at least a single successor of which
the condition evaluates to true (by Definition 3.4), we can apply the same reasoning
as in the proof of Lemma 3.6 to conclude that the dependency graph condition (see
Definition 2.21) is satisfied for Gσ. All paths in Gσ are by definition consistent with
σ. From the fact that σ is a winning strategy for 3, it follows that for all paths in
Gσ, the minimal priority that occurs infinitely often is even. Consequently, the proof
graph condition (Definition 2.23) is also satisfied for Gσ.

We conclude that Gσ is a positive proof graph that contains (X, v), hence we also
have v ∈ JEK(X) by Theorem 2.25.

Now that we have defined the relation between PBESs and parity games, we
review the two model checking work flows LPS-LTS-PG and LPS-PBES-PG (see
also Figure 2.6). Although the two resulting parity games have the same winner
(Theorems 2.15, 2.25, 2.27 and 3.10), the games are not always isomorph. This is
due to the fact that the construction of a parity game from an LTS and a µ-calculus
formula completely unfolds the formula into new parity game nodes, regardless of
whether an alternation between a conjunctive and disjunctive subformula occurs. On
the other hand, in an SRF-PBES, a conjunctive right-hand side may encode multiple
conjunctive subformulae. Other subtle differences are that (i) the games following
from the PBES route are always total, while those constructed through an LTS are
not; and (ii) both games can have slightly different priorities (but these are never
relevant for the solution).

3.4 Clustered Recursive Form

Standard recursive form offers sufficient structure to construct a dependency space.
However, the fact that predicate variables may occur multiple times in a given right-
hand side requires us to reason about the equality Y = Xj and makes the notation
as well as some of the proofs of theorems in this thesis slightly more complex. To
further simplify the notation and the reasoning about dependencies, we introduce
clustered recursive form for PBESs.

Definition 3.11. A predicate formula is in clustered recursive form (CRF) iff it is
disjunctive or conjunctive and the predicate variable in each of the clauses is unique,
i.e., Xj 6= Xk for all distinct j, k ∈ J . A PBES is in CRF iff all its right-hand sides
are CRF formulae.

Similar to SRF-PBESs, we henceforward assume that every CRF-PBES is total.
For CRF-PBESs, the question whether (Xi, v) depends on (Xj , w) only requires
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deciding

∃vj ∈ Ej . Jfj(d, ej)Kδ0[v/d, vj/ej ] ∧ w = Jgj(d, ej)Kδ0[v/d, vj/ej ]

We observe that every PBES E can be transformed to CRF by first rewriting E
to SRF and subsequently combining clauses that have the same predicate variable,
relying on suitable projection operators for the data arguments.

Example 3.12. Consider again the following equation from the SRF-PBES of Exam-
ple 3.2.

µY (n:N, b:B) = (b⇒ Xfalse)

∧ (n > 0⇒ X(n− 1))

∧ (n > 5⇒ X(1))

∧ (true ⇒ Xtrue)

The second and third clause can be combined by encoding the choice between the
two in a universally quantified Boolean variable e:

µY (n:N, b:B) = (b⇒ Xfalse)

∧∀e:B. (if (e, n > 0, n > 5)⇒ X(if (e, n− 1, 1)))

∧ (true ⇒ Xtrue)

This technique is formalised in the next proposition and corollary.

Proposition 3.13. For every PBES E in SRF, there is a PBES E ′ in CRF such
that JEK(X) = JE ′K(X) for every X ∈ bnd(E).

Proof. Let E be a PBES in SRF. Furthermore, let (σiXi(d:D) = ϕXi) ∈ E be some
equation and Y ∈ bnd(E) a predicate variable that occurs multiple times in ϕXi . We
consider the case that ϕXi is disjunctive, i.e., it is of the shape

∨
j∈Ji ∃ej :Ej . fj(d, ej)∧

Xj(gj(d, ej)). The proof for the conjunctive case is analogous. We consider the set of
clauses that contain Y ; their indices are {j1, . . . , jn} ⊆ Ji. More formally, Y = Xjk

for all 1 ≤ k ≤ n and Y 6= Xj for all j ∈ Ji \ {j1, . . . , jn}. Let Dn = {1, . . . , n} be a
sort with n elements and prn a polymorphic projection function that has signature
Dn × Tn → T for any type T ; it is defined as prn(k, t1, . . . , tk, . . . , tn) = tk for all
k:Dn. Then, the n clauses for Y can be grouped in one clause as follows:

∃k:Dn, ej1 :Ej1 , . . . , ejn :Ejn . prn(k,fj1(d, ej1), . . . , fjn(d, ejn))

∧ Y (prn(en, gj1(d, ej1), . . . , gjn(d, ejn)))

Unfolding the existential quantifier over Dn, applying the definition of prn and
eliminating unused quantified variables, results in exactly the original set of clauses,
so this transformation preserves the solution of E . By applying the same construction
to all predicate variables that occur in multiple clauses of the same equation, E can
be rewritten to CRF.
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Corollary 3.14. For every PBES E, there is an E ′ in CRF such that JEK(X) =
JE ′K(X) for every X ∈ bnd(E).

Proof. Follows from Propositions 3.3 and 3.13.

3.5 Related Work

In the literature, several other normal forms for BESs or PBESs have been proposed.
Firstly, our SRF for PBESs generalises SRF for BESs, which was proposed in [75]; a
BES is in SRF if and only if every right-hand side is of the form∨

i∈I
Xi(?) or

∧
i∈I

Xi(?)

If the right-hand sides are disjunctive or conjunctive (as above), but the constants true
and false occur, then the BES is in simple form [93]. All BESs can be transformed to
simple form or SRF in polynomial time, while introducing a number of new equations
that is no greater than the sum of the sizes of all right-hand sides.

A PBES is in predicate formula normal form (PFNF) [106] if and only if every
right-hand side has the shape

Q1d1:D1. . . .Qndn:Dn. h ∧
∧
i∈I

(
gi ⇒

∨
j∈Ji

Xj(ej)
)

where every Qi ∈ {∃,∀}, I is a, possibly empty, finite index set, each Ji is a non-empty
index set and h and gi are Boolean terms. Every predicate formula can be translated
to an equivalent PFNF formula, although this can cause a quadratic blow-up. The
blow-up can be avoided by introducing new PBES equations.

Koolen et al. [81] use disjunctive normal form (DNF) as a standard representation
for disjunctive predicate formulae, in which predicate variables can only occur in
the context of a conjunction if the other operand is a simple formula. Finally, the
parameterised parity game (PPG) form of [72] is similar to our standard recursive
form, but does not guarantee that all dependency graphs have a total transition
relation. Totality of the transition relation is a necessary condition for the existence
of a dependency space. The translation from arbitrary PBESs to PPG relies on an
intermediate format called bounded quantifier normal form (BQNF), which is related
to PFNF, but no translation from PBES to BQNF is given in [72].

3.6 Conclusion

We have introduced the standard and clustered recursive forms for arbitrary PBESs.
Unlike many existing normal forms, SRF and CRF eliminate alternations between
disjunctive and conjunctive operators within every right-hand side. This can require
introducing new equations, but the total size of the PBES does not grow significantly.
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3.6 Conclusion

In some cases the SRF transformation may increase the size of the underlying
dependency graphs. For example, the PBES (νX = ∀m:N. ∃n:N. (n = m∧Y ))(µY =
Y ) has only finite dependency graphs, while the corresponding SRF-PBES (νX =
∀m:N. X̃(m))(νX̃(m:N) = ∃n:N.n = m ∧ Y )(µY = Y ) also has infinite dependency
graphs. In practice, most PBESs that encode a model checking problem are already
very close to being in SRF, since a major part of the right-hand sides stems from
µ-calculus subformulae of the shape [α]X or 〈α〉X. The corresponding predicate
formula in the PBES is, by Definition 2.26, conjunctive or disjunctive. As a result,
this issue does not occur in the encoding of most reasonable µ-calculus formulae.

From a PBES in SRF, one can construct a dependency space, which captures both
positive and negative dependencies. A dependency space can be interpreted as a
parity game; the existence of a proof graph in the dependency space coincides with
the existence of a winning strategy in the corresponding parity game. The structure
offered by SRF and CRF plays a fundamental role in the approaches of Chapters 4
and 6.
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Although finding the solution of a PBES is undecidable in general, in practice several
efficient approaches to solve PBESs exist. Most notably, some PBESs can be solved
efficiently by first simplifying them—if needed—using static analysis techniques [106,
74], instantiating them to finite Boolean equation systems (BESs) and subsequently
solving these BESs [114]. However, for many types of problems, the corresponding
PBES contains data taken from domains that are infinite. For example, a PBES
encoding the mutual exclusion property for Lamport’s bakery protocol requires data
variables ranging over natural numbers. Similarly, PBESs encoding model checking
problems for timed or hybrid systems, typically modelled by timed automata or
hybrid automata, contain data variables that range over real numbers.

Several symbolic techniques have been proposed to deal with PBESs over infinite
data domains [100, 81, 47], but their application is unfortunately limited to specific
subclasses of PBESs. Typically, these fragments exclude PBESs in which both types
of logical quantifier occur; i.e., PBESs may only contain universal quantification or
only existential quantification. Such constraints effectively limit the class of properties
that can be encoded, excluding, e.g., most behavioural equivalence decision problems,
but also many CTL* properties.

This chapter explores an approach, called PBES quotienting, that is more general
than the symbolic techniques discussed above: PBES quotienting is applicable to the
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4 Symbolic Bisimulation for PBESs

full class of PBESs. Our approach is based on minimal model generation (MMG) [23],
a similar procedure that operates on behavioural models, such as extended finite state
machines (which are very similar to LPSs) or timed automata. PBES quotienting
relies on the CRF normal form and the parity game that can be derived through it;
both these concepts were introduced in Chapter 3. A procedure based on quotienting
can be used to compute a minimal reduced dependency graph from a symbolic
representation of the dependency space. As we will see, PBES quotienting can be
further improved by extracting finite partial solutions from PBESs that have an
infinite minimal reduced dependency space.

To validate the above, we perform a number of experiments with an implemen-
tation of our procedures and compare these to the solver of [81]. Furthermore, we
experimentally compare our PBES techniques with an implementation of MMG. The
results of this evaluation show that our technique is indeed capable of solving decision
problems that existing approaches fail to solve so far. In particular, the experiments
show that PBES quotienting is a promising generic approach for model checking of
(timed) modal µ-calculus properties on systems with infinite data domains and also
equivalence checking of systems with infinite data domains.

The rest of the chapter is structured as follows: Section 4.1 introduces the ideas of
minimal model generation. Section 4.2 contains an example that shows how minimal
model generation can be applied and what its shortcomings are. Then, Section 4.3
shows how the minimal model generation procedure can be adapted to the setting
of PBESs. Two improvements to the procedure are presented in Sections 4.4 and
4.5 respectively. In Section 4.6, we perform experiments to compare minimal model
generation with the new PBES procedure, and its optimisations. Finally, Section 4.7
gives an overview of related work and Section 4.8 presents a conclusion and suggestions
for future work.

4.1 Minimal Model Generation

The most common and straightforward way of analysing the behaviour specified
by an LPS is to construct the corresponding transition system by means of state
space exploration. Starting from the initial state, the exploration procedure computes
outgoing transitions and stores new states it encounters. However, this technique
is not complete: for processes with an infinite reachable state space, the procedure
does not terminate. This is demonstrated in the following example.

Example 4.1. We consider a model of a primitive coffee machine that accepts coins of
5 cents and 10 cents and never gives change. After ordering a coffee and inputting at
least 15 cents, the machine can give coffee. A possible representation of this machine
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Figure 4.1: Infinite LTS of the coffee machine of Example 4.1.

is the LPS (Machine, (false, 0)), where Machine is the process defined as follows.

Machine(idle:B, balance:N) =

idle → order ·Machine(false, balance)

+
∑
c:Coin

¬idle → insert(c) ·Machine(false, balance + value(c))

+(¬idle ∧ balance ≥ 15)→ coffee ·Machine(true, 0)

Here, the parameter idle expresses whether the machine is idle or a transaction
is in process and balance stores the amount of money inserted during the current
transaction. Furthermore, Coin is a data sort containing the values nickel and
dime and value: Coin → N computes the corresponding value of a coin. Part of the
reachable state space of the associated LTS is depicted in Figure 4.1. Since there
is no upper bound on the amount of money that can be inserted, the state space is
infinite.

To deal with instances like the coffee machine above, many symbolic approaches
have been developed, one of which is minimal model generation (MMG) [23, 46],
which we discuss below. Before we can introduce the MMG approach, we first
introduce two more concepts that make up the underlying theory. First, we introduce
the concept of a reduced LTS, which allows us to reason about certain infinite LTSs
using a finite representation. Reduced LTSs rely on the notion of a partition: a set
A ⊆ 2B is a partition of a set B if and only if

⋃
A = B and for distinct a, a′ ∈ A, it

holds that a ∩ a′ = ∅.

Definition 4.2. Let TS = (S,→, ŝ) be an LTS. Then, TS r = (Sr,→r, b) is a reduced
LTS iff:

• Sr ⊆ 2S is a partition of S;

• →r= {(b, a, b′) | ∃s ∈ b, t ∈ b′. s a−→ t}.

We say TS is the base LTS of TS r.

We commonly refer to an element b ∈ Sr as a block. Remark that the set of
transitions between two blocks is an over-approximation of the transitions of the
constituting states. Hence, not all reduced LTSs are a meaningful representation of
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their base LTS. After all, any LTS can be represented by a reduced LTS with only one
block that contains all states. To preserve interesting properties, every block should
only contain states that are related by a certain equivalence relation. Here, we use
bisimulation [109], which preserves most logic properties, such as those formulated in
the modal µ-calculus.

Definition 4.3. Given an LTS TS = (S,→, ŝ), a relation R ⊆ S × S on states is a
bisimulation relation iff for all s, t such that sRt, it holds that:

• For all transitions s a−→ s′, there is a transition t a−→ t′ such that s′Rt′.

• For all transitions t a−→ t′, there is a transition s a−→ s′ such that s′Rt′.

We say two states s and t are bisimilar, notation s - t, iff they are related by some
bisimulation relation. Two LTSs are bisimilar iff their initial states are bisimilar.

We call the reduced LTS that is minimal under bisimulation the bisimulation
quotient, which we denote with TS/-. The state space of TS/-, denoted S/-, consists
of the equivalence classes induced by bisimulation, i.e., states s and t are in the same
block if and only if they are bisimilar. Observe that the bisimulation quotient is
well-defined.

Partition refinement To compute the bisimulation quotient, we rely on partition
refinement. In this procedure, a partition of the state space is iteratively refined until
it becomes stable (a formal definition follows). We say a partition π is finer than a
partition π′ iff all blocks of π are contained in some block of π′. The coarsest stable
partition coincides with the equivalence classes under bisimulation.

Procedure 1: Minimal model generation for LPSs

Input: LPS L = (P, d̂), initial partition π0

1 n := 0;
2 while πn is not stable do
3 n := n+ 1;
4 πn := (πn−1 \ {b}) ∪ {split(b, b′, a), co-split(b, b′, a)}

for some b, b′ ∈ πn−1, a ∈ Act
such that split(b, b′, a) and co-split(b, b′, a) are non-empty;

5 →n := {(b, a, b′) | ∃s ∈ b, t ∈ b′. s a−→ t};
6 πn := {b ∈ πn | b̂→∗n b} where Jd̂K ∈ b̂;
7 return (πn,→n, b̂) where Jd̂K ∈ b̂;

Procedure 1 shows how to perform partition refinement on an LTS TS = (D,→, v̂)
that underlies the LPS L. The initial partition has one block containing all states,
i.e., π0 = {D}. In every iteration, we find two blocks b, b′ ∈ πn and an action a and
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split b with respect to b′ in the following way:

split(b, b′, a) = {s ∈ b | ∃t ∈ b′. s a−→ t}
co-split(b, b′, a) = b \ split(b, b′, a)

Then we update the partition and transition relation to reflect this split (lines 4
and 5). Next, we use a simple forward exploration on blocks to compute which
blocks are reachable from the initial block, and discard blocks that are not reachable
(line 6). Here, →∗n is the reflexive transitive closure of the transition relation. Strictly
speaking, after discarding one or more blocks, πn is no longer a partition of the
complete state space, but only of some over-approximation of the reachable state
space. Note that each partition πn+1 is finer than partition πn.

If a block b cannot be split with respect to a block b′ for all actions a, we say b is
stable (under bisimulation) with respect to b′. Block b is stable with respect to a set
of blocks K iff it is stable with respect to all the blocks in K. A partition π is stable
(with respect to itself) iff all of the blocks in π are stable with respect to π. The
partition refinement procedure terminates when π is stable (line 2). The reachable
part of the bisimulation quotient can be constructed from the stable partition using
Definition 4.2. Remark that termination is not guaranteed as not every infinite LTS
has a finite bisimulation quotient. Consequently, Procedure 1, and also the other
procedures we present below, is a semi-decision procedure.

Since our goal is to enable reasoning about LTSs with an infinite state space, we
cannot store blocks by storing each of their constituent states explicitly. Instead, we
represent each block with a characteristic function.

Definition 4.4. Let L be an LPS and b be a set of states in the associated LTS.
The corresponding characteristic function Kb : D→ B is defined as:

Kb(v) =

{
true if v ∈ b
false otherwise

Henceforth, we represent the semantic function Kb for block b with a syntactic
Boolean expression kb. With this representation, we can implement Procedure 1
symbolically, see Procedure 2.

Firstly, the initial partition π0 is represented by {true}. Secondly, split(k, k′, a)
and co-split(k, k′, a) are the respective symbolic implementations of split(b, b′, a) and
co-split(b, b′, a). Recall that a linear process has the shape P (d:D) =

∑
i∈I
∑
ei:Ei

ci(d, ei) → ai(fi(d, ei)) · P (gi(d, ei)). In the following definitions, k and k′ are the
characteristic functions corresponding to blocks b and b′, respectively. Furthermore,
we assume every action has the shape a(e), where a is an action label, and e is the
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Procedure 2: Symbolic minimal model generation for LPSs

Input: LPS L = (P, d̂), initial partition π0

1 n := 0;
2 while πn is not stable do
3 n := n+ 1;
4 πn := (πn−1 \ {k}) ∪ {split(k, k′, a), co-split(k, k′, a)}

for some k, k′ ∈ πn−1, a ∈ Act
such that split(k, k′, a) and co-split(k, k′, a) are not equivalent to
false;

5 →n := {(k, a, k′) | ∃v ∈ D. Jk(d)Kδ0[v/d] ∧
∨
i∈I ∃vi∈Ei. Jci(d, ei)Kδ0[v/d, vi/ei]

∧ a = ai(Jfi(d, ei)Kδ0[v/d, vi/ei]) ∧ Jk′(gi(d, ei))Kδ0[v/d, vi/ei]};
6 πn := {k ∈ πn | k̂ →∗n k} where k̂ ∈ πn such that Jk̂(d̂)Kδ0 holds;

7 return (πn,→n, k̂) where Jk̂(d̂)Kδ0 holds;

order

insert(nickel) insert(nickel) insert(nickel)

insert(dime) insert(dime) insert(dime)

insert(nickel)
insert(dime)

coffee

Figure 4.2: The bisimulation quotient of the coffee machine with an infinite state
space (Example 4.1) as computed by Procedure 2.

action parameter, expressed as a ground term.

split(k, k′, a(e)) = k(d)

∧
∨
i∈I
∃ei:Ei.

(
ci(d, ei) ∧ a(e) = ai(fi(d, ei)) ∧ k′(gi(d, ei))

)
co-split(k, k′, a(e)) = k(d)

∧ ¬
∨
i∈I
∃ei:Ei.

(
ci(d, ei) ∧ a(e) = ai(fi(d, ei)) ∧ k′(gi(d, ei))

)
A similar symbolic implementation is necessary to compute the transition relation at
line 5 of Procedure 2, where we compute ∃s ∈ b, t ∈ b′. s a−→ t symbolically.

Example 4.5. We revisit the coffee machine with an infinite state space from Exam-
ple 4.1. The bisimulation quotient generated by Procedure 2 is depicted in Figure 4.2.
All states reached by inserting more than 15 cents are collapsed into one (the state
with the self loop), since they are all bisimilar. A characteristic function for this
block can be ¬idle ∧ balance ≥ 15.

Although characteristic functions help to deal with an infinite state space, minimal
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idle

waitingcs

pick i(n1−i + 1)
ni := n1−i + 1

n1−i = 0 ∨ ni < n1−i
enter i

leavei
ni := 0

Figure 4.3: Process i from the simplified bakery protocol.

model generation still does not deal with the case where the domain of action
parameters is infinite. This is due to the fact that it is still necessary to iterate over
all actions on line 4 of Procedure 2. The next section presents an example that shows
how these limitations impact the ability to perform model checking using minimal
model generation.

4.2 Motivating Example

To show how MMG can be used for model checking and illustrate its limitations,
we introduce a slightly larger example in this section. This example will also serve
as a running example throughout the rest of the chapter. The model we consider
is a simplified version of Lamport’s bakery protocol [86]. In our setting, there are
only two processes (customer 0 and customer 1) and all writes and reads are atomic.
When customer i enters the bakery, he/she does not have a number (ni = 0). At
any point, the customer can pick a number, which is one larger than the number of
the other customer. If both customers are waiting, the customer with the smallest
number can enter the critical section. When leaving the critical section, the number
is discarded (ni is reset to 0). See Figure 4.3.

The LPS L = (Bakery , (idle, 0, idle, 0)) represents the behaviour of the two cus-
tomers, where Bakery is the following linear process.

Bakery(s0:State, n0:N, s1:State, n1:N) =

(s0 = idle)→ pick0(n1 + 1) · Bakery(waiting , n1 + 1, s1, n1)

+ (s0 = waiting ∧ (n1 = 0 ∨ n0 < n1))→ enter0 · Bakery(cs, n0, s1, n1)

+ (s0 = cs)→ leave0 · Bakery(idle, 0, s1, n1)

+ (s1 = idle)→ pick1(n0 + 1) · Bakery(s0, n0,waiting , n0 + 1)

+ (s1 = waiting ∧ (n0 = 0 ∨ n1 < n0))→ enter1 · Bakery(s0, n0, cs, n1)

+ (s1 = cs)→ leave1 · Bakery(s0, n0, idle, 0)

In this encoding, si and ni represent the state and number of customer i, respectively.
Furthermore, the states of a single process are encoded in the sort State.

On this model, we would like to check the property “regardless of which number
customer 0 picks, he/she can always enter the critical section in a finite time”. This
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can be formalised with the modal µ-calculus formula

νX. ([>]X ∧ ∀m:N. [pick0(m)]µY. ([ enter0 ]Y ∧ 〈>〉true))

Here, the fixpoint variable X ranges over the whole state space and Y holds if and
only if for all paths, enter0 occurs within a finite number of steps. However, the state
space of the LPS is infinite and also the set of actions is infinite, due to the parameter
of the pick i actions, which is a natural number. Furthermore, the bisimulation
quotient is also infinitely large. Therefore, neither classical state space exploration
nor minimal model generation can compute an LTS on which the formula can be
evaluated.

An alternative approach is to encode this model checking question in a param-
eterised Boolean equation system. Taking the LPS above and the formula, the
following PBES can be constructed according to Definition 2.26:

νX(s0:S, n0:N, s1:S, n1:N) =

s0 = idle ⇒ Y (n1 + 1, s1, n1) (1)

∧ s0 = idle ⇒ X(waiting , n1 + 1, s1, n1) (2)

∧ s0 = waiting ∧ (n1 = 0 ∨ n0 < n1)⇒ X(cs, n0, s1, n1) (3)

∧ s0 = cs ⇒ X(idle, 0, s1, n1) (4)

∧ s1 = idle ⇒ X(s0, n0,waiting , n0 + 1) (5)

∧ s1 = waiting ∧ (n0 = 0 ∨ n1 < n0)⇒ X(s0, n0, cs, n1) (6)

∧ s1 = cs ⇒ X(s0, n0, idle, 0) (7)

µY (n0:N, s1:S, n1:N) =

((n1 = 0 ∨ n0 < n1)∨ (8)

s1 = idle ∨ (s1 = waiting ∧ (n0 = 0 ∨ n1 < n0)) ∨ s1 = cs) (9)

∧ s1 = idle ⇒ Y (n0,waiting , n0 + 1) (10)

∧ s1 = waiting ∧ (n0 = 0 ∨ n1 < n0)⇒ Y (n0, cs, n1) (11)

∧ s1 = cs ⇒ Y (n0, idle, 0) (12)

Predicate variable X represents the fact that the property has to hold at any point
in time. Therefore, it is labelled with a greatest fixpoint and it encodes the full
behaviour of the system in a way very similar to the Bakery LPS (lines 2 to 7). When
customer 0 picks a number, we check the second half of the property using Y (line 1).
For predicate variable Y , we assume that customer 0 is in the state waiting . Then,
Y is true if customer 0 can enter the critical section (line 8) or customer 1 does
something else after which Y holds (line 9 and lines 10 to 12). However, customer 1
is only allowed to do something finitely often, so the equation for Y is labelled with
a least fixpoint. The property holds, since the solution for the initial state is true,
i.e., (idle, 0, idle, 0) ∈ JEK(X).

There are a few interesting observations that we can make based on this PBES.
Firstly, the quantifier that occurs in the µ-calculus formula does not occur in the
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4.3 Reduced Parity Game

(X, (idle, 0, idle, 0))

(X, (waiting, 1, idle, 0))

(X, (waiting, 1,waiting, 2))

(X, (cs, 1,waiting, 2))

(X, (idle, 0,waiting, 2))

(X, (waiting, 3,waiting, 2)) . . .

(Y, (1, idle, 0)) (Y, (1,waiting, 2)) (Y, (3,waiting, 2))

(Y, (3, cs, 2))

(Y, (3, idle, 0))

(Y, (3,waiting, 4))

Figure 4.4: Part of an infinite positive proof graph of the bakery example.

PBES above; it has been eliminated with automated techniques [106]. This step
simplifies our subsequent analyses. The fact that the variable m can be eliminated
implies that the number picked by customer 0 is not relevant, which only becomes
apparent after constructing the PBES. It is not obvious how one can draw similar
conclusions solely based on the LPS and the formula. Secondly, it is not possible to
solve this PBES with traditional instantiation-based techniques, since all positive
dependency graphs are infinite. Hence, there is no finite positive proof graph that
contains (X, (idle, 0, idle, 0)), so even the application of smart heuristics to guide the
instantiation does not improve the situation. See Figure 4.4 for a part of a positive
proof graph. Lastly, the actual value of n0 and n1 is not essential to the problem.
What matters is which of the two is larger. This inspired us to investigate symbolic
techniques for solving PBESs.

4.3 Reduced Parity Game

In [37], proof graphs were introduced mainly to formalise the concept of witnesses and
counterexamples, as implemented in [136]. Instead, we (partially) solve PBESs by
searching for concise representations of proof graphs. To reason symbolically about
the underlying dependency graph of a PBES E , we need to rely on the information
contained in E . This is not trivial for PBESs with arbitrary structure [74]. Therefore,
we rely on the clustered recursive form (CRF) normal form and parity games (which
coincide with dependency spaces, see Chapter 3) to simplify the reasoning about the
dependencies in a PBES.

In the literature, different approaches to solving PBESs have been proposed. Many
of those rely on instantiation of the PBES to a finite Boolean equation system.
The BES can then be solved with Gaussian elimination [92] or with a parity game
solver [114]. However, for PBESs with an underlying infinite BES, instantiation is
not possible. Several symbolic approaches have been proposed to reason about the
solution of such a PBES. Most notably, Koolen et al. [81] use SMT solvers to find
proof graphs and Nagae et al. [101, 100] compute reduced proof graphs that finitely
represent an infinite proof graph. We extend that latter work to arbitrary PBESs
and show how a reduced parity game can be computed, if it is finite, with PBES
quotienting.
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4 Symbolic Bisimulation for PBESs

Definition 4.6. Let G = (V,E,Ω,P) be a parity game for a PBES E . Then
Gr = (Vr, Er,Ωr,Pr) is a reduced parity game, where:

• Vr ⊆ 2V is a partition of V ,

• Er = {(b, b′) ∈ Vr × Vr | ∃s ∈ b, t ∈ b′. sE t}.

• For all b ∈ Vr, Ωr(b) = Ω(s) and Pr(b) = P(s) for some s ∈ b.

We say G is the base game of Gr.

The intuition behind reduced parity games is that nodes that are in some way
equivalent, are grouped. In this way, some infinite parity games can be represented
finitely. Note that the priority and player functions (Ωr and Pr, respectively) that
label the blocks are in general not uniquely defined. That is only the case if, for all
blocks b ∈ Vr and nodes s, t ∈ b, Ω(s) = Ω(t) and P(s) = P(t). We call partitions
with that property consistent. A reduced game is consistent iff the partition that
makes up its blocks is consistent.

We again use bisimulation as equivalence relation on nodes. We remark that
bisimulation for parity games relies on the labels that are associated with nodes,
contrary to bisimulation for LTSs, which reasons about actions that label transitions
(cf. Definition 4.3).

Definition 4.7. Let G = (V,E,Ω,P) be a parity game for E . A relation R ⊆ V ×V
is a bisimulation relation iff for all s R t:

• Ω(s) = Ω(t) and P(s) = P(t); and

• If sEs′, then there is a node t′ such that tEt′ and s′ R t′; and

• If tEt′, then there is a node s′ such that sEs′ and s′ R t′.

Nodes s and t are bisimilar, denoted s - t, iff they are related by some bisimulation
relation. Two games G and H are bisimilar iff for every node in G there is a bisimilar
node in H and vice versa.

Remark that two nodes (X, v) and (Y,w) may be bisimilar even though they
originate from different equations in the PBES, as long as those equations have the
same rank and operand. Since bisimilarity is an equivalence relation it induces a
partition of the node set V into equivalence classes. This partition is denoted V/-.
Note that V/- is a consistent partition. We call the reduced parity game Gr =
(V/-, Er,Ωr,Pr), that has G as its base graph (cf. Definition 4.6), the bisimulation
quotient of G, notation G/-.

Using the CRF normal form and the notions of a (reduced) parity game and
bisimulation, we now have a setting similar to Section 4.1. Procedure 2 can thus be
applied with only minor changes, see Procedure 3. First, in case we are interested in
the solution of a target node X̂(ê), where ê is a ground term, we should provide it as

input. The target node plays the same role as the initial state d̂ does for an LPS.
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4.3 Reduced Parity Game

Procedure 3: PBES Quotienting

Input: PBES E , initial partition π0, target node X̂(ê)
1 n := 0;
2 while πn is not stable do
3 n := n+ 1;
4 πn := (πn−1 \ {k}) ∪ {split(k, k′), co-split(k, k′)} for some k, k′ ∈ πn−1

such that split(k, k′) and co-split(k, k′) are not equivalent to false;
5 En := {(k, k′) | ∃(Xi, v) ∈ sig(E).

Jk(Xi, d) ∧
∨
j∈Ji

(
∃ej :Ej . fj(d, ej) ∧ k′(Xj , gj(d, ej))

)
Kδ0[v/d]};

6 πn := {k ∈ πn | k̂E∗nk} where k̂ ∈ πn such that Jk̂(X̂, ê)K holds;

7 return G/- = (πn, En,Ω,P);

Alternatively, if we want to solve the complete PBES, we should skip the reachability
check (line 6) in every iteration. Second, we need an adapted definition of the initial
partition and the splitting operations.

In the PBES setting, the initial partition needs to distinguish nodes that have a
different priority or owner (first bullet of Definition 4.7), so π0 is set to {{(X, v) ∈
sig(E) | Ω(X) = Ω(Y ) ∧ P(X) = P(Y )} | Y ∈ bnd(E)}; this is the coarsest consistent
partition of sig(E). Since all subsequent partitions πn are finer than π0, they are
also guaranteed to be consistent. The split and co-split functions no longer have an
argument that defines the action on which the split is based. Below, we use the index
i of the predicate variable Xi to construct an expression based on the right-hand
side of Xi. Recall that this right-hand side has the shape

∨
j∈Ji ∃ej :Ej . fj(d, ej) ∧

Xj(gj(d, ej)) or
∧
j∈Ji ∀ej :Ej . fj(d, ej)⇒ Xj(gj(d, ej)), since E is in CRF.

split(k, k′) =
∨

Xi∈bnd(E)

k(Xi, d) ∧
∨
j∈Ji

∃ej :Ej . fj(d, ej) ∧ k′(Xj , gj(d, ej))

co-split(k, k′) =
∨

Xi∈bnd(E)

k(Xi, d) ∧ ¬
∨
j∈Ji

∃ej :Ej . fj(d, ej) ∧ k′(Xj , gj(d, ej))

Example 4.8. We revisit the bakery protocol example from Section 4.2. This PBES
is almost in SRF: the only required change is the addition of the equations for Xtrue

and Xfalse to the PBES, the addition of “⇒ Xfalse” to the clause on lines 8 and 9
and the addition of the clause true ⇒ Xtrue to the equation for Y . Transforming
the resulting PBES to CRF and running Procedure 3 on it yields a finite reduced
parity game (depicted in Figure 4.5) which contains 14 reachable equivalence classes.
Here, we abbreviated state names. For example, in state wi, process 0 is waiting and
process 1 is idle. Furthermore, in state ww0, both processes are waiting, but process 0
has preference to enter the critical section first. States belonging to predicate variable
Y are prefixed with Y-. Node Xfalse is unreachable from the initial state ii, and thus
not included in the reduced game that results from Procedure 3. Note the symmetry
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Y-ww1

1

Y-wc

1

Y-wi

1

Y-ww0

2

Xtrue

Figure 4.5: Equivalence classes and transitions in the reduced parity game of the
bakery protocol example.

between process 0 and process 1 in those states belonging to variable X and also the
parallels between X and Y .

Procedure 3 can be used to solve a PBES as follows. Upon its termination, we
obtain the bisimulation quotient of the parity game underlying the PBES E . This
quotient is bisimilar to the original game. Since the winner of each node is preserved
under bisimilarity [49], solving the quotient—which is itself a parity game—also solves
the original game. More formally, given a block b ∈ V/- and a node (X, v) ∈ b, player
3 wins b in the quotient G/- if and only if 3 wins (X, v) in G. By Theorem 3.10,
we can also deduce whether v ∈ JEK(X).

Example 4.9. Consider again the reduced parity game of Example 4.8. This reduced
parity game is completely won by player 3. This implies that 3 also wins all nodes in
the original game. We conclude that the solution for the node (X, (idle, 0, idle, 0)) is
true, and that the formula holds, i.e., the bakery protocol does not cause starvation
of customers.

We remark that the procedure presented in this section generalises the procedures
presented by Nagae et al. in [101] and [100], which only apply to PBESs consisting of
predicate formulae that contain no predicate variables within the scope of universal
quantifiers.

4.4 Stable Kernel

The approach presented in the previous section terminates when the reachable part
of the bisimulation quotient is finite and all the operations on data are decidable.

56



4.4 Stable Kernel

However, we are also interested in solving PBESs for which the bisimulation quotient
is not finite. Therefore, we propose an improvement that allows for reasoning about
the solution of a single node (X, v), even when some part of the parity game is not
finitely representable. This is illustrated by the following example.

Example 4.10. Consider the following PBES:

νX(n:N) = X(n+ 1) ∨ (n = 0 ∧ Y (0))

µY (n:N) = Y (n+ 1) ∧ (n = 0⇒ X(0)) ∧ (n > 1⇒ Y (n− 1))

The (stable) bisimulation quotient of the parity game of this PBES is infinite and
looks as follows:

0

{(X, 0)}

0

{(X,n) | n ≥ 1}

1

{(Y, 0)}
1

{(Y, 1)}
1

{(Y, 2)}
· · ·

While this reduced parity game is infinite, the winning strategy in (X, 0) concerns
only a finite subgame, namely the subgame that only contains the blocks {(X, 0)}
and {(X,n) | n ≥ 1}. Therefore, to draw conclusions about the solution for X(0), it
is not necessary to refine the part of the partition that concerns Y .

The example suggests that we may in general search for a winning strategy in
a—not yet stable—reduced parity game and use that to partially solve a PBES.
However, not every strategy obtained that way necessarily induces a proper proof
for the original PBES: it is required that the winning strategy witnesses a stable
dominion. This is formalised by the concept of a stable kernel.

Definition 4.11. Let G = (V,E,Ω,P) be a parity game of a PBES E and Gr =
(Vr, Er,Ωr,Pr) a consistent reduced parity game, with G as its base game. Further-
more, let G′r = (V ′r , E

′
r,Ω

′
r,P ′r) be a subgame of Gr. Then, G′r is a stable kernel of G

if and only if for all blocks b, b′ ∈ V ′r such that bE′r b
′, b is stable with respect to b′.

The following theorem is the basis for the correctness of Procedure 4, which we
will present below.

Theorem 4.12. Let G = (V,E,Ω,P) be the parity game for a PBES E and Gr =
(Vr, Er,Ωr,Pr) a consistent reduced parity game with G as its base. Furthermore, let
σr be a strategy for player # in Gr and V ′r a σr-dominion in Gr. If G′r = Gr∩V ′r ∩σr
is a stable kernel of G, then the base graph of G′r is a #-dominion in G.

Proof. Refer to Figure 4.6 and assume that G′r = Gr ∩ V ′r ∩ σr for some strategy σr
of player # such that V ′r is a σr-dominion in Gr.
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4 Symbolic Bisimulation for PBESs

G = (V,E,Ω,P) Gr = (Vr, Er,Ωr,Pr)

⊆

G′r = (V ′r , E
′
r,Ω

′
r,P ′r)

base game of

Figure 4.6: Relations between a parity game G, reduced game Gr and reduced
subgame G′r.

Based on σr, we define a strategy σ in G such that
⋃
V ′r is a σ-dominion. Let

s ∈ V be some node such that P(s) = # and s ∈ b for some b ∈ V ′r . Then, σ(s) = s′

for an arbitrary s′ ∈ sE ∩
⋃
σr(b). This set is non-empty, since G′r is a stable kernel

of G.
Now we argue that

⋃
V ′r is a σ-dominion in G. Let (X0, v0) ∈

⋃
V ′r be an arbitrary

node and and π some path that starts from (X0, v0) and is consistent with σ. Remark
that π cannot leave

⋃
V ′r since V ′r is a dominion and Gr over-approximates the

transitions of G. The matching path πr in Gr is b0b1 . . . , where (Xi, vi) ∈ bi for
every i. The existence of biEr bi+1 for every i follows from (Xi, vi)E(Xi+1, vi+1)
and the definition of a reduced game; the equality Ω((Xi, vi)) = Ωr(bi) follows
from consistency of Gr. We conclude that # also wins (X0, v0), and that

⋃
V ′r is a

σ-dominion in G.

The following example illustrates that the assumption “G′r is a stable kernel” from
Theorem 4.12 is a necessary condition.

Example 4.13. Consider the PBES (νX(n:N) = ((n 6= 0) ∧X(n)) ∨ Y )(µY = Y ).
The figures below depict the initial partition of the parity game of this PBES (on the
left-hand side) and the stable partition (on the right-hand side).

0

{(X,n) | n ∈ N}

1

{Y }
0

{(X,n) | n 6= 0} 1

{Y }0

{(X, 0))}

The initial partition admits the winning strategy σ({(X,n) | n ∈ N}) = {(X,n) |
n ∈ N} for player 3. However, {(X,n) | n ∈ N} is not stable with respect to itself.
As it turns out, there is no winning strategy for 3 in {(X, 0)} in the stable partition.
This shows that a strategy that does not induce a stable kernel can in general not be
used to draw conclusions about the solution of the PBES under consideration.

Based on the theory of stable kernels, we propose the following changes to our
approach: after every iteration, we solve the parity game that corresponds to the
current partition and obtain a winning strategy σ in the block k̂, which contains the

58



4.4 Stable Kernel

Procedure 4: PBES quotienting with stable kernels

Input: PBES E , initial partition π0, target node X̂(ê)
1 ρ0 := ∅;
2 E0 := {(k, k′) ∈ π0 × π0 | ∃(Xi, v) ∈ sig(E).

Jk(Xi, d) ∧
∨
j∈Ji

(
∃ej :Ej . fj(d, ej) ∧ k′(Xj , gj(d, ej))

)
Kδ0[v/d]};

3 n := 0;
4 while (πn, En) is not a stable kernel do
5 n := n+ 1;
6 q := (πn−1 \ {k}) ∪ {split(k, k′), co-split(k, k′)} for some k, k′ ∈ πn−1

such that split(k, k′) and co-split(k, k′) are non-empty;
7 q := q ∪ ρn−1;
8 En := {(k, k′) ∈ q × q | ∃(Xi, v) ∈ sig(E).

Jk(Xi, d) ∧
∨
j∈Ji

(
∃ej :Ej . fj(d, ej) ∧ k′(Xj , gj(d, ej))

)
Kδ0[v/d]};

9 q := {k | k̂E∗nk} where (X̂, JêK) ∈ k̂;
10 (σ3, σ�) := solveParityGame(q, En);

11 πn := {k ∈ q | k̂ E∗n,σk} where Jk̂(X̂, ê)K and σ ∈ {σ3, σ�} is winning in k̂;

12 ρn := q \ πn;

13 return (πn, En);

target node X̂(ê). Then, we construct a minimal σ-dominion containing k̂. In the
next iteration, we only consider the blocks in that dominion for refinement. When
the blocks in the dominion form a stable kernel, the procedure can terminate (by
Theorem 4.12). See Procedure 4. We maintain two sets of blocks: πn contains the
blocks in the dominion that we are currently considering and ρn contains the other
blocks. At line 6, we split a block in πn and temporarily store the resulting partition
in q. Then, the set of blocks of the whole partition, reachable under the new transition
relation from the block containing the target node X̂(ê) is computed (lines 7 to 9).
Thereby, blocks that are not reachable from the target node are effectively “thrown
away”, i.e., they are not considered during the next iterations. Since unreachable
blocks cannot be part of a minimal dominion for the target node, this does not affect
the correctness of the procedure. Subsequently, we solve the parity game consisting
of the reachable blocks (line 10, function solveParityGame), which can be done with
existing algorithms, such as Zielonka’s recursive algorithm [140]. As a result, we

obtain a strategy for each player; the strategy σ of the player that wins k̂ is used
to construct a minimal σ-dominion (line 11). We achieve this by following only the
transitions of En that are consistent with σ, represented here by the relation En,σ,

starting from k̂. The blocks of the dominion are again stored in πn, the remaining
blocks are stored in ρn. After every iteration, we check whether πn is a stable kernel
(line 4). If so, the procedure terminates.
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4 Symbolic Bisimulation for PBESs

4.5 Stability Under Solution

The procedures presented so far rely purely on bisimulation as the notion of equiva-
lence. However, we are only interested in the solution of the PBES. Bisimulation is
much stronger than solution equivalence, resulting in a reduced parity game that is
larger than necessary to determine the solution. Besides bisimulation, several other
equivalences have been defined in the literature, such as consistent correlation [137]
and the corresponding preorder consistent consequence [33]. This inspired us to
investigate how our techniques can benefit from a weaker equivalence relation.

Example 4.14. Consider the following PBES E with target node X(true):

µX(b:B) = (b ∧ Y ) ∨ (¬b ∧ Z)

νY = X(true)

µZ = Z

The initial and stable partition of the parity game for E are respectively:

1

{(X, true), (X, false)}
2

{Y }

3

{Z}

1

{(X, true)}

1

{(X, false)}

2

{Y }

3

{Z}

In the initial partition, the two possible strategies for player 3 in {(X, true), (X, false)}
are both losing. Since the transition relation of a reduced parity game is an over-
approximation (cf. Definition 4.6, existential quantifier in the second bullet), after
splitting the block {(X, true), (X, false)}, each of the resulting blocks will either have
the same or fewer outgoing transitions. Thus, player 3 has even less capability
of winning the resulting blocks {(X, true)} and {(X, false)}, and we conclude that
player � also wins those blocks. In general, if player 3 loses a node it owns, removing
outgoing edges of that node preserves winning strategies of �.

We formalise this observation in the following definition.

Definition 4.15. Let E be a PBES and Gr = (Vr, Er,Ωr,Pr) be a consistent reduced
parity game. A block b ∈ Vr is stable under solution iff at least one of the following
conditions holds:

• b is stable under bisimulation; or

• b is won by P(b), the player who does not own b.

A reduced parity game is stable under solution iff all its blocks are stable under
solution.
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4.6 Implementation and Experiments

The intuition behind this is that if player 3 loses a block that it owns, then it
still loses that block if some outgoing edges are removed, which might occur during
splitting. Thus, splitting such a block will not change the solution. Dually, blocks
owned by player � do not have to be split if 3 wins them.

We now proceed by proving that stability under solution is a sufficient condition
to preserve the solution. In the proof below, recall that vE denotes the successor set
of v under the transition relation E (cf. Definition 2.21).

Theorem 4.16. Let E be a PBES, G = (V,E,Ω,P) its parity game and Gr = (Vr, Er,
Ωr,Pr) a consistent reduced parity game that is stable under solution. Then, for all
(X, v) ∈ sig(E), v ∈ JEK(X) iff player 3 wins b in Gr, where (X, v) ∈ b.

Proof. Let E , G and Gr be as above. Here we provide the proof for the positive case,
i.e., we show that if player 3 wins b, with (X, v) ∈ b, then v ∈ JEK(X). The proof for
the negative case, viz. player � wins b implies v /∈ JEK(X), is completely analogous.

We consider an arbitrary (X, v) and b such that (X, v) ∈ b. Let σr be a 3-strategy
that is winning for 3 in b and let U be a σr-dominion. We show that

⋃
U is a

3-dominion in G. Let s ∈ V and b′ ∈ U be such that s ∈ b′ and P(b′) = 3. We
define the strategy σ such that σ(s) = s′ for an arbitrary s′ ∈ sE ∩

⋃
σr(b

′). Note
that this set is not empty, since b is won by its owner (player 3), and, hence, must
be stable under bisimulation.

Let π = (X0, v0)(X1, v1) . . . be an arbitrary path in G that is consistent with σ and
that starts from some node (X0, v0) ∈

⋃
U . Remark that π cannot leave

⋃
U since

U is a dominion, making it closed for player 3 under σ, and Gr over-approximates
the transitions of G, giving player � less choice in G. The matching path πr in Gr
is b0b1 . . . , where (Xi, vi) ∈ bi for every i. The existence of biEr bi+1 for every i
follows from (Xi, vi)E(Xi+1, vi+1) and the definition of a reduced game; the equality
Ω((Xi, vi)) = Ωr(bi) follows from consistency of Gr. We conclude that 3 also wins
(X, v), and that

⋃
U is a σ-dominion in G. It subsequently follows from Theorem 3.10

that v ∈ JEK(X).

The idea of stability under solution can be applied as an early termination heuristic.
In Procedure 4, the stability check on line 4 can be implemented with solution
stability.

4.6 Implementation and Experiments

We implemented the ideas presented in the previous sections in two tools that are
part of the mCRL2 toolset [26]. The first tool, lpssymbolicbisim, performs minimal
model generation on LPSs according to Procedure 2. Upon termination, it produces
an LTS. The second tool, called pbessymbolicbisim, implements PBES quotienting
(cf. Section 4.3) and also the optimisations identified in Sections 4.4 and 4.5.

Figure 4.7 shows an overview of the workflow for both tools in the setting of the
mCRL2 toolset. In case we want to perform model checking of µ-calculus formulae,
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mCRL2 spec LPS

µ-calculus formula

PBES

LTS PG 4/7
solve

pbessymbolicbisimlpssymbolicbisim

Figure 4.7: Workflow for model checking based on minimal model generation (dotted
arrows) and PBES quotienting (dashed arrows).

the mCRL2 specification is first transformed to an LPS. Then, one can choose to use
lpssymbolicbisim to obtain an LTS, and subsequently use the property to construct
a parity game which can be solved. Alternatively, one first constructs a PBES and
then applies pbessymbolicbisim to obtain the BES.

4.6.1 Implementation

Both lpssymbolicbisim and pbessymbolicbisim call the Z3 SMT-solver [38] to
determine whether one of the sets computed with the functions split and co-split is
empty, i.e., whether its characteristic function is unsatisfiable. When choosing which
block to split in each iteration (line 4 of Procedure 2 and line 6 of Procedure 4),
preference is given to blocks that are the least far away from the block containing
the target node.

A critical component of the implementation is the handling of characteristic
functions. To manipulate these expressions, we first of all rely on the mCRL2 term
rewrite system. Furthermore, the tools also contain several specialised algorithms that
simplify the characteristic functions after splitting a block. Our experience is that it
is worthwhile spending some runtime on these simplifications. If the characteristic
functions are never minimised, they contain a lot of redundancy and quickly grow
prohibitively large. This slows down any subsequent computation by the procedure.

In our implementation, the characteristic functions are simplified in two steps.
First, we attempt to eliminate the existential quantifier that originates from the
split and co-split functions. This can be done by distributing the quantifier over
other operators, applying the substitution rule for quantifiers, enumerating finite
data or applying Fourier-Motzkin elimination [48, 99] to real variables. Details of
distributing quantifiers over other operators and the substitution rule can be found
in Chapter 7. The second step is to transform the resulting predicate formula to a
more compact representation using a combination of multi-valued decision diagrams
(MDDs) [70] and multi-terminal decision diagrams (MTBDDs) [8, 31]. We store
all variables of finite data types in the multi-valued nodes and expressions over the
remaining variables in the terminals. Although these decision diagrams only eliminate
redundancy in variables of a finite data type, this method is effective, since most of
our models contain a finite control structure.
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4.6.2 Setup

We compare the performance of several approaches: our implementations of minimal
model generation and PBES quotienting and the pbes-cvc4 tool from [81]. We
originally also aimed to compare with the tool PBESSolver from [100]. However,
their implementation has several practical limitations, making a fair comparison
impossible. We therefore decided to exclude PBESSolver from our experiments. The
experiments were performed on a machine with an Intel Core i5 3350P processor
and 8 GB of memory running Ubuntu 18.04 and mCRL2 commit hash 066ba9f36b1

compiled with GCC7.3.

Our set of benchmarks2 consists of various PBESs that encode different types
of decision problems, covering typical linear-time, branching-time and real-time
model checking problems, a scheduling problem, recursive functions and behavioural
equivalence checking problems. The PBESs encoding model checking problems mostly
originate from the set of examples included in mCRL2, which in some cases have
been modified to generate infinite state spaces. Classical approaches that generate
the state space explicitly fail for all of these models. We remark that most of the
models contain multiple concurrent processes. Each model is combined with one or
more formal properties in the form of a modal µ-calculus formula to obtain a PBES.
More specifically, we verified the following properties:

• two reachability properties (the real-time ball game [33]: winning impossible;
and the real-time train gate system [12]: action go(1) can be executed at time
20);

• two invariants (Fischer’s real-time mutual exclusion protocol [87] and Lamport’s
bakery protocol [86]: no deadlock);

• six linear and branching-time properties (the ball game: infinitely often put
ball; the train gate: fairness; Fischer’s protocol and Lamport’s bakery protocol:
request must be served; the Concurrent Alternating Bit Protocol (CABP) [82]:
a message can be received infinitely often; Hesselink’s handshake register [65]:
cache consistency, and all writes finish).

The scheduling problem we consider is due to [101]; it encodes a fair trading problem
encoded as a PBES. Furthermore, two recursive functions we consider are based on
classical benchmarks for verification tools [79]. A modified version of the McCarthy
91 function, as per [100], is represented with the following PBES:

µM(x, y:N) = (x > 10 ∧ x = y + 1) ∨ ∃e:N. x ≤ 10 ∧M(x+ 2, e) ∧M(e, y)

Here, M(x, y) is true if and only if (x, y) is a solution for the function we represent.

1The sources of mCRL2 are available via https://github.com/mCRL2org/mCRL2
2The experiments are available online via https://doi.org/10.5281/zenodo.3528141.
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Table 4.1: Runtime comparison between several variants of PBES quotienting and
pbes-cvc4. All runtimes are in seconds. ‘t.o.’ indicates a time-out and a cross
indicates that a PBES cannot be handled.

target node/
property

PQ PQ+sk PQ+sk+ss pbes-cvc4

model result |V | iter. time |P | iter. time |P | iter. time time

ball game winning impossible false 12 65 1.59 11 65 1.73 11 11 0.19 0.27
inf. often put ball true 2 4 0.01 1 2 <0.01 1 2 <0.01 t.o.

train gate go(1) at time 20 true 7 10 1.37 6 8 0.58 6 6 0.46 0.39
fairness false 15 57 19.58 4 31 9.28 4 31 11.59 7

Fischer (N=3) no deadlock true 5 5 0.24 3 4 0.22 3 4 0.24 7
Fischer (N=4) request must serve false 18 50 431.43 3 16 9.04 3 3 0.91 7
bakery no deadlock true 1 1 <0.01 1 1 <0.01 1 1 <0.01 t.o.

request must serve false 64 153 6.79 5 17 0.36 5 17 0.37 0.44
Hesselink cache consistency false t.o. 20 754 345.89 20 753 348.43 7

all writes finish false t.o. 24 219 11.07 24 259 11.41 7
CABP receive inf. often true 79 313 14.12 16 114 2.69 17 111 3.13 7
trading inf. run possible true 10 16 0.1 6 9 0.03 6 9 0.04 t.o.
McCarthy M(0, 10) true t.o. 14 726 45.38 14 725 55.67 7

M(0, 9) false t.o. 299 1025 85.67 299 1025 90.04 7
Takeuchi T (3, 2, 1, 3) true t.o. 12 54 6.48 12 54 6.62 7

T (3, 2, 1, 2) false t.o. 186 79 16.32 185 79 17.92 7
ABP + buffer branching bisimilar true 30 55 0.21 29 49 0.24 23 42 0.24 7

In a similar fashion, we have a PBES for Takeuchi’s function [79]:

µT (x, y, z,w:N) = (x ≤ y ∧ y = w) ∨ (∃t1, t2, t3:N. x > y ∧
T (x− 1, y, z, t1) ∧ T (y − 1, z, x, t2) ∧ T (z − 1, x, y, t3) ∧ T (t1, t2, t3, w))

Finally, we consider the decision problem whether the Alternating Bit Protocol
(ABP) [17] is branching bisimilar to a one-place buffer, both with infinite data. This
PBES is encoded using the techniques in [28], as implemented in the mCRL2 tool
lpsbisim2pbes.

4.6.3 Comparison of PBES solvers

We ran pbessymbolicbisim and pbes-cvc4 for each of the PBESs. The results are
listed in Table 4.1. Here, ‘PQ’ denotes the standard PBES quotienting procedure
and ‘+sk’ and ‘+ss’ denote the additional use of the stable kernel and stability under
solution, respectively. For each PBES, we report the solution for the target node
and the runtime in seconds for each approach. The runtimes reported here do not
include the time required to compile the rewriter, which is roughly constant for each
PBES. For each PBES quotienting experiment, we also report the size of the resulting
reduced parity game or stable kernel, denoted with |V | and |P | respectively, and the
number of iterations required to compute it, denoted with ‘iter.’. A timeout, set
to half an hour, is represented with ‘t.o.’ and we write a cross for the PBESs that
cannot be handled.

We observe that the use of stable kernels improves the performance over the
basic PBES quotienting procedure for nearly every PBES in our set of benchmarks.
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Furthermore, several timeouts occur for ‘PQ’, while ‘PQ+sk’ and ‘PQ+sk+ss’ manage
to solve these PBESs. The added value of stability under solution over the stable
kernels procedure is not clear. The only instances where it performs significantly
better are the ball game with the ‘winning impossible’ property and Fischer’s protocol
with the ‘request must serve’ property. For most other models, stability under solution
causes some overhead, leading to a longer runtime.

The runtime of pbes-cvc4 is very small for the three cases it can solve. How-
ever, it fails to provide a solution in most of the cases. Although pbes-cvc4 and
pbessymbolicbisim rely on different SMT solvers (CVC4 and Z3, respectively), the
differences we observe in our benchmarks can be fully explained by their approach
alone. The three cases where a timeout occurs for pbes-cvc4 (trading, ball game and
bakery) are similar: the models contain one or more variables that strictly increase.
Since pbes-cvc4 can only find strategies that induce lasso-shaped plays, it does not
terminate for PBESs with infinite winning plays that are not lasso-shaped.

For Fischer and bakery with the no deadlock property and the equivalence problem
on ABP and buffer, the stable kernel covers almost the entire reduced dependency
space. Only the block containing Xfalse (cf. Section 3.1) is not present in the stable
kernel. In those cases, PBES quotienting does not benefit from the optimisation of
using stable kernels (Procedure 4).

In order to obtain a result for Takeuchi with the target node T (3, 2, 1, 2), we
modified our implementation slightly: after every iteration, we randomly shuffle
the order in which blocks are stored. This can affect the splitting strategy : the
choice of blocks b and b′ to be used for splitting. This is discussed in more detail in
Section 4.6.5.

4.6.4 Comparison of PBES quotienting and MMG

We also conducted several experiments with our implementation of minimal model
generation in the tool lpssymbolicbisim. To obtain meaningful results, we made
the following changes to our models:

• For the timed models (ball game, train gate and Fischer), we removed the time
tags from actions and encoded the timed semantics of mCRL2 using a new
process parameter. As a consequence, we cannot verify properties that refer to
absolute time. This transformation is implemented in the tool lpsuntime.

• We removed the infinite data domain from the Hesselink, CABP, ABP and
buffer models.

Without these modifications, MMG cannot compute a bisimulation quotient.
The results are listed in Table 4.2. For MMG, |P | indicates the size of the resulting

reduced LTS. For ball game and bakery, we only have to run lpssymbolicbisim

once (cf. Figure 4.7). On the other hand, to check branching bisimilarity of ABP and
the buffer, MMG has to generate the bisimulation quotient for both models before
we can compare them with the tool ltscompare.
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Table 4.2: Runtime comparison between minimal model generation and PBES
quotienting. All runtimes are in seconds. ‘t.o.’ indicates a time-out and a cross
indicates that a property cannot be handled.

MMG PQ+sk+ss

model property |P | iter. time |P | iter. time

ball game winning impossible
11 64 0.50

11 11 0.19
infinitely often put ball 1 2 <0.01

train gate go(1) at time 20 7 6 6 0.46
fairness 15 72 15.64 4 31 11.59

Fischer (N=3) no deadlock 62 180 22.36 3 4 0.24
Fischer (N=4) request must serve t.o. 3 3 0.91

bakery no deadlock
22 52 1.31

1 1 <0.01
request must serve 5 17 0.37

ABP
branching bisimilar

28 111 5.12
23 42 0.42

buffer 3 2 <0.01

Minimal model generation cannot be used to model check two of our instances.
First, for the train gate model, MMG can compute a bisimulation quotient, but it is
not possible to subsequently construct a PBES that accurately encodes the property
“go(1) at time 20”, since the quotient does not contain references to absolute time.
Second, MMG times out for the Fischer model with four processes.

For the train gate model with the fairness property, our PBES quotienting performs
similarly to MMG. This is partially due to the fact that the state space is partly
encoded twice in the PBES, once for each fixpoint in the formula, similar to the
bakery PBES of Section 4.2. For most of the other benchmarks, PBES quotienting
outperforms MMG.

4.6.5 Splitting Strategy

While performing these experiments, we noticed quite some variability in the re-
sults for certain models, especially McCarthy and Takeuchi. Slight alterations in
the formulation of the PBES can have a significant effect on the runtime. Closer
inspection revealed that the cause is the choice of blocks used to split. In our current
implementation, we apply the simple heuristic of giving preference to blocks close to
the block containing the target node. The following example shows the importance
of the splitting strategy.
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Example 4.17. We consider the target node X(true, 0) in the PBES below.

νX(b:B,n:Z) = ((b ∨ n > 0) ∧X(b, n− 1)) ∨ (b ∧ Y )

µY = Y

Here, Z represents the integers. Since splits happen closest to the block containing
the target node, the block containing (X, (true, 0)) is continuously split with respect
to itself, and we obtain the following partition after i iterations (while not performing
reachability analysis):

{{(X, (b, n)) | b ∨ n ≥ i}, {(X, (false, n)) | n ≤ 0}, {Y }} ∪
⋃

0<n<i

{{(X, (false, n))}}

Splitting {(X, (b, n)) | b ∨ n ≥ i} with respect to {Y } results in {(X, (true, n)} and
{(X, (false, n)) | n ≥ i}. This leads to immediate termination, since the former block
– which contains the target node – is a stable kernel. In this example, the choice of
splitting strategy determines whether PBES quotienting terminates.

To find a good algorithm or heuristic for this block selection, one can draw
inspiration from works on minimal model generation, e.g., [90]. Performing static
analysis to obtain invariants (e.g. b is invariably true for the target node) can be
another way to identify which blocks to split. Furthermore, the splitting strategy
can be made more robust by introducing some randomness: this is to prevent certain
blocks from being ignored indefinitely.

4.7 Related Work

The first works on generating minimal representations from behavioural specifications
were written by Bouajjani et al. [23]. Later, these ideas were applied to timed
automata [2, 124]. Similar to our approach, they rely on bisimulation to compute the
minimal quotient directly from a specification. Fisler and Vardi [46] extended this
work to include early termination when performing reachability analysis. Our work
is similar in spirit to these methods, but it generalises these by allowing to verify
properties expressed in the full modal µ-calculus and by supporting infinite-state
systems, not limited to real-time systems.

The techniques and theory we present also generalise several other closely related
works, such as [101, 100, 81, 75]. Nagae et al. [101] transfer the ideas of Bouajjani
et al. to disjunctive, quantifier-free PBESs and generate finite parity games that
can be solved. They later expanded the work to existential PBESs [100]. These
fragments of the PBES logic limit the type of properties one can verify. A small set
of experimental results shows that their approach is feasible in practice for small
academic examples.

Koolen et al. [81] use an SMT solver to search for linear proof graphs in disjunctive
or conjunctive PBESs. Their technique manages to find solutions for model checking
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problems where traditional tools time out. They conclude that even for problems
where enumeration of the state space is possible, an instantiation-based approach is
not always faster. We remark that the number of unrollings performed by their tool
gives a rough indication of the optimal size of the proof graph constructed with our
techniques when applied to disjunctive or conjunctive PBESs.

In [75], Keiren et al. define two equivalence relations based on bisimulation for
BESs. These relations are then used to minimise BESs that represent model checking
problems. Experiments show that applying minimisation speeds up the solving
procedure, i.e., the time required for minimising and then solving the minimal BES is
lower than the time required to solve the original BES. Whereas [75] applies explicit-
state techniques by working directly on a BES, our work is based on a symbolic
representation. The disadvantage of the explicit approach of [75] is that it requires
one to instantiate a PBES to BES first, which can be time consuming. Furthermore,
the instantiation does not terminate for infinite-state systems.

Fontana et al. [47] construct symbolic proof trees to check alternation-free µ-calculus
formulae on timed automata. To recursively prove (sub)formulas, they unfold the
transition relation according to a set of proof rules they propose. This approach
allows a larger class of properties than UPPAAL [12], which only supports a subset of
TCTL. Contrary to our approach, the proof they produce is not necessarily minimal
with respect to bisimulation.

Tripakis and Yovine [124] also identified the problem that the characteristic func-
tions should be as compact as possible in order to improve the scalability (cf. Sec-
tion 4.6). They develop a specialised partition-refinement technique for the setting of
timed automata such that the characteristic functions are always conjunctive, i.e.,
they represent a convex set of nodes. Preserving convexity comes at a cost, however:
the resulting stable partition can be finer that the bisimulation quotient.

Although our work was not inspired by counterexample-guided abstraction refine-
ment (CEGAR) [29], we see many similarities. CEGAR works by taking an abstract
version of the model under consideration and feeding it to a model checker. If a
counterexample is found, then this is compared to the original model to determine
whether the counterexample is spurious. If so, the abstraction is refined to exclude
the spurious trace. Then the procedure is repeated with the refined abstraction. The
algorithm terminates when the model checker returns true or a valid counterexample
is found. Our procedure that finds stable kernels essentially refines with respect to
‘spurious dominions’. Compared to our approach, CEGAR typically supports a less
expressive class of properties, such as ACTL or LTL.

The recent work by Kobayashi et al. [80] shows how to check formulas from
the logic Mu-Arithmetic on recursive single-threaded programs. They achieve this
by encoding the problem in a hierarchical equation system (HES), a logic which
practically coincides with PBES, except that it only allows integers as data type.
A semi-decision procedure solves HESs by translating the equations to constrained
Horn clauses (CHC) and feeding them to a CHC solver.
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4.8 Conclusion

We presented an approach to solving arbitrarily-structured PBESs with infinite data,
which enables solving of a larger set of PBESs than possible with existing tools.
This improves the state-of-the-art for model checking and equivalence checking on
(concurrent) systems with infinite data.

A drawback of performing quotienting on the level of PBESs is that this process
has to be repeated for each property that needs to be checked (cf. Figure 4.7). On the
other hand, for minimal model generation, the LTS needs to be generated only once,
after which multiple properties can be checked by constructing multiple BESs, which
is a relatively cheap operation. However, as we have shown, PBES quotienting also
has several fundamental advantages, which improve its applicability in a practical
setting.

Further study is required to fully understand the effects of splitting strategy (cf.
Section 4.6.5). We believe that a good strategy, perhaps based on heuristics, can
significantly improve the scalability of our approach.

When checking fairness properties, the state space is typically encoded twice in
the corresponding PBES. The PBES from Section 4.2 is a perfect example. In the
current implementation, the same work is sometimes done twice for different predicate
variables. The procedures can be further optimised by exploiting this symmetry.

Another possible direction is to further weaken the equivalence relation on depen-
dency graph nodes. Here, one can draw inspiration from equivalence relations defined
on parity games, for instance as defined in [36].

69





The Inconsistent
Labelling Problem
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As we have seen in the introduction, one of the main challenges in model checking is
the state-space explosion problem. The many interleavings of concurrent processes
can cause the state space to grow exponentially with the number of components.
This is particularly problematic if there is little interaction between the processes and
they mainly contain independent behaviour. Partial-order reduction (POR) attempts
to tackle this problem by recognising independent behaviour, identifying similar
interleavings and (hopefully) exploring only one interleaving from each equivalence
class. The crux is that POR is typically applied on-the-fly, i.e., while generating the
state space. This avoids the scenario where the full state-space is first generated—
potentially running out of memory in the process—and then reduced.

Literature sees many variants of POR; the main ones are ample sets [111], persistent
sets [52] and stubborn sets [127, 132]. The most basic approaches apply relatively
weak conditions, thus achieving great reductions. However, the only property they
preserve is the absence/presence of deadlocks. Stronger conditions are necessary to
preserve reachability properties or logics such as LTL or CTL. For each of the variants
listed above, sufficient conditions for preservation of stutter-trace equivalence have
been identified. Since LTL without the next operator (LTL−X) is invariant under
finite stuttering, this allows one to check most LTL properties under POR.

However, the correctness proofs for these methods are intricate and not reproduced
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often. For stubborn sets, LTL−X -preserving conditions and an accompanying cor-
rectness result were first presented in [126], and discussed in more detail in [128].
While trying to reproduce the proof for [128, Theorem 2] (see also Theorem 5.9
in this chapter), we ran into an issue while trying to prove a certain property of
the construction used in the original proof [128, Construction 1]. This led us to
discover that stutter-trace equivalence is not necessarily preserved. We will refer to
this as the inconsistent labelling problem. The essence of the problem is that POR
in general, and the proofs in [128] in particular, reason mostly about actions, which
label the transitions. The only relevance of the state labelling is that it determines
which actions are visible. On the other hand, stutter-trace equivalence and the LTL
semantics are purely based on state labels. The correctness proof in [128] does not
deal properly with this disparity. Further investigation shows that the same problem
also occurs in two works of Beneš et al. [14, 15], who apply ample sets to state/event
LTL model checking.

Consequently, any application of stubborn sets in LTL−X model checking is possibly
unsound, both for safety and liveness properties. The correctness of several theories
in the literature [85, 91, 129] relies on the incorrect theorem. In this chapter, we
investigate what the impact of the inconsistent labelling problem is. First, we prove the
existence of the inconsistent labelling problem with a counter-example to correctness of
the LTL−X -preserving conditions (Section 5.2). This counter-example is valid for weak
stubborn sets and, with a small modification, in a non-deterministic setting for strong
stubborn sets. Then, we propose to strengthen one of the stubborn set conditions
(Section 5.3) and show that this modification resolves the issue (Theorem 5.12).
Finally, we analyse in which circumstances the inconsistent labelling problem occurs
(Section 5.4). This includes a thorough analysis of Petri nets and several different
notions of invisible transitions and atomic propositions (Section 5.5). Based on our
analysis, we discuss the impact on related work (Section 5.6).

Our investigation shows that probably all practical implementations of stubborn
sets compute an approximation which resolves the inconsistent labelling problem.
Furthermore, POR methods based on the standard independence relation, such as
ample sets and persistent sets, are not affected.

5.1 Preliminaries

Most POR methods assume the existence of both state labels and transition labels,
i.e., actions. Therefore, the transition systems in this chapter differ slightly from
the rest of the thesis: we will use labelled state transition systems, instead of LTSs
(Definition 2.2). In addition to a finite set Act of action labels, we assume the
existence of some fixed set of atomic propositions AP to label the states.

Definition 5.1. A labelled state transition system, short LSTS, is a directed graph
TS = (S,→, ŝ, L), where:

• S is the state space;
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• →⊆ S ×Act × S is the transition relation;

• ŝ ∈ S is the initial state; and

• L : S → 2AP is a function that labels states with atomic propositions.

On top of the notation that we already had for LTSs, we introduce the following
notions. Given a path π = s0

a1−→ s1
a2−→ s2 . . . , the trace of π is the sequence of

state labels observed along π, viz. L(s0)L(s1)L(s2) . . . . A set I ⊆ Act of invisible
actions is chosen such that if (but not necessarily only if) a ∈ I, then for all states
s and t, s a−→ t implies L(s) = L(t). Note that this definition allows the set I to
be under-approximated; this is useful in practice, since it is not always trivial to
determine exactly which actions never change the state labelling. An action that is
not invisible is called visible.

5.1.1 Stubborn sets

In POR, reduction functions play a central role. A reduction function r : S → 2Act

indicates which transitions to explore in each state. When starting at the initial state
ŝ, a reduction function induces a reduced LSTS as follows.

Definition 5.2. Let TS = (S,→, ŝ, L) be an LSTS and r : S → 2Act a reduction
function. Then the reduced LSTS induced by r is defined as TS r = (Sr,→r, ŝ, Lr),
where Lr is the restriction of L on Sr, and Sr and →r are the smallest sets such that
the following holds:

• ŝ ∈ Sr; and

• if s ∈ Sr, s a−→ t and a ∈ r(s), then t ∈ Sr and s a−→r t.

Note that we have →r ⊆→. In the remainder of this chapter, we assume the
reduced LSTS is finite. This is essential for the correctness of the approach detailed
below. In general, a reduction function is not guaranteed to preserve almost any
property of an LSTS. Below, we list a number of conditions that have been proposed
in the literature; they aim to preserve LTL−X . The notion of a key action, referred
to in the conditions, is defined as follows: an action a is a key action in s iff for all
paths s a1...an−−−−→ s′ such that a1 /∈ r(s), . . . , an /∈ r(s), it holds that s′ a−→. Note that
a key action must be enabled in s: by setting n = 0, we have s = s′ and s a−→. We
typically denote key actions by akey.

D0 If enabled(s) 6= ∅, then r(s) ∩ enabled(s) 6= ∅.

D1 For all a ∈ r(s) and a1 /∈ r(s), . . . , an /∈ r(s), if s a1−→ · · · an−−→ sn
a−→ s′n, then

there are states s′, s′1, . . . , s
′
n−1 such that s a−→ s′ a1−→ s′1

a2−→ · · · an−−→ s′n.

D2 Every enabled action in r(s) is a key action in s.

D2w If enabled(s) 6= ∅, then r(s) contains a key action in s.
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s s1 . . . sn−1 sn
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a ∈ r(s) ⇒

s s1 . . . sn−1 sn
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a

a1 an

a

Figure 5.1: Visual representation of condition D1.

V If r(s) contains an enabled visible action, then r(s) contains all visible actions.

I If an invisible action is enabled in s, then r(s) contains an invisible key action.

L For every visible action a, every cycle in the reduced LSTS contains a state s
such that a ∈ r(s).

These conditions are used to define strong and weak stubborn sets in the following
way.

Definition 5.3. A reduction function r : S → 2Act is a strong stubborn set iff for all
states s ∈ S, the conditions D0, D1, D2, V, I, L all hold.

Definition 5.4. A reduction function r : S → 2Act is a weak stubborn set iff for all
states s ∈ S, the conditions D1, D2w, V, I, L all hold.

Below, we also use ‘weak/strong stubborn set’ to refer to the set of actions r(s)
in some state s. A stubborn set can never introduce new deadlocks in the reduced
LSTS, either by D0 or D2w. Condition D1 enforces that a key action akey ∈ r(s)
does not disable other paths that are not selected for the stubborn set. A visual
representation of condition D1 can be found in Figure 5.1. When combined, D1 and
D2w are sufficient conditions for preservation of deadlocks. Condition V enforces
that the paths s a1...ana−−−−−→ s′n and s aa1...an−−−−−→ s′n in D1 contain the same sequence of
visible actions. The purpose of condition I is to preserve the possibility to perform
an invisible action, if one is enabled. Finally, we have condition L to deal with
the action-ignoring problem, which occurs when an action is never selected for the
stubborn set and always ignored. Since we assume that the reduced LSTS is finite,
it suffices to reason in L about every cycle instead of every infinite path. The
combination of V, I and L helps to preserve divergences (infinite paths containing
only invisible actions).

Example 5.5. Consider the LSTS in Figure 5.2. The dashed states and transitions
are present in the original LSTS, but not in the reduced version. Grey states are
labelled with {q}, other states do not have any atomic proposition assigned as label.
Other LSTSs in the current chapter are visualised in a similar way.

Actions d and e are visible; actions a, b and c may be invisible. In this case, we
choose the set of invisible actions to be maximal, i.e., I = {a, b, c}. In the initial
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Figure 5.2: Example of an LSTS that is reduced under POR.

state s1, we have r(s1) = {a}. Remark that a is a key action in s1, since for all
prefixes π of dbω, we have s1

πa−−→.
In states s3 and s4 we must have b ∈ r(s3), respectively b ∈ r(s4), by condition

I. Condition L can be satisfied in the cycle consisting of s3 and s4 by either setting
e ∈ r(s3) or e ∈ r(s4); here we have opted for the latter. Actually, e ∈ r(s4) is
also enforced by D1, since we have s4

ecb−−→ s6 and s4
ec−→ s5, but not s4

bec−−→ s6 or
s4

ce−→ s5. Consequently, {b} and {b, c} are not stubborn sets in s4.

Conditions D0 and D2 together imply D2w, and thus every strong stubborn set is
also a weak stubborn set. Since the reverse does not necessarily hold, weak stubborn
sets might offer more reduction.

5.1.2 Weak and Stutter Equivalence

To reason about the similarity of an LSTS TS and its reduced LSTS TS r, we introduce
the notions weak equivalence, which operates on actions, and stutter equivalence,
which operates on states. The definitions are generic, so that they can also be used
in Section 5.5.

Definition 5.6. Two paths π and π′ are weakly equivalent with respect to a set of
actions A, notation π ∼A π′, if and only if they are both finite or both infinite and
their respective projections on Act \A are equal.

Definition 5.7. The no-stutter trace under labelling L of a path s0
a1−→ s1

a2−→ . . . is
the sequence of those L(si) such that i = 0 or L(si) 6= L(si−1). Paths π and π′ are
stutter equivalent under L, notation π ,L π

′, iff they are both finite or both infinite,
and they yield the same no-stutter trace under L.

We typically consider weak equivalence with respect to the set of invisible actions I.
In that case, we write π ∼ π′. We also omit the subscript for stutter equivalence when
reasoning about the standard labelling function and write π , π′. Note that stutter
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5 The Inconsistent Labelling Problem

equivalence is invariant under finite repetitions of state labels, hence its name. We
lift both equivalences to LSTSs, and say that TS and TS ′ are weak-trace equivalent
iff for every initial path π in TS , there is a weakly equivalent initial path π′ in TS ′

and vice versa. Likewise, TS and TS ′ are stutter-trace equivalent iff for every initial
path π in TS , there is a stutter equivalent initial path π′ in TS ′ and vice versa.

In general, weak equivalence and stutter equivalence are incomparable, even for
initial paths. However, for some LSTSs, these notions are related in a certain way.
We formalise this in the following definition.

Definition 5.8. An LSTS is labelled consistently iff for all initial paths π and π′,
π ∼ π′ implies π , π′.

It follows from the definition that, if an LSTS TS is labelled consistently and
weak-trace equivalent to a subgraph TS ′, then TS and TS ′ are also stutter-trace
equivalent.

Stubborn sets as defined in the previous section aim to preserve stutter-trace
equivalence between the original and the reduced LSTS. The motivation behind this
is that two stutter-trace equivalent LSTSs satisfy exactly the same formulae [9] in
LTL−X . The following theorem, which is frequently cited in the literature [85, 91, 129],
aims to show that stubborn sets indeed preserve stutter-trace equivalence. Its original
formulation reasons about the validity of an arbitrary LTL−X formula. Here, we give
the alternative formulation based on stutter-trace equivalence.

Theorem 5.9. [128, Theorem 2] Given an LSTS TS and a weak/strong stubborn
set r, then the reduced LSTS TS r is stutter-trace equivalent to TS.

The original proof correctly concludes that the stubborn set method preserves
the order of visible actions in the reduced LSTS, i.e., TS ∼ TS r. However, this
only implies preservation of stutter-trace equivalence (TS , TS r) if the full LSTS
is labelled consistently, so Theorem 5.9 is invalid in the general case. In the next
section, we will see a counter-example which exploits this fact.

5.2 Counter-Example

Consider the LSTS in Figure 5.3, which we will refer to as TSC . There is only one
atomic proposition q, which holds in the grey states and is false in the other states.
The initial state ŝ is marked with an incoming arrow. First, note that this LSTS is
deterministic. The actions a1, a2 and a3 are visible and a and akey are invisible. By
setting r(ŝ) = {a, akey}, which is a weak stubborn set, we obtain a reduced LSTS

TSCr that does not contain the dashed states and transitions. The original LSTS
contains the trace ∅{q}∅∅{q}ω, obtained by following the path with actions a1a2aa

ω
3 .

However, the reduced LSTS does not contain a stutter equivalent trace. This is also
witnessed by the LTL−X formula �(q ⇒ �(q ∨ �¬q)). An equivalent µ-calculus
formula is νX. ([>]X ∧Q⇒ (νY. [>]Y ∧ (Q ∨ (νZ. [>]Z ∧ ¬Q)))), if the semantics is
such that JQKηδ = {s | q ∈ L(s)}. These formulas hold for TSCr , but not for TSC .
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ŝ

a

a1 a2

akey

a1 a2
a3

a3
a3

a1 a2

a

akeyakey

Figure 5.3: Counter-example showing that stubborn sets do not preserve stutter-
trace equivalence. Grey states are labelled with {q}. The dashed transitions and
states are not present in the reduced LSTS.

A very similar example can be used to show that strong stubborn sets suffer from
the same problem. Consider again the LSTS in Figure 5.3, but assume that a = akey,
making the LSTS no longer deterministic. Now, r(ŝ) = {a} is a strong stubborn set
and again the trace ∅{q}∅∅{q}ω is not preserved in the reduced LSTS. In Section 5.3.3,
we will see why the inconsistent labelling problem does not occur for deterministic
systems under strong stubborn sets.

The core of the problem lies in the fact that condition D1, even when combined with
V, does not enforce that the two paths it considers are stutter equivalent. Consider
the paths s a−→ and s a1a2a−−−−→ and assume that a ∈ r(s) and a1 /∈ r(s), a2 /∈ r(s).
Condition V ensures that at least one of the following two holds: (i) a is invisible, or
(ii) a1 and a2 are invisible. Half of the possible scenarios are depicted in Figure 5.4;
the other half are symmetric. Again, the grey states (and only those states) are
labelled with {q}.

The two cases delimited with a solid line are problematic. In both LSTSs, the paths
s a1a2a−−−−→ s′ and s aa1a2−−−−→ s′ are weakly equivalent, since a is invisible. However, they
are not stutter equivalent, and therefore these LSTSs are not labelled consistently.
The topmost of these two LSTSs forms the core of the counter-example TSC , with
the rest of TSC serving to satisfy condition D2/D2w.

5.3 Strengthening Condition D1

To fix the issue with inconsistent labelling, we propose to strengthen condition D1
as follows.

D1’ For all a ∈ r(s) and a1 /∈ r(s), . . . , an /∈ r(s), if s a1−→ s1
a2−→ · · · an−−→ sn

a−→ s′n,
then there are states s′, s′1, . . . , s

′
n−1 such that s a−→ s′ a1−→ s′1

a2−→ · · · an−−→ s′n.
Furthermore, if a is invisible, then si

a−→ s′i for every 1 ≤ i < n.

This new condition D1’ provides a form of local consistent labelling when one of
a1, . . . , an is visible. In this case, V implies that a is invisible and, consequently, the
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Figure 5.4: Nine possible scenarios when a ∈ r(s) and a1 /∈ r(s), a2 /∈ r(s), according
to conditions D1 and V. The dotted and dashed lines indicate when a or a1, a2 are
invisible, respectively.

presence of transitions si
a−→ s′i implies L(si) = L(s′i). Hence, the problematic cases

of Figure 5.4 are resolved; a correctness proof is given below.

Condition D1’ is very similar to condition C1 [50], which is common in the context
of ample sets. However, C1 requires that action a is globally independent of each of the
actions a1, . . . , an, while D1’ merely requires a kind of local independence. Persistent
sets [52] also rely on a condition similar to D1’, and require local independence.

5.3.1 Implementation

In practice, most, if not all, implementations of stubborn sets approximate D1 based
on a binary relation ;s on actions. This relation may (partly) depend on the current
state s and it is defined such that D1 can be satisfied by ensuring that if a ∈ r(s)
and a ;s a

′, then also a′ ∈ r(s). A set satisfying D0, D1, D2, V and I or D1, D2w,
V and I can be found by searching for a suitable strongly connected component in
the graph (Act ,;s). Condition L is dealt with by other techniques.

Practical implementations construct ;s by analysing how any two actions a and a′

interact. If a is enabled, the simplest (but not necessarily the best possible) strategy
is to make a ;s a

′ if and only if a and a′ access at least one variable in common.
This can be relaxed, for instance, by not considering commutative accesses, such as
writing to and reading from a FIFO buffer. As a result, ;s can only detect reduction
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opportunities in (sub)graphs of the shape

s s1 . . . sn−1 sn

s′ s′1 . . . s′n−1 s′n

a1 an

a

a1 an

a a a

where a ∈ r(s) and a1 /∈ r(s), . . . , an /∈ r(s). The presence of the vertical a transitions
in s1, . . . , sn−1 implies that D1’ is also satisfied by such implementations. More
details on a possible implementation of stubborn sets can be found in Chapter 6,
where we apply POR to parity games.

5.3.2 Correctness

To show that D1’ indeed resolves the inconsistent labelling problem, we reproduce
the construction in the original proof [128, Construction 1] in two lemmata and
show that it preserves stutter equivalence. Below, recall that →r indicates which
transitions occur in the reduced state space.

Lemma 5.10. Let r be a weak stubborn set, where condition D1 is replaced by D1’,
and π = s0

a1−→ · · · an−−→ sn
a−→ s′n a path such that a1 /∈ r(s0), . . . , an /∈ r(s0) and

a ∈ r(s0). Then, there is a path π′ = s0
a−→r s

′
0
a1−→ · · · an−−→ s′n such that π , π′.

Proof. The existence of π′ follows directly from condition D1’. Due to condition V
and our assumption that a1 /∈ r(s0), . . . , an /∈ r(s0), it cannot be the case that a is
visible and at least one of a1, . . . , an is visible. If a is invisible, then the traces of
s0

a1−→ · · · an−−→ sn and s′0
a1−→ · · · an−−→ s′n are equivalent, since D1’ implies that si

a−→ s′i
for every 0 ≤ i ≤ n, so L(s′i) = L(si). Otherwise, all of a1, . . . , an are invisible, so
the sequences of labels observed along π and π′ have the shape L(s0)n+1L(s′0) and
L(s0)L(s′0)n+1, respectively. We conclude that π , π′.

Lemma 5.11. Let r be a weak stubborn set, where condition D1 is replaced by D1’,
and π = s0

a1−→ s1
a2−→ . . . a path such that ai /∈ r(s0) for any ai that occurs in π.

Then, the following holds:

• If π is of finite length n > 0, there exist an action akey, a state s′n such that
sn

akey−−→ s′n and a path π′ = s0
akey−−→r s

′
0
a1−→ · · · an−−→ s′n.

• If π is infinite, there exists a path π′ = s0
akey−−→r s

′
0
a1−→ s′1

a2−→ . . . for some
action akey.

In either case, π , π′.

Proof. Let K be the set of key actions in r(s). If a1 is invisible, K contains at least
one invisible action, due to I. Otherwise, a1 is visible, and we reason that K is not

79



5 The Inconsistent Labelling Problem

empty (condition D2w) and all enabled actions in r(s0), and thus also all actions in
K, are invisible, due to V. In the remainder, let akey be an invisible key action.

In case π has finite length n, the existence of sn
akey−−→ s′n and s0

akey−−→r s
′
0
a1−→ · · · an−−→

s′n follows from the definition of key actions and D1’, respectively.
If π is infinite, we use a reasoning similar to that of Kőnig’s Lemma [77]. We

can apply the definition of key actions and D1’ successively to obtain a path πi =
s0

akey−−→ s′0
a1−→ · · · ai−→ s′i for every i ≥ 0, with sj

akey−−→ s′j for every 1 ≤ j < i. Since
the reduced state space is finite, infinitely many of these paths must use the same
state as s′0. At most one of them ends at s′0 (the one with i = 0), so infinitely many
continue from s′0. Of them, infinitely many must use the same s′1, again because
the reduced state space is finite. Again, at most one of them is lost because of
ending at s′1. This reasoning can continue without limit, proving the existence of
π′ = s0

akey−−→r s
′
0
a1−→ s′1

a2−→ . . . , with sj
akey−−→ s′j for every j ≥ 0.

Since akey is invisible, we have L(sj) = L(s′j) for every j ≥ 0. This implies

π , π′.

Lemmata 5.10 and 5.11 coincide with branches 1 and 2 of [128, Construction 1],
respectively, but contain the stronger result that π , π′. Thus, when applied in the
proof of [128, Theorem 2] (see also Theorem 5.9), this yields the result that stubborn
sets with condition D1’ preserve stutter-trace equivalence.

Theorem 5.12. Given an LSTS TS and weak/strong stubborn set r, where condition
D1 is replaced by D1’, then the reduced LSTS TS r is stutter-trace equivalent to TS.

We do not reproduce the complete proof here, but provide insight into the applica-
tion of the lemmata with the following example. A complete proof for the setting of
parity games is provided in Chapter 6.

Example 5.13. Consider the path obtained by following a1a2a3 in Figure 5.5. Lem-
mata 5.10 and 5.11 show that a1a2a3 can always be mimicked in the reduced LSTS,
while preserving stutter equivalence. In this case, the path is mimicked by the path
corresponding to akeya2a1a

′
keya3, drawn with dashes. The new path reorders the

actions a1, a2 and a3 according to the construction of Lemma 5.10 and introduces
the key actions akey and a′key according to Lemma 5.11.

We remark that Lemma 5.11 also holds if the reduced LSTS is infinite, but finitely
branching.

5.3.3 Deterministic LSTSs

As already noted in Section 5.2, strong stubborn sets for deterministic systems do
not suffer from the inconsistent labelling problem. The following lemma, which also
appeared as [131, Lemma 4.2], shows why.

Lemma 5.14. For deterministic LSTSs, conditions D1 and D2 together imply D1’.
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a1

a2

a3

akey

a′key

Figure 5.5: Example of how the trace a1, a2, a3 can be mimicked by introducing
additional actions and moving a2 to the front (dashed trace). Transitions that are
drawn in parallel have the same label.

Proof. Let TS be a deterministic LSTS, π = s0
a1−→ s1

a2−→ · · · an−−→ sn
a−→ s′n a

path in TS and r a reduction function that satisfies D1 and D2. Furthermore,
assume that a ∈ r(s0) and a1 /∈ r(s0), . . . , an /∈ r(s0). By applying D1, we obtain
the path π′ = s0

a−→ s′0
a1−→ · · · an−−→ s′n, which satisfies the first part of condition

D1’. With D2, we have si
a−→ sii for every 1 ≤ i ≤ n. Then, we can also apply

D1 to every path s0
a1−→ · · · ai−→ si

a−→ sii to obtain, for all 1 ≤ i ≤ n, paths
πi = s0

a−→ si0
a1−→ si1

a2−→ · · · ai−→ sii. Since TS is deterministic, every path πi must
coincide with a prefix of π′. We conclude that sii = s′i and so the requirement that
si

a−→ s′i for every 1 ≤ i ≤ n is also satisfied.

5.4 Safe Logics

In this section, we will identify two logics, viz. reachability and CTL−X , which are
not affected by the inconsistent labelling problem. This is either due to their limited
expressivity or the extra POR conditions that are required.

5.4.1 Reachability properties

Although the counter-example of Section 5.2 shows that stutter-trace equivalence is
in general not preserved by stubborn sets, some fragments of LTL−X are preserved.
One such class of properties is reachability properties, which are of the shape �f or
3f , where f is a formula not containing temporal operators.

Theorem 5.15. Let TS be an LSTS, r a reduction function that satisfies either
D0, D1, D2, V and L or D1, D2w, V and L and TS r the reduced LSTS. For all
possible labellings l ⊆ AP, TS contains a path to a state s such that L(s) = l iff TS r
contains a path to a state s′ such that L(s′) = l.

Proof. The ‘if’ case is trivial, since TS r is a subgraph of TS . For the ‘only if’ case,
we reason as follows. Let TS = (S,→, ŝ, L) be an LSTS and π = s0

a1−→ · · · an−−→ sn
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a path such that s0 = ŝ. We mimic this path by repeatedly taking some enabled
action a that is in the stubborn set, according to the following schema. Below, we
assume the path to be mimicked contains at least one visible action. Otherwise, its
first state would have the same labelling as sn.

1. If there is an i such that ai ∈ r(s0), we consider the smallest such i, i.e., a1 /∈
r(s0), . . . , ai−1 /∈ r(s0). Then, we can shift ai forward by D1, move towards sn
along s0

ai−→ s′0 and continue by mimicking s′0
a1−→ · · · ai−1−−−→ si

ai+1−−−→ · · · an−−→ sn.

2. If all of a1 /∈ r(s0), . . . , an /∈ r(s0), then, by D0 and D2 or by D2w, there is a
key action akey in s0. By the definition of key actions and D1, akey leads to a
state s′0 from which we can continue mimicking the path s′0

a1−→ s′1
a2−→ · · · an−−→

s′n. Note that L(sn) = L(s′n), since akey is invisible by condition V.

The second case cannot be repeated infinitely often, due to condition L. Hence, after
a finite number of steps, we reach a state s′n with L(s′n) = L(sn).

We remark that more efficient mechanisms for reachability checking under POR
have been proposed, such as condition S [132], which can replace L, or conditions
based on up-sets [121]. Another observation is that model checking of LTL−X
properties can be reduced to reachability checking by computing the cross-product
of a Büchi automaton and an LSTS [9], in the process resolving the inconsistent
labelling problem. Peled [112] shows how this approach can be combined with POR,
but please note the correctness issues detailed in [122].

5.4.2 Deterministic LSTSs and CTL−X Model Checking

In this section, we consider the inconsistent labelling problem in the setting of CTL−X
model checking. When applying stubborn sets in that context, stronger conditions are
required to preserve the branching structure that CTL−X reasons about. Namely, the
original LSTS must be deterministic and one more condition needs to be added [50]:

C4 Either r(s) = Act or r(s) ∩ enabled(s) = {a} for some a ∈ Act .

We slightly changed its original formulation to match the setting of stubborn sets. A
weaker condition, called Ä8, which does not require determinism of the whole LSTS
is proposed in [130]. With C4, strong and weak stubborn sets collapse, as shown by
the following lemma.

Lemma 5.16. Conditions D2w and C4 together imply D0 and D2.

Proof. Let TS be an LSTS, s a state and r a reduction function that satisfies D2w
and C4. Condition D0 is trivially implied by C4. Using C4, we distinguish two
cases: either r(s) contains precisely one enabled action a, or r(s) = Act . In the
former case, this single action a must be a key action, according to D2w. Hence, D2,
which requires that all enabled actions in r(s) are key actions, is satisfied. Otherwise,
if r(s) = Act , we consider an arbitrary action a that satisfies D2’s precondition that
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s a−→. Given a path s a1...an−−−−→, the condition that a1 /∈ r(s), . . . , an /∈ r(s) only holds
if n = 0. We conclude that D2’s condition s a1...ana−−−−−→ is satisfied by the assumption
s a−→.

It follows from Lemmata 5.14 and 5.16 and Theorem 5.12 that CTL−X model
checking of deterministic systems with stubborn sets does not suffer from the in-
consistent labelling problem. The same holds for condition Ä8, as already shown
in [130].

5.5 Petri Nets

In this section, we discuss the impact of the inconsistent labelling problem on Petri
nets. Petri nets are a widely-known formalism for modelling concurrent processes and
have seen frequent use in the application of stubborn-set theory [20, 91, 132, 133].
A Petri net contains a set of places P and a set of structural transitions T . Arcs
between places and structural transitions are weighted according to a total function
W : (P × T ) ∪ (T × P ) → N. The state space of the underlying LSTS is the set
M of all markings; a marking m is a function P → N, which assigns a number of
tokens to each place. The LSTS contains a transition m t−→ m′ iff m(p) ≥ W (p, t)
and m′(p) = m(p) −W (p, t) + W (t, p) for all places p ∈ P . As before, we assume
that the LSTS contains some labelling function L :M→ 2AP . More details on the
labels are given below. In this section, markings and structural transitions take over
the role of states and actions respectively. The set of markings reachable under →
from some initial marking m̂ is denoted Mreach . Note that the LSTS of a Petri Net
is deterministic. We want to stress that all the theory in this section is specific for
the semantics defined above.

Example 5.17. Consider the Petri net with initial marking m̂ on left of Figure 5.6.
Here, all arcs are weighted 1, except for the arc from p5 to t3, which is weighted 2.
Its LSTS is infinite, but the substructure reachable from m̂ is depicted on the right.
The number of tokens in each of the places p1, . . . , p6 is inscribed in the nodes, the
state labels (if any) are written beside the nodes.

The LSTS practically coincides with the counter-example of Section 5.2. Only the
self-loops are missing and the state labelling, with atomic propositions q, qp and ql,
differs slightly; the latter will be explained later. For now, note that t and tkey are
invisible and that the trace ∅{qp}∅∅{q}, which occurs when firing transitions t1t2tt3
from m̂, can be lost when reducing with weak stubborn sets.

In the remainder of this section, we fix a Petri net (P, T,W, m̂) and its LSTS
(M,→, m̂, L). Below, we consider three different types of atomic propositions. Firstly,
polynomial propositions [20] are of the shape f(p1, . . . , pn) ./ k where f is a polyno-
mial over p1, . . . , pn, ./∈ {<,≤, >,≥,=, 6=} and k ∈ Z. Such a proposition holds in
a marking m iff f(m(p1), . . . ,m(pn)) ./ k. A linear proposition [91] is similar, but
the function f over places must be linear and f(0, . . . , 0) = 0, i.e., linear propositions
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Figure 5.6: Example of a Petri net whose LSTS suffers from the inconsistent labelling
problem.

are of the shape k1p1 + · · · + knpn ./ k, where k1, . . . , kn, k ∈ Z. Finally, we have
arbitrary propositions [133], whose shape is not restricted and which can hold in any
given set of markings.

Several other types of atomic propositions can be encoded as polynomial proposi-
tions. For example, fireable(t) [20, 91], which holds in a marking m iff t is enabled in

m, can be encoded as
∏
p∈P

∏W (p,t)−1
i=0 (p− i) ≥ 1. The proposition deadlock , which

holds in markings where no structural transition is enabled, does not require special
treatment in the context of POR, since it is already preserved by D1 and D2w.
The sets containing all linear and polynomial propositions are henceforward called
AP l and APp, respectively. The corresponding labelling functions are defined as
Ll(m) = L(m) ∩AP l and Lp(m) = L(m) ∩APp for all markings m. Below, the two
stutter equivalences ,Ll and ,Lp that follow from the new labelling functions are

abbreviated ,l and ,p, respectively. Note that AP ⊇ APp ⊇ AP l and ,⊆,p⊆,l.
For the purpose of introducing several variants of invisibility, we reformulate and

generalise the definition of invisibility from Section 5.1. Given an atomic proposition
q ∈ AP , a relation R ⊆ M×M is q-invisible if and only if (m,m′) ∈ R implies
q ∈ L(m) ⇔ q ∈ L(m′). We consider a structural transition t q-invisible iff its
corresponding relation {(m,m′) | m t−→ m′} is q-invisible. Invisibility is also lifted
to sets of atomic propositions: given a set AP ′ ⊆ AP , relation R is AP ′-invisible
iff it is q-invisible for all q ∈ AP ′. If R is AP -invisible, we plainly say that R is
invisible. AP ′-invisibility and invisibility carry over to structural transitions. We
sometimes refer to invisibility as ordinary invisibility for emphasis. Note that the set
of invisible structural transitions I is no longer an under-approximation, but contains
exactly those structural transitions t for which m t−→ m′ implies L(m) = L(m′) (cf.
Section 5.1).

We are now ready to introduce three orthogonal variations on invisibility.

Definition 5.18. Let R ⊆M×M be a relation on markings. Then,
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Figure 5.7: Lattice of sets of invisible actions. Arrows represent a subset relation.

• R is reach q-invisible [132] iff R∩ (Mreach ×Mreach) is q-invisible; and

• R is value q-invisible iff

– q = (f(p1, . . . , pn) ./ k) is polynomial and for all (m,m′) ∈ R, we have
that f(m(p1), . . . ,m(pn)) = f(m′(p1), . . . ,m′(pn)); or

– q is not polynomial and R is q-invisible.

Intuitively, under reach q-invisibility, all pairs of reachable markings (m,m′) ∈ R
have to agree on the labelling of q. For value invisibility, the value of the polynomial
f must never change between two markings (m,m′) ∈ R. Reach and value invisibility
are lifted to structural transitions and sets of atomic propositions as before, i.e., by
taking R = {(m,m′) | m t−→ m′} when considering invisibility of t.

Definition 5.19. A structural transition t is strongly q-invisible iff the set {(m,m′) |
∀p ∈ P : m′(p) = m(p) +W (t, p)−W (p, t)} is q-invisible.

Strong invisibility does not take the presence of a transition m t−→ m′ into account,
and purely reasons about the effects of t. Value invisibility and strong invisibility
are new in the current work, although strong invisibility was inspired by the notion
of invisibility that is proposed by Varpaaniemi in [133]. Our definition of strong
invisibility weakens the conditions of Varpaaniemi.

We indicate the sets of all value, reach and strongly invisible structural transitions
with Iv, Ir and Is respectively. Since Iv ⊆ I, Is ⊆ I and I ⊆ Ir, the set of all their
possible combinations forms the lattice shown in Figure 5.7. In the remainder, the
weak equivalence relations that follow from each of the eight invisibility notions are
abbreviated, e.g., ∼Irsv becomes ∼rsv.

Example 5.20. Consider again the Petri net and LSTS from Example 5.17. We can
define ql and qp as linear and polynomial propositions, respectively:

• ql := p3 + p4 + p6 = 0 is a linear proposition, which holds when neither p3,
p4 nor p6 contains a token. Structural transition t is ql-invisible, because
m t−→ m′ implies that m(p3) = m′(p3) ≥ 1, and thus neither m nor m is
labelled with ql. On the other hand, t is not value ql-invisible (by the transition
101100 t−→ 101010) or strongly reach ql-invisible (by 010100 and 010010).
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∼s ∼v

∼∼rs ∼rv

∼r

∼rsv

∼sv ,

,p

,l

Theorem 5.25

Theorem 5.24

Theorem 5.22

Figure 5.8: Two lattices containing variations of weak equivalence and stutter
equivalence, respectively. Solid arrows indicate a subset relation inside the lattice;
dotted arrows follow from the indicated theorems and show when the LSTS of a Petri
net is labelled consistently.

However, tkey is strongly value ql-invisible: it moves a token from p4 to p6 and
hence never changes the value of p3 + p4 + p6.

• qp := (1 − p3)(1 − p5) = 1 is a polynomial proposition, which holds in all
reachable markings m where m(p3) = m(p5) = 0 or m(p3) = m(p5) = 2.
Structural transition t is reach value qp-invisible, but not qp-invisible (by
002120 t−→ 002030) or strongly reach qp invisible. Strong value qp-invisibility of
tkey follows immediately from the fact that the adjacent places of tkey, viz. p4

and p6, do not occur in the definition of qp.

This yields the state labelling which is shown in Example 5.17.

Given a weak equivalence relation R∼ and a stutter equivalence relation R,, we
write R∼ � R, to indicate that R∼ and R, yield consistent labelling. We spend the
rest of this section investigating under which notions of invisibility and propositions
from the literature, the LSTS of a Petri net is labelled consistently. More formally, we
check for each weak equivalence relation R∼ and each stutter equivalence relation R,
whether R∼ � R,. This tells us when existing stubborn set theory can be applied
without problems. The two lattices containing all weak and stuttering equivalence
relations are depicted in Figure 5.8; each dotted arrow represents a consistent labelling
result. Before we continue, we first introduce an auxiliary lemma.

Lemma 5.21. Let I be a set of invisible structural transitions and L some labelling
function. If for all t ∈ I and paths π = m0

t1−→ m1
t2−→ . . . and π′ = m0

t−→ m′0
t1−→

m′1
t2−→ . . . , it holds that π ,L π

′, then ∼I �,L.

Proof. We assume that the following holds for all paths and t ∈ I:

m0
t1−→ m1

t2−→ · · · ,L m0
t−→ m′0

t1−→ m′1
t2−→ . . . (†)

We consider two initial paths π and π′ such that π ∼I π′ and prove that π ,L π
′.

The proof proceeds by induction on the combined number of invisible structural
transitions (taken from I) in π and π′. In the base case, π and π′ contain only visible
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structural transitions, and π ∼I π’ implies π = π′ since Petri nets are deterministic.
Hence, π ,L π

′.
For the induction step, we take as hypothesis that, for all initial paths π and π′ that

together contain at most k invisible structural transitions, π ∼I π′ implies π ,L π
′.

Let π and π′ be two arbitrary initial paths such that π ∼I π′ and the total number of
invisible structural transitions contained in π and π′ is k. We consider the case where
an invisible structural transition is introduced in π′, the other case is symmetric. Let
π′ = σ1σ2 for some σ1 and σ2. Let t ∈ I be some invisible structural transition and
π′′ = σ1tσ

′
2 such that σ2 and σ′2 contain the same sequence of structural transitions.

Clearly, we have π′ ∼I π′′. Here, we can apply our original assumption (†), to
conclude that σ2 , tσ′2, i.e., the extra stuttering step t thus does not affect the
labelling of the remainder of π′′. Hence, we have π′ ,L π

′′ and, with the induction
hypothesis, π ,L π

′′. Note that π and π′′ together contain k + 1 invisible structural
transitions.

In case π and π′ together contain an infinite number of invisible structural transi-
tions, π ∼I π′ implies π ,L π

′ follows from the fact that the same holds for all finite
prefixes of π and π′ that are related by ∼I .

The following theorems each focus on a class of atomic propositions and show which
notion of invisibility is required for the LSTS of a Petri net to be labelled consistently.
In the proofs, we use a function dt, defined as dt(p) = W (t, p)−W (p, t) for all places
p, which indicates how structural transition t changes the state. Furthermore, we
also consider functions of type P → N as vectors of type N|P |. This allows us to
compute the pairwise addition of a marking m with dt (m+ dt) and to indicate that
t does not change the marking (dt = 0).

Theorem 5.22. Under reach value invisibility, the LSTS underlying a Petri net is
labelled consistently for linear propositions, i.e., ∼rv �,l.

Proof. Let t ∈ Irv be a reach value invisible structural transition such that there exist
reachable markings m and m′ with m t−→ m′. If such a t does not exist, then ∼rv is the
reflexive relation and ∼rv �,l is trivially satisfied. Otherwise, let q := f(p1, . . . , pn) ./
k be a linear proposition. Since t is reach value invisible and f is linear, we have
f(m) = f(m′) = f(m+ dt) = f(m) + f(dt) and thus f(dt) = 0. It follows that, given
two paths π = m0

t1−→ m1
t2−→ . . . and π′ = m0

t−→ m′0
t1−→ m′1

t2−→ . . . , the addition of
t does not influence f , since f(mi) = f(mi) + f(dt) = f(mi + dt) = f(m′i) for all i.
As a consequence, t also does not influence q. With Lemma 5.21, we deduce that
∼rv �,l.

Whereas in the linear case one can easily conclude that π and π′ are stutter
equivalent under f , in the polynomial case, we need to show that f is constant under
all value invisible structural transitions t, even in markings where t is not enabled.
This follows from the following proposition.

Proposition 5.23. Let f : Nn → Z be a polynomial function, a, b ∈ Nn two constant
vectors and c = a − b the difference between a and b. Assume that for all x ∈ Nn
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such that x ≥ b, where ≥ denotes pointwise comparison, it holds that f(x) = f(x+ c).
Then, f is constant in the vector c, i.e., f(x) = f(x+ c) for all x ∈ Nn.

Proof. Let f , a, b and c be as above and let 1 ∈ Nn be the vector containing only ones.
Given some arbitrary x ∈ Nn, consider the function gx(t) = f(x+t ·1+c)−f(x+t ·1).
For sufficiently large t, it holds that x+ t · 1 ≥ b, and it follows that gx(t) = 0 for
all sufficiently large t. This can only be the case if gx is the zero polynomial, i.e.,
gx(t) = 0 for all t. As a special case, we conclude that gx(0) = f(x+c)−f(x) = 0.

The intuition behind this is that f(x + c) − f(x) behaves like the directional
derivative of f with respect to c. If the derivative is equal to zero in infinitely many
x, f must be constant in the direction of c. We will apply this result in the following
theorem.

Theorem 5.24. Under value invisibility, the LSTS underlying a Petri net is labelled
consistently for polynomial propositions, i.e., ∼v �,p.

Proof. Let t ∈ Iv be a value invisible structural transition, m and m′ two markings
with m t−→ m′, and q := f(p1, . . . , pn) ./ k a polynomial proposition. Note that
infinitely many such (not necessarily reachable) markings exist in M, so we can
apply Proposition 5.23 to obtain f(m) = f(m+ dt) for all markings m. It follows
that, given two paths π = m0

t1−→ m1
t2−→ . . . and π′ = m0

t−→ m′0
t1−→ m′1

t2−→ . . . , the
addition of t does not alter the value of f , since f(mi) = f(mi + dt) = f(m′i) for
all i. As a consequence, t also does not change the labelling of q. Application of
Lemma 5.21 yields ∼v �,p.

Varpaaniemi shows that the LSTS of a Petri net is labelled consistently for arbitrary
propositions under his notion of invisibility [133, Lemma 9]. Our notion of strong
visibility, and especially strong reach invisibility, is weaker than Varpaaniemi’s
invisibility, so we generalise the result to ∼rs�,.

Theorem 5.25. Under strong reach visibility, the LSTS underlying a Petri net is
labelled consistently for arbitrary propositions, i.e., ∼rs�,.

Proof. Let t ∈ Irs be a strongly reach invisible structural transition and π = m0
t1−→

m1
t2−→ . . . and π′ = m0

t−→ m′0
t1−→ m′1

t2−→ . . . two paths. Since, m′i = mi + dt for all
i, it holds that either (i) dt = 0 and mi = m′i for all i; or (ii) each pair (mi,m

′
i) is

contained in {(m,m′) | ∀p ∈ P : m′(p) = m(p) +W (t, p)−W (p, t)}, which is the set
that underlies strong reach invisibility of t. In both cases, L(mi) = L(m′i) for all i.
It follows from Lemma 5.21 that ∼rs�,.

To show that the results of the above theorems cannot be strengthened, we provide
two negative results.

Theorem 5.26. Under ordinary invisibility, the LSTS underlying a Petri net is not
necessarily labelled consistently for arbitrary propositions, i.e., ∼ 6�,.

88



5.6 Related Work

Proof. Consider the Petri net from Example 5.17 with the arbitrary proposition ql.
Disregard qp for the moment. Structural transition t is ql-invisible, hence the paths
corresponding to t1t2tt3 and tt1t2t3 are weakly equivalent under ordinary invisibility.
However, they are not stutter equivalent.

Theorem 5.27. Under reach value invisibility, the LSTS underlying a Petri net is
not necessarily labelled consistently for polynomial propositions, i.e., ∼rv 6�,p.

Proof. Consider the Petri net from Example 5.17 with the polynomial proposition
qp := (1 − p3)(1 − p5) = 1 from Example 5.20. Disregard ql in this reasoning.
Structural transition t is reach value qp-invisible, hence the paths corresponding to
t1t2tt3 and tt1t2t3 are weakly equivalent under reach value invisibility. However, they
are not stutter equivalent for polynomial propositions.

It follows from Theorems 5.26 and 5.27 and transitivity of ⊆ that Theorems 5.22,
5.24 and 5.25 cannot be strengthened further. In terms of Figure 5.8, this means that
the dotted arrows cannot be moved downward in the lattice of weak equivalences and
cannot be moved upward in the lattice of stutter equivalences. The implications of
these findings on related work will be discussed in the next section.

5.6 Related Work

There are many works in the literature that apply stubborn sets. We will consider
several works that aim to preserve LTL−X and discuss whether they are correct when
it comes to the inconsistent labelling problem. Furthermore, we also identify several
unrelated issues.

Liebke and Wolf [91] present an approach for efficient CTL model checking on
Petri nets. For some formulas, they can reduce CTL model checking to LTL model
checking, which allows greater reductions under POR. They rely on the incorrect
LTL preservation theorem, and since they apply the techniques on Petri nets with
ordinary invisibility, their theory is incorrect (Theorem 5.26). Similarly, the overview
of stubborn set theory presented by Valmari and Hansen in [132] applies reach
invisibility and does not necessarily preserve LTL−X . Varpaaniemi [133] also applies
stubborn sets to Petri nets, but relies on a visibility notion that is stronger than strong
invisibility. The correctness of these results is thus not affected (Theorem 5.25).

A generic implementation of weak stubborn sets is proposed by Laarman et al. [85].
They use abstract concepts such as guards and transition groups to implement
POR in a way that is agnostic of the input language. The theory they present
includes condition D1, which is too weak and thus incorrect, but the accompanying
implementation follows the framework of Section 5.3.1, and thus it is correct by
Theorem 5.12. The implementations proposed in [132, 139] are similar, albeit specific
for Petri nets.
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{q}τ
a

a

(a)

b

a

a

b

(b)

Figure 5.9: Counter-examples for theories in two related works.

Others [51, 62] perform action-based model checking and thus strive to preserve
weak trace equivalence or inclusion. As such, they do not suffer from the problems
discussed here, which applies only to state labels.

Although Beneš et al. [14, 15] rely on ample sets, and not on stubborn sets, they also
discuss weak trace equivalence and stutter-trace equivalence. In fact, they present an
equivalence relation for traces that is a combination of weak and stutter equivalence.
The paper includes a theorem that weak equivalence implies their new state/event
equivalence [14, Theorem 6.5]. However, the counter-example in Figure 5.9a shows
that this consistent labelling theorem does not hold. Here, the action τ is invisible,
and the two paths in this transition system are thus weakly equivalent. However,
they are not stutter equivalent, which is a special case of state/event equivalence.
Although the main POR correctness result [14, Corollary 6.6] builds on the incorrect
consistent labelling theorem, its correctness does not appear to be affected. An
alternative proof can be constructed based on Lemmas 5.10 and 5.11.

Bønneland et al. [20] apply stubborn-set based POR to two-player Petri nets, and
their reachability semantics expressed as a reachability game. Since their approach
only concerns reachability, it is not affected by the inconsistent labelling problem
(see Section 5.4). Unfortunately, their POR theory is nevertheless unsound, contrary
to what is claimed in [20, Theorem 17]. In reachability games, player 1 tries to reach
one of the goal states, while player 2 tries to avoid them. Bønneland et al. propose a
condition R that guarantees that all goal states in the full game are also reachable in
the reduced game. However, the reverse is not guaranteed: paths that do not contain
a goal state are not necessarily preserved, essentially endowing player 1 with more
power. Consider the (solitaire) reachability game depicted in Figure 5.9b, in which
all edges belong to player 2 and the only goal state is indicated with grey. Player 2
wins the non-reduced game by avoiding the goal state via the edges labelled with a
and then b. However, {b} is a stubborn set—according to the conditions of [20]—in
the initial state, and the dashed transitions are thus eliminated in the reduced game.
Hence, player 2 is forced to move the token to the goal state and player 1 wins in
the reduced game. In the mean time, the authors of [20] confirmed and resolved the
issue in [21].

The current work is not the first to point out mistakes in POR theory. In [122],
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Siegel presents a flaw in an algorithm that combines POR and on-the-fly model
checking [112]. In that setting, POR is applied on the product of an LSTS and a
Büchi automaton. We briefly sketch the issue here. Let q be a state of the LSTS and
s a state of the Büchi automaton. While investigating a transition (q, s) a−→ (q′, s′),
condition C3, which—like condition L—aims to solve the action ignoring problem,
incorrectly sets r(q, s′) = enabled(q) instead of r(q, s) = enabled(q).

5.7 Conclusion

We discussed the inconsistent labelling problem for preservation of stutter-trace
equivalence with stubborn sets. The issue is relatively easy to repair by strengthening
condition D1. For Petri nets, altering the definition of invisibility can also resolve
inconsistent labelling depending on the type of atomic propositions. The impact on
applications presented in related works seems to be limited: the problem is typically
mitigated in the implementation, since it is very hard to compute D1 exactly. This
is also a possible explanation for why the inconsistent labelling problem has not been
noticed for so many years.

Since this is not the first error found in POR theory [122], a more rigorous approach
to proving its correctness, e.g. using proof assistants, would provide more confidence.
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As we have seen in the previous chapter, partial-order reduction (POR) is a popular
technique for combating the state explosion problem. However, a major drawback of
POR is that most variants at best preserve only a fragment of a given logic, such as
LTL or CTL* without the next operator (LTL−X/CTL∗−X) [50] or the weak modal
µ-calculus [119]. Furthermore, the variants of POR that preserve a branching time
logic impose significant restrictions on the reduction by only allowing the prioritisation
of exactly one action at a time. This decreases the amount of reduction achieved.

In this chapter, we address these shortcomings by applying POR to parity games.
In the context of model checking, parity games suffer from the same state-space
explosion that labelled transition systems do. Exploring the state space of a parity
game under POR can be a very effective way to address this. We extend the definition
of a parity game to include edge labels, such that it can be interpreted as an LSTS
(Definition 5.1). This allows us to use the conditions from Chapter 5, which ensure
that the reduction function used to reduce the parity game is correct, i.e., preserves
the winning player of the parity game (Theorem 6.8). Furthermore, we identify
improvements for the reduction by investigating the typical structure of a parity
game that encodes a model checking question. Our POR technique can be used
to speed up the solving of PBESs, which are a high-level representation of parity
games (see Chapter 3). We thus address the open question of how to apply POR
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to PBESs [73, 114, 115, 138]. Since PBESs induce labelled parity games that are
not necessarily deterministic, we extend the implementation framework of [85] with
support for non-determinism. The ideas are implemented in an experimental tool
that solves PBESs.

Our approach has two distinct benefits over traditional POR techniques that
operate on transition systems. First, it is the first work that enables the use of
partial-order reduction for model checking of the full modal µ-calculus. Second, the
conditions that we propose are strictly weaker than those necessary to preserve the
branching structure of a transition system used in other approaches to POR for
branching time logics [50, 119], increasing the effectiveness of POR.

The experiments with our implementation for solving PBESs are quite promising,
although the symbolic reasoning required for static analysis can be a limiting factor
(see also Section 4.6). Our results show that, in particular, those instances in which
PBESs encode model checking problems involving large state spaces benefit from the
use of partial-order reduction. In such cases, a significant size reduction is possible,
even when checking complex µ-calculus formulae, and the time penalty of conducting
the static analysis is more than made up for by the speed-up in the state space
exploration phase.

Outline We start by exploring some related work in Section 6.1. In Section 6.2
we introduce partial-order reduction for parity games, and we proposes a further
improvement in Section 6.2.3. Section 6.3 describes how to effectively implement
parity-game based POR for PBESs. We present the results of our experiments of
using parity-game based POR for PBESs in Section 6.4. We conclude in Section 6.5.

6.1 Related Work

There are several proposals for using partial-order reduction for branching-time logics.
Groote and Sellink [57] define several forms of confluence reduction and prove which
behavioural equivalences (and by extension, which fragments of logics) are preserved.
In confluence reduction, one tries to identify internal transitions that can safely be
prioritised, leading to a smaller state space. Ramakrishna and Smolka [119] propose
a notion that coincides with strong confluence from [57], preserving weak bisimilarity
and the corresponding logic, the weak modal µ-calculus.

Similar ideas are presented by Gerth et al. in [50]. Their approach is based on the
ample set method [111] and preserves a relation they call visible bisimulation and
the associated logic CTL−X . To preserve the branching structure, they introduce a
singleton proviso which, contrary to our theory, can greatly impair the amount of
reduction that can be achieved (see our Example 6.4, page 98).

Peled [112] applies POR on the product of a transition system and a Büchi
automaton, which represents an LTL−X property. The resulting product automaton
thus encodes both the transition system and the property, in a way similar to parity
games, resulting in a POR approach that is similar to ours. It is important to
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note, though, that this original theory is not sound, as discussed in [122]. Kan et
al. [71] improve on Peled’s ideas and manage to preserve all of LTL. To achieve this,
they analyse the Büchi automaton that corresponds to the LTL formula to identify
which part is stutter insensitive. With this information, they can reduce the state
space in the appropriate places and preserve the validity of the LTL formula under
consideration.

The work of Bønneland et al. [20, 21] is close to ours in spirit: they apply POR to
reachability games. Such games can be used for synthesis and for model checking
reachability properties. However, the theory presented in [20] is not sound, see
Section 5.6.

6.2 Labelled Parity Games

To (partially) resolve the state explosion problem for parity games that encode model
checking problems, we apply the partial-order reduction theory from Chapter 5. As we
have seen, POR relies on edge labels, here referred to as events and typically denoted
with the letter j, to categorise the set of edges in a graph and determine independence
of edges. In a typical application of POR, such events and edge labellings are deduced
from a high-level syntactic description of the graph structure (see also Section 6.3).
For now, we tacitly assume the existence of a set of events and edge labellings for
parity games and refer to the resulting structures as labelled parity games.

Definition 6.1. A labelled parity game is a triple L = (G,S, `), where G =
(V,E,Ω,P) is a total parity game, S is a non-empty set of events and ` : S → 2E is
an edge labelling.

Although we assume here that labelled parity games have a total transition relation,
the theory we present can also be applied to parity games that are not total. After
all, the stubborn set conditions we use preserve deadlocks. To enable the application
of the theory of Chapter 5, we show how a labelled parity game can be interpreted
as an LSTS (Definition 5.1).

Definition 6.2. Let L = (G,S, `), with G = (V,E,Ω,P), be a labelled parity game
and ŝ ∈ V some node. Then the corresponding LSTS is TS = (V,→, ŝ, L), where:

• → = {(s, a, t) | a ∈ S, (s, t) ∈ `(a)}; and

• L(s) = {(Ω(s),P(s))} for all s ∈ V .

As a result, we automatically obtain the notions of invisible events, stutter equiva-
lence for paths in a parity game, a reduction function for labelled parity games, a
reduced labelled parity game, key events (the counterpart of key actions) and (weak)
stubborn sets for labelled parity games. However, the improved conditions D1’,
D2w, V, I and L are not sufficient for preserving the winning player in a labelled
parity game. This was noted by Antti Valmari. To avoid situations where, in the
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reduced game, one player is forced to move the token to a node belonging to the
other player, we need to introduce another condition:

P If there is an event j ∈ r(s) and a node t such that s
j−→ t and P(s) 6= P(t), then

r(s) = S.

We remark that the above condition was not present in the conference paper that
corresponds to this chapter [105] and its correctness theorem (Theorem 1) does not
hold.

The remainder of this chapter focusses on weak stubborn sets for labelled parity
games, based on the conditions D1’, D2w, V, I, L and P. We show that these are
sufficient and, to some extent, necessary conditions for preserving the winning player
between the full game and the reduced game.

6.2.1 Necessity of Conditions

First of all, note that totality of the transition relation is preserved by condition
D2w. We use the example below to further illustrate the purpose of—and need
for—conditions V, I and L. In particular, the example illustrates that the winning
player in the original game and the reduced game might be different if one of these
conditions is not satisfied.

Example 6.3. First, see the parity games of Figure 6.1. These four games show a
reduced game under a reduction function satisfying D1’ and D2w but not I, L, V or
P, respectively. In each case, we start exploration from the node called ŝ, using the
reduction function to follow the solid edges; consequently, the winning strategy for
player 3 in the original game (highlighted in grey in the figures) is lost. The example
in Figure 6.1d, showing the necessity of condition P, is due to Antti Valmari.

Now consider the parity game of Figure 6.2, which is inspired by an example from
Valmari and Hansen [132]. Here, the condition L is replaced by a weaker condition
which states that for all visible events j, every strongly connected component (SCC)
in the reduced game must contain a node s such that j ∈ r(s). This condition is
often called S in the literature. Remark that the two leftmost nodes form an SCC
and we have j1 ∈ r(ŝ), thus satisfying S. However, the cycle consisting of only the
bottom-left node does not satisfy condition L.

Note that the games in Figures 6.1a, 6.1b, 6.1c and 6.2 are from a subclass of parity
games called weak solitaire, illustrating the need for the identified conditions even in
restricted settings. A game is solitaire iff at most one player can make non-trivial
choices. A game is weak iff the priorities along all its paths are non-decreasing, i.e.,
if s→ t then Ω(s) ≤ Ω(t). The game in Figure 6.1d is weak, but not solitaire. Weak
solitaire games can encode the model checking of safety properties, solitaire games
can capture logics such as LTL and ∀CTL∗ [60] (the universal fragment of CTL∗)
and weak games can be used to check CTL properties.

To show that we must use the strengthened condition D1’ and cannot rely on the
original condition D1, we revisit the inconsistent labelling problem of Chapter 5 and
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Figure 6.1: Three games showing that none of the conditions V, I, L or P can be
dropped.
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D1’, D2w, V, I, S, P

Figure 6.2: A parity game that shows condition L cannot be weakened to reason
about strongly connected components instead of cycles.
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Figure 6.3: A parity game that illustrates the inconsistent labelling problem also
occurs in parity games. The winning strategy for player 3 (highlighted in grey) is
lost in the reduced game.

illustrate that it also occurs in the setting of parity games. Consider the parity game
in Figure 6.3. Player 3 wins this game, by moving the token along the edges labelled
with j1j2jj3 (highlighted in grey). In the node ŝ, the conditions D1, D2w, V, I, L
and P allow r(ŝ) = {j, jkey}. Then, the winning strategy for player 3 is lost in the
reduced game.

Before we argue for the correctness of our POR approach in the next section, we
shortly demonstrate how our approach improves over existing methods for branching
time logics. The conditions C1-C3 of Gerth et al. [50] preserve LTL−X and are
similar in spirit to our conditions. However, to preserve the branching structure,
needed for preservation of CTL−X , the following singleton proviso is introduced:

C4 Either enabledG(s) ⊆ r(s) or |r(s)| = 1.

This extra condition can severely impact the amount of reduction achieved; see the
following example.

Example 6.4. Consider the two transition systems below, where n ≥ 1 is some large
natural number.

. . .
a1

a′1

an

a′n

. . .
b1

b′1

bn

b′n

The cross product of these transition systems contains (n+ 1)2 states. In the initial
state ŝ, neither r(ŝ) = {a1, a

′
1} nor r(ŝ) = {b1, b′1} is a valid stubborn set, due

to C4. However, the labelled parity game constructed using these processes and
the µ-calculus formula νX.([>]X ∧ µY.(〈>〉Y ∨ 〈an〉true)), has a very similar shape
that can be reduced by prioritising transitions that correspond to bi or b′i for some
1 ≤ i ≤ n. Note that this formula cannot be represented in LTL; condition C4 is
therefore essential for the correctness.
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6.2 Labelled Parity Games

While several optimisations for CTL−X model checking under POR are proposed
in [91], unlike our approach, those optimisations only work for certain classes of
CTL−X formulas and not in general.

6.2.2 Correctness

Condition D2w suffices, as we already argued, to preserve totality of the transition
relation of the reduced labelled parity game. Hence, we are left to argue that the
reduced game preserves and reflects the winner of the nodes of the original game;
this is formally claimed in Theorem 6.8. We do so by constructing a strategy in the
reduced game that mimics the winning strategy in the original game. The plays that
are consistent with these two strategies are then shown to be stutter equivalent, which
suffices to preserve the winner [49]. The example below shows that we cannot simply
interpret the parity game as an LSTS and apply Theorem 5.12, since stutter-trace
equivalence on the LSTS is weaker than winner equivalence on the labelled parity
game.

Example 6.5. Consider the two parity games in Figure 6.4. Observe that the node ŝ
is won by player � in the left game, but player 3 wins ŝ′ in the right game.

Now interpret the same games as LSTSs (disregarding the absence of actions). From
the node ŝ in the left LSTS, we can perform the traces (0,3)(0,�)(0,�)ω and (0,3)
(0,�)(1,�)ω. Node ŝ′ on the right has exactly the same traces, so the LSTSs are
stutter trace equivalent.

0ŝ 0

0

1

0ŝ′

0

0

0

1

Figure 6.4: Two parity games with a different winner that are stutter-trace equivalent
when interpreted as an LSTS.

We introduce a couple of auxiliary lemmata, required for our main correctness
theorem. Fix a labelled parity game L = (G,S, `), a node ŝ, a weak stubborn set
r and the reduced labelled parity game Lr = (Gr,S, `r) induced by r and ŝ. We
assume r and ŝ are such that Gr has a finite state space.

Lemma 6.6. All infinite stutter equivalent paths have the same winner.

Proof. Since both paths have the same set of priorities that occur infinitely often,
they also have the same winner.

The proof of correctness, viz., Theorem 6.8, uses the alternative paths described
by Lemmas 5.10 and 5.11. For convenience, we restate the results here.
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6 Partial-Order Reduction for Parity Games

Lemma 5.10. Let r be a weak stubborn set, where condition D1 is replaced by D1’,
and π = s0

a1−→ · · · an−−→ sn
a−→ s′n a path such that a1 /∈ r(s0), . . . , an /∈ r(s0) and

a ∈ r(s0). Then, there is a path π′ = s0
a−→r s

′
0
a1−→ · · · an−−→ s′n such that π , π′.

Lemma 5.11. Let r be a weak stubborn set, where condition D1 is replaced by D1’,
and π = s0

a1−→ s1
a2−→ . . . a path such that ai /∈ r(s0) for any ai that occurs in π.

Then, the following holds:

• If π is of finite length n > 0, there exist an action akey, a state s′n such that
sn

akey−−→ s′n and a path π′ = s0
akey−−→r s

′
0
a1−→ · · · an−−→ s′n.

• If π is infinite, there exists a path π′ = s0
akey−−→r s

′
0
a1−→ s′1

a2−→ . . . for some
action akey.

In either case, π , π′.

We need one additional lemma to show that the initial event of a path will be
selected for the stubborn set if Lemma 5.10 cannot be applied to that path.

Lemma 6.7. Let r be a weak stubborn set and s
j1−→ j2−→ · · · jn−→ sn be a path such that

j2, . . . , jn are disabled in s and jn ∈ r(s). Then, it must be the case that j1 ∈ r(s).

Proof. By induction. The base case, where n = 1, trivially satisfies the condition,
since jn coincides with j1. For the inductive case, we assume as induction hypothesis
that for all paths s

j1−→ · · · jl−→ sl with l ≤ i, it holds that if j2, . . . , jl are disabled in
s and jl ∈ r(s), then it holds that j1 ∈ r(s). Let s

j1−→ · · · ji−→ si
ji+1−−−→ si+1 be some

path of length i+ 1 that fulfils these same conditions, i.e., j2, . . . , ji, ji+1 are disabled
in s and ji+1 ∈ r(s). Since the path s

ji+1j1...ji−−−−−−→ is not enabled, condition D1’ can
only be fulfilled by setting jl ∈ r(s) for some l ≤ i. Consequently, we obtain a path
s
j1−→ · · · jl−→, where j2, . . . , jl are disabled in s and jl ∈ r(s). Applying the induction

hypothesis to this path yields j1 ∈ r(s).

The following theorem shows that partial-order reduction preserves the winning
player in all nodes of the reduced game. Its proof is inspired by [128] and [9, Lemma
8.21], and uses the aforementioned lemmata.

Theorem 6.8. If Lr has a finite state space then it holds that for every node s in
Lr, the winner of s in Lr is equal to the winner of s in L.

Proof. Let L = (G,S, `), with G = (V,E,Ω,P), be a labelled parity game and
Lr = (Gr,S, `r), with Gr = (Vr, Er,Ωr,Pr), a finite reduced game induced by some
reduction function r that satisfies conditions D1’, D2w, V, I, L and P. Let player
# be the winner of some node s in G.

We first consider the case where P(s) = #̄. Since none of the outgoing edges of s
in E is a winning strategy of #̄ and succGr(s) ⊆ succG(s), #̄ also does not have a
winning strategy in s under Er. Hence, the winner in s is preserved.

Otherwise, if P(s) = #, let σ be some winning strategy for # in s under E. To
prove that # also wins node s in Gr, we construct a matching strategy σ′ that #
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6.2 Labelled Parity Games

should follow in Gr. By showing that for every path π in Gr that is consistent with
σ′, a stutter equivalent path π′ can occur in G when following the original strategy
σ, we prove that σ′ is indeed a winning strategy for # starting from s in Gr.

Consider the maximal path π0 = s k1−→ s1
k2−→ . . . that is generated by player #

moving the token along its own nodes according to σ. The path π0 is finite if and
only if player # at some point moves the token to a node owned by player #̄. In that
case, the last node on π0 is owned by #̄. We will construct a corresponding path π̂0

in the reduced state space. Then, we define σ′ such that player # moves the token
along π̂0. Note that although this only defines σ′ on a part of the game, the same
reasoning can be applied to all other nodes belonging to player #.

From π0, we will step-by-step construct new paths πi that are stutter equivalent
to π0, by shifting events forward (construction of Lemma 5.10) and introducing key
events (construction of Lemma 5.11). Since the first step of σ can be trivially imitated
if k1 ∈ r(s), we henceforth assume that k1 /∈ r(s). Each path πi is thus of the shape

πi = s
j1−→r t1

j2−→r · · ·
ji−→r ti

k1−→ ui0
li1−→ ui1

li2−→ . . .

where j1, . . . , ji are key events in the stubborn set. These can either originate
from k2, k3, . . . , i.e., events that are shifted forward with the construction from
Lemma 5.10, or they can be events that are newly introduced using the construction
from Lemma 5.11. The events li1, l

i
2 . . . represent the remaining subsequence of

k2, k3 . . . , i.e., those events that have not been shifted forward (yet). Note that
j1, . . . , ji can only contain a visible event if the rest of πi is invisible (cf. the proofs
of Lemma 5.10 and Lemma 5.11).

We distinguish two cases related to whether eventually k1 ∈ r(ti) for some i:

• None of the events k1, l
i
1, l

i
2, . . . is visible. In that case, player # never moves

the token to a node belonging to player #̄ and the path π0 is infinite. If
k1 is never taken, we can mimic the divergent behaviour of πi by applying
Lemma 5.11 ad infinitum on state ti, ti+1, . . . .

• There is a visible event m ∈ {k1, l
i
1, l

i
2, . . . }. We consider a πi such that all

events that fulfil the requirements of Lemma 5.10 have already been shifted
forward, i.e., none of li0, l

i
1, . . . is enabled in ti. This path exists due to finiteness

of Er. Since the reduced game is finite and the event m is selected at least
once on every cycle in the reduced game (condition L), there is a πi′ with i′ ≥ i
such that m ∈ r(ti′). None of the events li0, l

i
1, . . . is enabled in ti′ (they did

not satisfy Lemma 5.10, after all), therefore – by Lemma 6.7 – it must be the
case that k1 ∈ r(ti′).

In either case, as i goes to ω, we obtain a path π̂0. Since condition P ensures that
reduction only takes places within the nodes belonging to a single player, it must be
that all nodes on π̂0, except for the last node if π̂0 is finite, belong to player #. This
allows us to construct σ′ such that it moves the token along π̂0. Furthermore, π̂0 is
stutter equivalent to π0, since each πi is stutter equivalent to its predecessor.
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6 Partial-Order Reduction for Parity Games

We continue by showing that for every path that is consistent with σ′, a corre-
sponding stutter equivalent path that is consistent with σ exists in G. In case π̂0

does not contain a node of player #̄, then π̂0 is the only path consistent with σ′, by
construction of σ′, and π̂0 is infinite. Its corresponding path in G is π0.

In case π̂0 ends in a node owned by #̄, π0 is also finite and we reason as follows.
From its definition, we know that the last node of π0, denoted sn, is owned by player
#̄. There is a path in the original state space from sn to the last node of π̂0, denoted
ŝ, namely along those events of π̂0 that were introduced by Lemma 5.11. We call
this path πkey. We obtain a path π0πkey, which is π0 extended with invisible key
events introduced by Lemma 5.11 in π̂0. Since πkey contains only invisible events, all
nodes on πkey are owned by #̄ and π0πkey is consistent with σ. Extending a path
with finitely many invisible events is permitted under stutter equivalence, hence we
conclude that π̂0 and π0πkey are stutter equivalent.

6.2.3 Optimising D2w

The theory we have introduced so far identifies and exploits rectangular structures in
the parity game. This is especially apparent in condition D1’. However, parity games
obtained from model checking problems also often contain triangular structures, due
to the (sometimes implicit) nesting of conjunctions and disjunctions, as the following
example demonstrates.

Example 6.9. Consider the process (a ‖ b) · c, in which actions a and b are executed
in (interleaved) parallel, and action c is executed upon termination of both a and
b. The µ-calculus property µX.([c]X ∧ 〈>〉true), also expressible in LTL, expresses
that the action c must unavoidably be done within a finite number of steps; clearly
this property holds true of the process. Below, the LTS is depicted on the left and a
possible parity game encoding of our liveness property on this state space is depicted
on the right. The edges in the labelled parity game that originate from the subformula
〈>〉true are labelled with d.

a

a

b b

c

1 1

1 1

2

a

a

b b
d d

d d

d

Whereas the state space of the process can be reduced by prioritising a or b, the
labelled parity game cannot be reduced due to the presence of a d-labelled edge in
every node. For example, if s is the top-left node in the labelled parity game, then
r(s) = {a, d} violates condition D1’, since the path s bd−→ exists, but s db−→ does
not.

In order to deal with games that contain triangular structures, we propose a
condition that is weaker than D2w.
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6.3 PBES Solving Using POR

D2t There is an event j ∈ r(s) such that for all j1 /∈ r(s), . . . , jn /∈ r(s), if
s
j1−→ s1

j2−→ · · · jn−→ sn, then either sn
j−→ or there are nodes s′, s′1, . . . , s

′
n such

that s
j−→ s′

j1−→ s′1
j2−→ · · · jn−→ s′n and for all i, si = s′i or si

j−→ s′i.

Theorem 6.8 holds even for reduction functions satisfying the weak stubborn set
conditions in which condition D2t is used instead of condition D2w. The proof
thereof resorts to a modified construction of a mimicking winning strategy that is
based on Lemma 6.10, described below, instead of Lemma 5.11.

Lemma 6.10. Let r be a reduction function satisfying conditions D1’, D2t, V, I,
L and P. Suppose s0

j1−→ s1
j2−→ . . . such that ji /∈ r(s0) for every ji occurring on this

path. Then, the following holds:

• If the path ends in sn, there exist a key event jkey and nodes s′0, . . . , s
′
n such

that:

– sn
jkey−−→ s′n or sn = s′n; and

– s0
jkey−−→r s

′
0
j1−→ · · · jn−→ s′n and s0 . . . sn , s0s

′
0 . . . s

′
n.

• If the path is infinite, there exists another path s0
jkey−−→r s

′
0
j1−→ s′1

j2−→ . . . and
s0s1 · · · , s0s

′
0s
′
1 . . . .

Proof. We follow the same reasoning as in the proof of Lemma 5.11 to conclude the
existence of an invisible key event jkey.

In case π has finite length n, we derive the existence of s
jkey−−→r s

′ j1−→ · · · jn−→ s′n
either directly from D2t (if sn = s′n) or from D1’ (if s′n

jkey−−→).
If π is infinite, we distinguish the following cases:

• If s
jkeyj1...ji−−−−−−→ si for some i, we can trivially extend this path to obtain π′ =

s
jkeyj1...ji−−−−−−→ si

ji+1−−−→ . . . .

• Otherwise, if there is no i such that s
jkeyj1...ji−−−−−−→ si, we can apply the same

reasoning as in the proof of Lemma 5.11.

With the fact that jkey is invisible and si
jkey−−→ s′i or si = s′i, we conclude that

π , π′.

We remark that the concepts of triangular and rectangular structures bear similar-
ities to the concept of weak confluence from [57].

6.3 PBES Solving Using POR

As discussed in Chapter 3, parity games can be used to solve parameterised Boolean
equations systems, by first translating them to the SRF normal form. In the remainder
of this chapter, we show how to apply POR in the context of solving a PBES. First,
we discuss how an SRF-PBES induces a labelled parity game.
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0(X, true)

0(X, false)

11
1
(Y, (true, 0))
(Y, (true, 1))
(Y, (true, 2))

1 (Y, (false, 0))

Figure 6.5: Reachable part of the parity game underlying the PBES of Example 6.11,
when starting from node (X, true).

Recall that in an SRF-PBES, the right-hand side ϕi in an equation σiXi(d:D) = ϕi
is of the shape∨
j∈Ji

∃ej :Ej . fj(d, ej) ∧Xj(gj(d, ej)) or
∧
j∈Ji

∀ej :Ej . fj(d, ej)⇒ Xj(gj(d, ej))

As a notational convenience, we write Ji to refer to the index set of the formula ϕi,
and we assume that the index sets are disjoint for different equations.

Example 6.11. Consider the following PBES in SRF:

(νX(b:B) = (b ∧X(false)) ∨ ∃n:N.n ≤ 2 ∧ Y (b, if (b, n, 0)))

(µY (b:B,n:N) = true ⇒ Y (false, 0))

The six nodes in the parity game which are reachable from (X, true) are depicted
in Figure 6.5. The horizontally drawn edges all stem from the clause ∃n:N.n ≤
2 ∧ Y (b, if (b, n, 0)). Vertical edges stem from the clause b ∧X(false) (on the left) or
the clause true ⇒ Y (false, 0) (on the right). The selfloop also stems from the clause
true ⇒ Y (false, 0). Player � wins all nodes in this game, and thus true /∈ JEK(X).

As suggested by the above example, each edge is associated to (at least) one clause
in E . Consequently, we can use the index sets Ji to event-label the edges emanating
from nodes associated with the equation for Xi. We denote the set of all indices of
clauses in E by clauses(E), defined as clauses(E) =

⋃
Xi∈bnd(E) Ji.

Definition 6.12. Let E be an SRF-PBES. Then, the labelled parity game correspond-
ing to E is the structure (GE , clauses(E), `), where GE is the parity game corresponding
to E , and, for all Xi ∈ bnd(E) and j ∈ Ji, `(j) is defined as the set {((Xi, v), (Xj , w)) ∈
E | ∃vj ∈ Ej . Jfj(d, ej)Kδ0[v/d, vj/ej ] ∧ w = Jgj(d, ej)Kδ0[v/d, vj/ej ]}.

It follows from the definition that the event j ∈ Ji is invisible if rankE(Xi) =
rankE(Xj) and opE(Xi) = opE(Xj), and visible otherwise. Since solving the parity
game G corresponding to a PBES E also yields a solution for E (Theorem 3.10) and
POR preserves the solution of a parity game (Theorem 6.8), it suffices to solve a
reduced game Gr to obtain a (partial) solution to E . In model checking, we are
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0(X, false) 0

1 1 2

j1

j2 j2
j3 j4

j5

Figure 6.6: Labelled parity game corresponding to the PBES of Example 6.13.

typically only interested in the solution of a single node X(e). Our approach is
thus, given a PBES E , to compute a reduced game Gr, starting from X(e), and then
determine the winner of X(e) in Gr. If Gr is sufficiently smaller than the full game
G and the overhead of computing the reduction function r is limited, this is faster
than solving the PBES through the full game G.

6.3.1 Choice of Edge Labelling

The definition of the labelled parity game associated to an SRF-PBES E (Defini-
tion 6.12) associates exactly one event with every clause in E . However, our POR
correctness theorem (Theorem 6.8) in principle allows any edge labelling. The choice
for the labelling function does influence the amount of reduction that can be achieved.
In the extreme cases that every edge has a unique label or all edges are labelled the
same, no reduction can be achieved. The below example shows a case for which our
current labelling function hinders reduction.

Example 6.13. Consider the SRF-PBES below, where the name of each clause is
indicated on the right, and its labelled parity game in Figure 6.6.

νX(b:B) = b ∧X(false) (j1)

∨ Y (b) (j2)

µY (b:B) = b⇒ Y (false) (j3)

∧ ¬b⇒ Xtrue (j4)

νXtrue = Xtrue (j5)

Remark that j2 is visible; the other events are invisible. It is impossible to reduce the
parity game: the only viable location is (X, false), but it does not allow stubborn sets
smaller than {j1, j2}. Due to condition I, we must at least have r((X, false)) = {j1}.
In that case, j1 is not a key event, since it becomes disabled after j2; the only way to
satisfy D2w is to set r((X, false)) = {j1, j2}. However, if we label both the j1 edge
and the j3 edge with a, then it becomes possible to set r((X, false)) = {a}.

The example suggests that it can be beneficial to use the same event for multiple
clauses. Specifying which clauses should correspond to the same event can be done
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6 Partial-Order Reduction for Parity Games

with an equivalence relation on clauses. The next definition formalises the parity
game that follows from such an equivalence relation.

Definition 6.14. Let E be an SRF-PBES, R ⊆ clauses(E)×clauses(E) an equivalence
relation on events and clauses(E)/R the corresponding set of equivalence classes. Then,
the labelled parity game corresponding to E and R is the structure (GE , clauses(E)/R, `),
where GE is the parity game corresponding to E , and, for all Xi ∈ bnd(E) and
J ∈ clauses(E)/R, the labelling `(J) is defined as follows:

`(J) =
⋃

Xi∈bnd(E),j∈Ji∩J

{((Xi, v), (Xj , w)) | ∃vj ∈ Ej . Jfj(d, ej)Kδ0[v/d, vj/ej ]

∧ w = Jgj(d, ej)Kδ0[v/d, vj/ej ]}

Here, an event J ∈ clauses(E)/R is invisible if and only if all its constituting clauses
j ∈ J are invisible. We adopt the strategy to identify two clauses j and j′, i.e., set
j R j′, iff fj = fj′ and gj = gj′ .

6.3.2 Approximating the Conditions

One of the main challenge in implementing POR is that D1’, D2w/D2t and L are
conditions on the (reduced) state space as a whole and, hence, hard to check locally.
To tackle this, we take ideas from literature and show how they apply to PBESs.
This allows us to approximate the conditions in such a way that we can construct a
stubborn set on-the-fly.

From hereon, let E be a PBES in SRF and (G,S, `), with G = (V,E,Ω,P), its
labelled parity game. The most common local condition for L is the stack proviso
LS [111]. This proviso assumes that the state space is explored with depth-first search
(DFS), and it uses the Stack that stores unexplored nodes to determine whether a
cycle is being closed. If so, the node will be fully expanded, i.e., r(s) = S.

LS For all nodes s ∈ Vr, either succGr (s) ∩ Stack = ∅ or r(s) = S.

We use the color proviso [44], which improves on the above condition by keeping
track of which nodes on the stack are or will be fully expanded. As a result, less
nodes need to be fully expanded, improving reduction potential.

Locally approximating conditions D1’, D2w and D2t requires a static analysis of
the PBES. For this, we draw upon ideas from [85] and extend these to properly deal
with non-determinism. To reason about which events are independent, we rely on
the idea of accordance.

Definition 6.15. Let j, j′ ∈ S. We define the accordance relations DNL, DNS ,
DNT and DNA on S as follows:

• j left-accords with j′ if for all nodes s, s′ ∈ V , if s
j′j−−→ s′, then also s

jj′−−→ s′.
If j does not left-accord with j′, we write (j, j′) ∈ DNL.
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(c) Triangle accordance

Figure 6.7: Visual representation of accordance relations.

• j square-accords with j′ if for all nodes s, s1, s2 ∈ V , if s
j−→ s1 and s

j′−→ s2,
then for some s′ ∈ V , s1

j′−→ s′ and s2
j−→ s′. If j does not square-accord with

j′ we write (j, j′) ∈ DNS .

• j triangle-accords with j′ if for all nodes s, s1, s2 ∈ V , if s
j′−→ s1 and s

j−→ s2,
then s2

j′−→ s1. If j does not triangle-accord with j′ we write (j, j′) ∈ DNT .

• j accords with j′ if j square-accords or triangle-accords with j′. If j does not
accord with j′ we write (j, j′) ∈ DNA.

Note that DNL and DNT are not necessarily symmetric. An illustration of the left-
according, square-according and triangle-according conditions is given in Figure 6.7.

Accordance relations safely approximate the independence of events. The depen-
dence of events, required for satisfying D2w can be approximated using Godefroid’s
necessary enabling sets [52].

Definition 6.16. Let j be an event that is disabled in some node s. A necessary-
enabling set (NES) for j in s is any set NES s(j) ⊆ S such that for every path
s
j1...jnj−−−−−→ there is at least one ji such that ji ∈ NES s(j).

For every node and event there might be more than one NES. In particular, every
superset of a NES is also a NES. A larger-than-needed NES may, however, have a
negative impact on the reduction that can be achieved. In a PBES with multiple
parameters per predicate variable, computing a NES can be done by determining
which parameters influence the validity of guards fj and which parameters are changed
in the update functions gj . A more accurate NES may be computed using techniques
to extract a control flow from a PBES [74].
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The following three lemmata show how the accordance relations and NES can be
used to implement conditions D1’, D2w and D2t, respectively. A combination of
Lemma 6.17 and 6.18 in a deterministic setting appeared as Lemma 1 in [85]. Note
that as a notational convention we write R(j) to denote the projection {j′ | (j, j′) ∈ R}
of a binary relation.

Lemma 6.17. A reduction function r satisfies D1’ in node s ∈ V if for all j ∈ r(s):

• if j is disabled in s, then NES s(j) ⊆ r(s) for some NES s; and

• if j is enabled in s, then DNL(j) ⊆ r(s).

Proof. Let s be an arbitrary node and let r be a reduction function that satisfies
the conditions above. Furthermore, let s

j1...jnj−−−−−→ s′n be a path such that j1 /∈
r(s), . . . , jn /∈ r(s) and j ∈ r(s). We distinguish the following cases:

• If j is disabled in s, it must be the case that NES s(j) ⊆ r(s) for some NES s.
However, according to the definition of a necessary-enabling set, at least one
of j1, . . . , jn is contained in NES s(j) and thus in r(s). Since this contradicts
our assumption that j1 /∈ r(s), . . . , jn /∈ r(s), we conclude that the path
s
j1...jnj−−−−−→ s′n does not exist, and so D1’ is satisfied.

• If j is enabled in s, it must be that DNL(j) ⊆ r(s). Since that implies
j1, . . . , jn /∈ DNL(j), it follows that for every ji and all nodes t, t1 and t′, the
following holds:

t t1

t′

j

ji

⇒

t

t2

t1

t′

j

ji

ji

j

By inductively applying this implication from right to left on the path s
j1...jn−−−−→

sn
j−→ s′n, we derive the existence of the dashed transitions in the figure below.

s . . . sn

s′ . . . s′n

j1 jn

j

j1 jn

j j j

We conclude that the conditions of D1’ are satisfied.

Lemma 6.18. A reduction function r satisfies D2w in a node s ∈ V if there is an
enabled event j ∈ r(s) such that DNS (j) ⊆ r(s).

Proof. Let s
j1...jn−−−−→ sn be a path such that j1, . . . , jn /∈ r(s) and let j ∈ r(s) ∩

enabled(s) be an event such that DNS (j) ⊆ r(s). We deduce that j1, . . . , jn /∈ DNS (j),
and thus the following implication holds for all ji and nodes t, t1 and t2:
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t

t2

t1

j

ji

⇒

t

t2

t1

t′

j

ji

ji

j

Applying this inductively from left to right on the transition s
j−→ s′ and the path

s
j1...jn−−−−→ sn, we derive the existence of the dashed transitions in the following figure.

s . . . sn

s′ . . . s′n

j1 jn

j

j1 jn

j j j

Hence, j satisfies the conditions of D2w.

Lemma 6.19. A reduction function r satisfies D2t in a node s if there is an enabled
event j ∈ r(s) such that DNA(j) ⊆ r(s).

Proof. Let s
j1...jn−−−−→ sn be a path such that j1, . . . , jn /∈ r(s) and let j ∈ r(s) ∩

enabled(s) be an event such that DNA(j) ⊆ r(s). We distinguish two cases:

• It holds that j1, . . . , jn ∈ DNT (j). Since j1 /∈ r(s), . . . , jn /∈ r(s) and r(s) ⊇
DNA(j) = DNS (j) ∩ DNT (j), we can deduce that j1, . . . , jn /∈ DNS (j). By
following the same reasoning as in the proof of Lemma 6.18, we derive the
validity of D2t.

• There is an 0 < i ≤ n such that ji /∈ DNT (j). We consider the smallest
such i, i.e., j1, . . . , ji−1 ∈ DNT (j). With j1 /∈ r(s), . . . , jn /∈ r(s) and r(s) ⊇
DNA(j) = DNS (j) ∩ DNT (j), we deduce that j1, . . . , ji−1 /∈ DNS (j) and
ji /∈ DNT (j).

By first applying the square-according relation from left to right on the events
j and j1, . . . , ji−1 and then applying the triangle-according relation on j and
ji, we derive the existence of the dashed transitions in the following figure.

s s1 . . . si−1 si . . . sn−1 sn

s′ s′1 . . . s′i−1

j1 jn

j

ji

j1

j j
ji

Thus j satisfies the conditions of D2t.
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More reduction can be achieved if a PBES is partly or completely ‘deterministic’,
in which case some of the conditions can be relaxed. We say that an event j is
deterministic, denoted by det(j), if for all nodes t, t′, t′′ ∈ V , if t

j−→ t′ and t
j−→ t′′,

then also t′ = t′′. This means event-determinism can be characterised as follows:

det(j) iff JfjKδ and JfjKδ′ implies JgjKδ = JgjKδ′ for all δ, δ′ with δ(d) = δ′(d).

The following lemma specialises Lemma 6.17 and shows how knowledge of deter-
ministic events can be applied to potentially improve the reduction.

Lemma 6.20. A reduction function r satisfies D1’ in a node s if for all j ∈ r(s):

• if j is disabled in s, then NES s(j) ⊆ r(s) for some NES s; and

• if det(j) and j is enabled in s, then DNS (j) ⊆ r(s) or DNL(j) ⊆ r(s).

• if ¬det(j) and j is enabled in s, then DNL(j) ⊆ r(s).

Proof. Let s be an arbitrary node and let r be a reduction function that satisfies the
conditions above. For the cases where j is disabled or j is enabled and DNL(j) ⊆ r(s),
see the proof of Lemma 6.17. Here, we only consider the new case where j is
deterministic and enabled in s and DNS (j) ⊆ r(s).

Let s
j1...jn−−−−→ sn

j−→ s′n be a path such that j1 /∈ r(s), . . . , jn /∈ r(s) and j ∈ r(s)
and let s

j−→ s′. The following implication holds for all ji and nodes t, t1 and t2:

t

t2

t1

j

ji

⇒

t

t2

t1

t′

j

ji

ji

j

Applying this inductively from left to right on the transition s
j−→ s′ and the path

s
j1...jn−−−−→ sn, we deduce the existence of the dashed transitions for some node s′′n.

s . . . sn

s′ . . . s′′n s′n

j1 jn

j
j

j1 jn

j j
j

Since j is deterministic it follows that s′n = s′′n, and thus D1’ is satisfied.

Since relations DNS and DNL are incomparable we cannot decide a priori which
should be used for deterministic events. However, Lemma 6.20 permits choosing
one of the accordance sets on-the-fly. This choice can be made based on a heuristic
function, similar to the function for NESs proposed in [85].
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Both the accordance relations and the NESs can be computed based on the
condition fj and update expression gj associated with each clause. This computation
can also take into account in which equation the clause occurs and to which predicate
variable it leads for more accurate results. Since the clause identification strategy
we adopted relates clauses with the same conditions and update expressions, the
analysis of clauses trivially carries over to events. The reduced number of events has
as additional benefit that less static analysis is required to construct the accordance
and NES relations.

6.4 Experiments

We implemented the ideas from the previous section in a prototype tool, called
pbespor, as part of the mCRL2 toolset [26]; it is written in C++. Our tool converts a
given input PBES to a PBES in SRF, runs a static analysis to compute the accordance
relations (see Section 6.3), and uses a depth-first exploration to compute the parity
game underlying the PBES in SRF. The static analysis relies on an external SMT
solver (we use Z3 [38] in our experiments). Experiments are conducted on a machine
with an Intel Xeon 6136 CPU @ 3 GHz, running mCRL2 with Git commit hash
dd36f98875.

To measure the effectiveness of our implementation, we analysed seven mCRL2
models1: Anderson’s mutual exclusion protocol [5], the dining philosophers problem,
the gas station problem [63], Hesselink’s handshake register [65], Le Lann’s leader
election protocol [88], Milner’s Scheduler [98] and the Krebs cycle of ATP production
in biological cells (model inspired by [110]). Most of these models are scalable. Each
model is subjected to one or more requirements phrased as a µ-calculus formulae.
Where possible, Table 6.1 provides a CTL∗ formula that captures the essence of the
requirement.

We analyse the effectiveness of our partial-order reduction technique by measuring
the reduction of the size of the state space, and the time that is required to generate
the state space. Since the static analysis that is conducted can require a non-negligible
amount of time, we pay close attention to the various forms of static analysis that
can be conducted. In particular, we compare the total time and effectiveness (in
terms of reduction) of running the following static analysis:

• computing left-accordance (DNL) vs. over-approximating it with all events.

• computing a NES vs. over-approximating it with the set of all events S.

• using D2w vs. the use of D2t (i.e., use Lemma 6.18 vs. Lemma 6.19);

As a baseline for comparisons, we take a basic static analysis (over-approximated
DNL, over-approximated NES, D2w), see column ‘basic’ in Table 6.1. In order to
guarantee termination of the static analysis phase, we set a timeout of 200ms per

1The models are archived online at https://doi.org/10.5281/zenodo.3602969.
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6 Partial-Order Reduction for Parity Games

Table 6.1: Runtime (analysis + exploration; in seconds) and number of states when
exploring either the full state space or the reduced state space, for four different static
analysis approaches. Figures printed in boldface indicate which of the additional
static analyses is able to achieve the largest reduction over ‘basic’ (if any).

full basic +DNL +NES +D2t

model property nodes time nodes time nodes time nodes time nodes time

gas station.c3 ∃3accept 1 197 0.14 1 077 0.98 1 077 2.48 1 077 1.87 735 1.62
gas station.c3 ∃�∃3pumping 1 261 0.15 967 0.98 967 2.61 967 1.99 967 1.72
gas station.c3 no deadlock 1 197 0.18 735 0.95 735 2.52 735 2.04 735 1.52
scheduler8 no deadlock 3 073 0.29 34 0.19 34 0.70 34 0.51 34 0.35
scheduler10 no deadlock 15 361 1.65 42 0.25 42 0.90 42 0.65 42 0.42
anderson.5 ∀3cs 23 597 4.59 2 957 2.85 2 957 6.47 2 957 3.89 2 957 4.61
hesselink cache consistent 91 009 5.28 82 602 8.19 83 602 12.12 81 988 9.00 71 911 8.51
dining10 no deadlock 154 451 17.90 4 743 0.76 4 743 1.61 4 743 1.42 4 743 1.02
krebs.3 ∀3energy 238 877 24.38 232 273 24.59 232 273 25.62 209 345 21.73 232 273 24.42
gas station.c6 ∃3accept 186 381 38.00 150 741 40.55 150 741 45.50 150 741 43.16 75 411 21.40
gas station.c6 ∃�∃3pumping 192 700 38.63 114 130 27.35 114 130 31.42 114 130 30.49 114 130 29.74
gas station.c6 no deadlock 186 381 42.50 75 411 21.03 75 411 24.88 75 411 24.01 75 411 23.02
scheduler14 no deadlock 344 065 53.14 58 0.37 58 1.31 58 0.97 58 0.61
hesselink ∀�(wr⇒∃3fin) 1 047 233 61.02 1 013 441 82.44 1 013 441 86.49 1 013 441 84.59 791 273 61.56
hesselink ∀�(wr⇒∀3fin) 1 047 232 70.14 791 320 64.05 791 374 66.53 749 936 62.98 791 268 67.59
krebs.4 ∀3energy 1 047 406 124.30 971 128 117.38 971 128 117.41 843 349 101.51 971 128 117.41
lann.5 consistent data 818 104 142.38 818 104 170.18 818 104 175.87 818 104 177.78 761 239 155.22
anderson.5 no deadlock 689 901 142.63 257 944 73.62 257 672 79.91 257 711 78.67 257 918 76.47
lann.5 no data loss 1 286 452 199.74 453 130 73.28 453 130 77.31 453 130 74.40 453 130 75.52
dining10 ∀�∀3eat 1 698 951 225.10 101 185 12.37 101 056 13.55 101 238 13.01 101 022 12.69
anderson.7 ∀3cs 3 964 599 1 331.91 124 707 63.83 124 707 73.87 124 707 68.67 124 707 69.68
scheduler18 no deadlock 7 077 889 1 574.25 74 0.54 74 1.80 74 1.40 74 0.85

formula that is sent to the solver. Table 6.1 reports on the statistics we obtained for
exploring the full state space and the four possible POR configurations described
above; the table is sorted with respect to the time needed for a full exploration. The
time we list consists of the time needed to conduct the analysis plus the time needed
for the exploration.

For most small instances, the time required for static analysis dominates any
speed-up gained by the state space reduction. When the state spaces are larger,
achieving a speed-up becomes more likely, while the highest overhead suffered by
‘basic’ is 55% (Hesselink, cache consistency). Significant reduction can be achieved
even for non-trivial properties, such as ‘lann.5’ with ‘no data loss’. Scheduler is an
extreme case: its processes have very few dependencies, leading to an exponential
reduction, both in terms of the state space size and in terms of time. In several cases,
the use of a NES or D2t brings extra reduction (highlighted in bold). Moreover,
the extra time required to conduct the additional analysis seems limited. The use
of DNL, on the other hand, never pays off in our experiments; it even results in a
slightly larger state space in two cases.

We note that there are also models, not listed in Table 6.1, where our static analysis
does not yield any useful results and no reduction is achieved. Even if in such cases a
reduction would be possible in theory, the current static analysis engines are unable
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Figure 6.8: An LTS and two parity games showing that, although the LTS can be
reduced, it is not always possible to reduce the corresponding parity game. After
tweaking the edge labelling, some reduction is possible.

to deal with the more complex data types often used in such models; e.g., recursively
defined lists or infinite sets, represented symbolically with higher-order constructions.
This calls for further investigations into static analysis theories that can effectively
deal with complex data.

Furthermore, we remark that all the models we listed here contain symmetry : two
or more processes that show almost the same behaviour. This may mean that our
results cannot be generalised to non-symmetric models, although [42] suggests that
partial-order reduction and symmetry reduction exploit different aspects of a model.

Finally, we point out that in the case of, e.g., the dining philosophers problem,
the relative reduction under the ‘no deadlock’ property is much better than under
the ‘∀�∀3eat ’ property. This demonstrates the impact properties can have on the
reductions achievable and the importance of the way edges are labelled. We explain
this in the following example.

Example 6.21. Consider the PBES below, which encodes the formula νX.([>]X ∧
∀i. µY.([ai]Y ∧ 〈>〉true)) on the LTS of Figure 6.8a. For reference, in Table 6.1, we
denoted formulae of this shape as ∀�∀3ai. Below, the names of each of the clauses
is indicated on the right.

νX(b1, b2:B) = b1 ⇒ X(false, b2) (j1)

∧ b2 ⇒ X(b1, false) (j2)

∧ ∀b:B. Y (b1, b2, b) (xy)
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µY (b1, b2, b:B) = (b ∧ b1)⇒ Y (false, b2, b) (j′1)

∧ (¬b ∧ b2)⇒ Y (b1, false, b) (j′2)

∧ ¬(b ∧ b1 ∨ ¬b ∧ b2)⇒ Xfalse (f)

µXfalse = Xfalse (f ′)

The event xy represents the transition from fixpoint X into Y , which does not involve
an action from the LTS. Note that the complete state space is encoded once in the
fixpoint X and twice in Y , albeit with a subset of the transitions. In the corresponding
labelled parity game, depicted in Figure 6.8b, no reduction can be achieved.

To achieve reduction in this example, we need to do three things. First, the
quantifier in the clause xy needs to be unfolded, yielding two clauses Y (b1, b2, false)
(name xy1) and Y (b1, b2, true) (name xy2). Furthermore, we should identify clauses
j1 and j′1 (resp. j2 and j′2); the resulting event is called a1 (resp. a2). Lastly, we have
to change the fixpoint of X to ensure xy1 and xy2 are invisible. Remark that this
does not change the solution of the PBES. In that case, four nodes can be eliminated,
see Figure 6.8c.

In the experiments, we achieve the identification of clauses j1 and j′1 (resp. j2
and j′2) by partially instantiating the PBES. This procedure is implemented in the
mCRL2 tool pbesinst. In the example above, instantiating parameter b:B of Y
results in two new equations:

µYtrue(b1, b2) = b1 ⇒ Ytrue(false, b2) (j1)

∧ ¬b1 ⇒ Xfalse

µYfalse(b1, b2) = b2 ⇒ Yfalse(b1, false) (j2)

∧ ¬b2 ⇒ Xfalse

The clauses in these equations can be identified with the first two clauses in the
right-hand side of X with our original strategy based on syntactic equivalence of the
condition and update expressions.

6.5 Conclusion

We have presented an approach for applying partial-order reduction on parity games.
This has two main advantages over POR applied on LTSs or Kripke structures: our
approach supports the full modal µ-calculus, not just a fragment thereof, and the
potential for reduction is greater, because we do not require a singleton proviso.
Furthermore, we have shown how the ideas can be implemented with PBESs as a
high-level representation. In future work, we aim to gain more insight into the effect of
identifying events across PBES equations in several ways. We also want to investigate
the possibility of solving a reduced parity game while is it being constructed. In
certain cases, one may be able to decide the winner of the original game from this
partial solution.
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The reduction techniques we have studied so far rely heavily on semantics: they reason
about (the existence of) transitions in the parity game of a PBES. Another way to
reduce the underlying graph structure is the application of syntactic transformation
techniques: procedures that modify the equations and formulae in a PBES and do
not manipulate the underlying graph directly. The SRF and CRF transformations of
Chapter 3 are a nice example of this (although they do not reduce the dependency
graph).

The existing syntactic reductions for PBESs can be divided into two categories.
Firstly, there are a number of techniques that manipulate predicate formulae, but
do not consider the dependencies between equations. Secondly, there are several
techniques [74, 106] which perform data flow analysis across all equations. As a
result, they obtain knowledge on the interdependence of data parameters and also on
the parameter’s influence on each right-hand side. This knowledge can be used for
syntactic transformations that aim to reduce the underlying graph.

However, a common shortcoming among these techniques is that they only partially
deal with quantifiers. We address this in the current chapter, with the goal of
improving the reduction. First of all, we propose a technique called quantifier
propagation, which can move a quantifier ∀d:D or ∃d:D that surrounds a predicate
variable instance X(e) to the corresponding right-hand side ϕX . This prevents the
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instantiation of X(e) for every possible value of d, thus reducing the underlying
parity game. Quantifier propagation can be seen as an extension of the quantifier-
inside rewriter, which distributes quantifiers over other logical operators whenever
possible. As a side result, we contribute an improvement of the distribution of
universal quantification over disjunction (and, dually, of existential quantification
over conjunction).

This basic quantifier propagation technique can sometimes reduce the underlying
graph structure of a PBES, but is in some cases not able to completely eliminate
a quantifier from a PBES. Furthermore, it can only be applied to one subformula
at a time and not straightforward to decide where it should be applied. Thus, we
propose a static analysis technique to identify which predicate variables always occur
in the scope of the same quantifiers. The result of this analysis allows us to apply
global propagation at once throughout the whole PBES. Our approach generalises the
constant elimination algorithm from [106] by taking quantifiers into consideration.
Experiments with two PBESs from literature indicate that global propagation can
work well in practice and has the potential to reduce an underlying parity game of
infinite size to a finite-sized parity game.

If, during the static analysis required for global propagation, we can determine
that the occurrence of a predicate variable X(e) is not relevant in a right-hand side
ϕ, the instance X(e) does not need to be considered. The relevance of a predicate
variable instance X(e) is captured in the concept of a guard. More precisely, a guard
is a predicate formula that expresses when the occurrence of a predicate variable
X(e) is relevant to the truth value of its containing formula. Guards are thus a
valuable tool in our analysis, and likewise in the static analysis performed in [74, 106].
However, [106] only shows how to extract guards for predicate formulae in PFNF
(see Chapter 3). The definitions of [74] can compute guards for arbitrary predicate
formulae, but only partly take quantifiers into account. Furthermore, the result may
depend on the nesting structure of the formula, indicating that the result is not
always optimal. For example, the computation yields different guards for f ∧ (X ∧ Y )
and (f ∧ X) ∧ Y . We show how to compute guards that are stronger than the
guards of [74], which enables extracting more information. Furthermore, we provide
a detailed proof that our guards can be applied compositionally. We also investigate
exact guards, and show that they are not compositional. This makes it difficult to
compute them efficiently for large predicate formulae.

Overview In Section 7.1, we discuss several related works on analysis of PBESs.
Then, Section 7.2 introduces new concepts and notation, which are required in the
remainder of the chapter. We motivate our approach with an example in Section 7.3.
Then, Section 7.4 shows how to perform quantifier propagation. The ideas are
extended to global propagation in Section 7.5. In Section 7.6, we discuss guards and
how they can be computed efficiently. Section 7.7 gives details of an implementation
of global propagation and shows how it may perform in practice by means of a small
experiment. Finally, Section 7.8 presents concluding remarks and suggestions for
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future work.

7.1 Related Work

We informally describe several syntactic transformation techniques for PBESs that
have been proposed in previous works. The first technique is constant elimina-
tion [106], which attempts to identify parameters whose value never changes. Con-
stant elimination is performed relative to a closed target expression κ that one wants
to solve. The analysis starts by taking constant values from κ and propagating them
through the PBES to determine whether their value will change. If not, an invari-
ant [59, 107] is derived that can be used to simplify the PBES. Constant elimination
by itself never results in state space reduction, but the resulting simplifications can
speed up PBES instantiation and also enable other reduction techniques.

The same paper also discusses parameter elimination [106], which tries to identify
a set of parameters that do not influence any of the conditions in the PBES. This is
achieved with a fixpoint procedure on an influence graph over parameters. Initially,
only parameters that occur in a Boolean term b in the right-hand side of their equation
are marked influential. The influence graph relates two parameters d1 and d2 if d2

occurs in an update of d1. Parameters that are not (transitively) influential can be
safely eliminated from the PBES, without affecting its solution.

Very much related to parameter elimination, is the state graph technique of [74],
which is inspired by a similar approach for LPSs [118]. This analysis consists of two
phases: it first attempts to distinguish control flow parameters—parameters which
can take a limited number of values and are updated deterministically—from data
parameters. Based on knowledge of the values the control flow parameters can take
on, a control flow graph can be reconstructed. Then, it proceeds by analysing which
data parameters are influential in each of the locations of the control flow graph. If a
data parameter is not influential in a certain control flow location, it may be reset to
a fixed value when taking a transition to that location.

7.2 Preliminaries

To understand the theory in this chapter, we first need to introduce several new
concepts. First, the analysis and transformation techniques that we present in
Sections 7.4 and 7.5 require reasoning about parameters of predicate variables and
their occurrences in right-hand sides. Therefore, the theory we present in those
sections no longer assumes that predicate variables have only a single parameter.
Consequently, we need to reason about finite sequences of parameters and expressions,
which we denote with a bold font. Furthermore, we often need to indicate to which
equation fixpoints, parameters and right-hand sides are associated, so we assume
each equation has the shape σXX(dX :DX) = ϕX , unless specified otherwise.

117



7 Quantifier Manipulation in PBESs

Sequences We adopt the following notation for sequences. Firstly, the empty
sequence is denoted ε. Given a sequence v, v[i] denotes its ith element. If v is
a sequence of length n, then a strictly increasing, total function f : {1, . . . , n′} →
{1, . . . , n} characterises a subsequence v′ of length n′ ≤ n, viz., v′[i] = v[f(i)] for
all 1 ≤ i ≤ n′. The fact that v′ is a subsequence of v with characterising function
f is denoted v′ vf v. We omit the subscript f if it is not relevant. Furthermore,
given two sequences v′ and v such that v′ vf v, we write v[j] ∈ v′ iff there is an
i such that f(i) = j. We use list comprehensions to filter a sequence and obtain
a subsequence, e.g., [v[i] | i mod 2 = 0] is the unique subsequence that contains
the elements with an even index in v and only those. Lastly, we can calculate the
complement of a subsequence, notation v \ v′, which is defined as [v[i] | v[i] /∈ v′].
To concatenate two sequences, we use ++.

Quantifiers We generally use Q ∈ {∀,∃} to denote an arbitrary quantifier and
Q ∈ ({∀,∃}×V)∗ to denote a finite sequence of quantified variables. Each element in
such a sequence is a pair of a quantifier and a sorted variable, which is not necessarily
unique in Q. In semantics, a sequence of quantifiers is denoted Q. We use the
functions q and v to extract the quantifier and variable from quantified variables
respectively, i.e., q((Q, d)) = Q and v((Q, d)) = d. These functions are also lifted
to sequences such that q(ε) = ε and v(ε) = ε and for a non-empty sequence Q, we
have q(Q)[i] = q(Q[i]) and v(v)[i] = v(v[i]) for all 1 ≤ i ≤ |Q|. The same functions
can also be applied to semantic quantifier sequences. A sequence of quantified
variables Q can be projected on a set of variables V , which yields the subsequence
Q↓V = [ Q[i] | v(Q[i]) ∈ V ]. We overload the projection operator with expressions,
such that Q↓e = Q↓vars(e).

We often consider subformulae of the shape Q. X(e), with e a sequence of expres-
sions, which we call quantified predicate variable instance (QPVI). A QPVI X(e)
without quantifiers is simply called a predicate variable instance (PVI). The set of all
PVIs that occur in a formula ϕ is denoted iocc(ϕ).

Environment updates and substitutions We allow sequences of values and sequences
of variables in data environment updates, i.e., given a sequence of distinct variables
d and a sequence of values v of equal length and equal sort, δ[v/d] is the data
environment δ[v[1]/d[1], . . . ,v[n]/d[n]]. Furthermore, we use the same notation for
syntactic predicate formula substitutions: ϕ[ψ′/ψ] is the formula ϕ where every oc-
currence of ψ as a subformula of ϕ is replaced by ψ′. To perform several substitutions
at once, we allow the substitution of sequences of expressions, e.g., ϕ[e′/e], or we
write ϕ[f(ψ)/ψ]ψ∈Ψ, where Ψ is a set or sequence of expressions. Remark that a
predicate formula can be viewed as a function, just like a predicate variable. This
motivates the shorthand notation ϕ[ψ/X] for ϕ[ψ[e/dX ]/X(e)]X(e)∈iocc(ϕ). Simi-
larly, we allow one predicate variable to be replaced by another, ϕ[Y/X] denotes
ϕ[Y (e)/X(e)]X(e)∈iocc(ϕ). Finally, we extend substitutions to PBESs, such that
E [ψ′/ψ] is the PBES E where ψ is replaced by ψ′ in every right-hand side of E .
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Predicate formula quantifier manipulation We describe two relatively simple
quantifier manipulation techniques that operate on predicate formulae. These follow
from well-known results in logic, see e.g. [69]. Some of the examples in this chapter
rely on these techniques to simplify the right-hand sides in a PBES. Firstly, there
is the one-point rule, also known as the substitution rule, which can be used to
eliminate quantifiers of which only one value of the quantified variable is relevant for
its evaluation, as formalised below:

J∀d:D. d 6= d1 ∨ ϕKηδ = Jϕ[d1/d]Kηδ
J∃d:D. d = d1 ∧ ϕKηδ = Jϕ[d1/d]Kηδ

We refer to the rewriter that implements this rule as the one-point rewriter.
Secondly, the quantifier-inside rewriter [135] distributes quantifiers over other

operators whenever possible. It relies on an analysis of free variables to determine
when a universal quantifier can be distributed over disjunction and, dually, when an
existential quantifier can be distributed over conjunction. The definition is as follows.

qi(b) = b
qi(¬ϕ) = ¬qi(ϕ)
qi(ϕ ∧ ψ) = qi(ϕ) ∧ qi(ψ)
qi(ϕ ∨ ψ) = qi(ϕ) ∨ qi(ψ)
qi(∀W.ϕ) = qi∀(W, qi(ϕ))
qi(∃W.ϕ) = qi∃(W, qi(ϕ))
qi(X(e)) = X(e)

The definition of qi∀ is:

qi∀(V, b) = ∀V ∩ vars(b). b
qi∀(V,¬ϕ) = ¬qi∃(V, ϕ)
qi∀(V, ϕ ∧ ψ) = qi∀(V, ϕ) ∧ qi∀(V, ψ)

qi∀(V,
∨
i ϕi) =


∀V ∩ vars(

∨
i ϕi).

∨
i ϕi if ψ = false

∀V ∩ vars(ϕ) ∩ vars(ψ). otherwise

(qi∀((V ∩ vars(ϕ)) \ vars(ψ), ϕ) ∨ qi∀((V ∩ vars(ψ)) \ vars(ϕ), ψ))

where
W = vars(ϕj) ∩ V for the smallest j such that |W | is minimal,
ϕ =

∨
{ϕi | vars(ϕi) ∩ V ⊆W}

ψ =
∨
{ϕi | vars(ϕi) ∩ V 6⊆W}

qi∀(V,∀W.ϕ) = qi∀(V ∪W,ϕ)
qi∀(V,X(e)) = ∀V ∩ vars(e). X(e)

The idea behind the fourth case, where the universal quantifier is distributed over
disjunction, is as follows. We aim to partition the set of disjuncts {ϕ1, . . . , ϕn} into
two parts ϕ and ψ, such that the set V ∩ vars(ϕ) ∩ vars(ψ) is small. This ensures a
high number of variables can be pushed further inside. We achieve this through a
linear search over the disjuncts ϕi, and selecting a minimal set W = vars(ϕj) ∩ V .
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7 Quantifier Manipulation in PBESs

The set of variables W partitions the disjunction: each ϕi is placed into ϕ or ψ
based on which variables it shares with W . If all disjuncts contain the same free
variables, then ψ equals false and no distribution is possible. Otherwise, we bind
each quantified variable based on whether it occurs only in ϕ, only in ψ or in both.

The dual rewrite function qi∃ is defined by

qi∃(V, b) = ∃V ∩ vars(b). b
qi∃(V,¬ϕ) = ¬qi∀(V, ϕ)

qi∃(V,
∧
i ϕi) =


∃V ∩ vars(

∧
i ϕi).

∧
i ϕi if ψ = true

∃V ∩ vars(ϕ) ∩ vars(ψ). otherwise

(qi∃((V ∩ vars(ϕ)) \ vars(ψ), ϕ) ∨ qi∃((V ∩ vars(ψ)) \ vars(ϕ), ψ))

where
W = vars(ϕj) ∩ V for the smallest j such that |W | is minimal,
ϕ =

∧
{ϕi | vars(ϕi) ∩ V ⊆W}

ψ =
∧
{ϕi | vars(ϕi) ∩ V 6⊆W}

qi∃(V, ϕ ∨ ψ) = qi∃(V, ϕ) ∨ qi∃(V, ψ)
qi∃(V,∃W.ϕ) = qi∃(V ∪W,ϕ)
qi∃(V,X(e)) = ∃V ∩ vars(e). X(e)

In the remainder of this chapter, we regularly apply the quantifier-inside rewriter, both
in definitions and examples. We remark that more advanced algorithms for partial
quantifier elimination exist [53], although they are mostly focussed on quantified
Boolean formulas.

7.3 Motivating Example

Consider the LPS (PDA, ε) that models a simple push down automaton. The linear
process PDA is specified as follows.

PDA(s:List(N)) =∑
n:N

(n ≤ 50 ∧ n/3 = 5)→ push(n mod 6) · PDA(n . s)

+(s 6= ε)→ pop(head(s)) · PDA(tail(s));

In this linear process, we use the parameterised List data type to store a finite
stack of natural numbers. The empty list is denoted ε and the functions head and
tail respectively take the first element and the remainder of the list. Elements are
prepended to the list with the operator ..

Note that this LPS has an infinite state space, since the list of values pushed
onto the stack can grow arbitrarily long. Suppose we want to check the requirement
that, starting from the initial state, no single value can be pushed onto the stack
successively an infinite number of times. This is formalised by the µ-calculus formula
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ϕ = ∀m:N.µY. [push(m)]Y , which does not hold for our LPS (PDA, ε). When
encoding the combination of PDA and ϕ into a PBES, we obtain the following:

µX(s:List(N)) = ∀m:N.Y (s,m)

µY (s:List(N),m:N) = ∀n:N. (n mod 6 = m ∧ n ≤ 50 ∧ n/3 = 5)⇒ Y (n . s,m)

This PBES cannot be solved through straightforward instantiation: due to the
quantifier in the first equation, an instantiation that starts from X(ε) will not
terminate. Moreover, the state space encoded in predicate variable Y is infinite. To
resolve the latter problem, we apply parameter elimination to remove parameter s,
which does not influence any conditions in the PBES. This yields the following PBES:

µX = ∀m:N.Y (m)

µY (m:N) = ∀n:N. (n mod 6 = m ∧ n ≤ 50 ∧ n/3 = 5)⇒ Y (m)

The quantifier over m is still problematic. Observe, however, that once a value has
been fixed for m, it is never changed in the second equation. This might thus be
a good place to apply the PBES substitution rule [59, Lemma 18], which allows
replacing a PVI Y (e) by ϕY [e/dY ] in the right-hand side of X if and only if X
occurs before Y in the PBES. Formally, the substitution rule claims that, for all
environments η and δ, it holds that:

J(σXX(d:D) = ϕX)E(σY Y (dY :D) = ϕY )E ′Kηδ =

J(σXX(d:D) = ϕX [ϕY /Y ])E(σY Y (dY :D) = ϕY )E ′Kηδ

By applying this to the right-hand side of Y we obtain the PBES

µX = ∀m,n:N. (n mod 6 = m ∧ n ≤ 50 ∧ n/3 = 5)⇒ Y (m)

µY (m:N) = ∀n:N. (n mod 6 = m ∧ n ≤ 50 ∧ n/3 = 5)⇒ Y (m)

This enables the use of other transformations, such as the one-point rewriter, which
yields:

µX = ∀n:N. (n ≤ 50 ∧ n/3 = 5)⇒ Y (n mod 6)

µY (m:N) = ∀n:N. (n mod 6 = m ∧ n ≤ 50 ∧ n/3 = 5)⇒ Y (m)

And we find that the quantification over m has been eliminated! The remaining
quantifiers can be finitely unfolded, which finally results in the following PBES:

µX = Y (3) ∧ Y (4) ∧ Y (5)

µY (m:N) = (3 = m⇒ Y (m))

∧ (4 = m⇒ Y (m))

∧ (5 = m⇒ Y (m))
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7 Quantifier Manipulation in PBESs

This PBES can be solved easily with instantiation, since only five nodes in the
corresponding parity game are reachable from X.

The example shows that the PBES substitution rule can be key to enabling other
simplification techniques, and eventually solving a PBES. However, the approach is
limited by the restriction that Y must occur after X. Moreover, there are no auto-
mated techniques to decide which and how many substitutions should be performed
for the best results. It is also not possible to eliminate quantified variables that are
not relevant by using the substitution rule, even when combined with parameter
elimination. In the next section, we propose quantifier propagation, a technique that
addresses some of these limitations.

7.4 Quantifier Propagation

Quantifier propagation circumvents the (need for) restrictions on the order of equa-
tions, such as those imposed by the substitution rule. The basic idea is best introduced
with an example.

Example 7.1. Consider the following PBES with two equations:

µX = ∃n′:N.Y (2 + n′, true)

νY (n:N, b:B) = (b⇒ n ≤ 1) ∧X

Since Y (2 + n′, true) is the only PVI for Y , we can deduce that b always gets the
value true in the right-hand side of Y . We can thus propagate this value for b, and
we obtain the equivalent PBES

µX = ∃n′:N.Y (2 + n′)

νY (n:N) = (true ⇒ n ≤ 1) ∧X

This idea can be extended to quantifiers. Observe that ∃n′:N.Y (2 + n′) is the only
QPVI for Y ; parameter n of Y consequently always has the value 2 + n′, where n′ is
existentially bound. We also propagate the quantifier, resulting in

µX = Y

νY = ∃n′:N. (true ⇒ 2 + n′ ≤ 1) ∧X

Since 2 + n′ ≤ 1 is unsatisfiable, the right-hand side of Y now reduces to false. This
is a significant simplification over the original PBES.

In the example, we benefited from the fact that the predicate variable Y only
occurred in one QPVI. In the remainder of this section, we formalise the ideas behind
quantifier propagation and show how it can be applied to predicate variables that
occur in multiple QPVIs. To reason about subsequences of the quantifiers Q and
the values e that occur in a QPVI Q. X(e), we introduce the concept of propagated
quantified values, short propagated values.
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Definition 7.2. A propagated value is a tuple (Qp,dp, ep), where Qp is a sequence of
quantified variables, dp is a sequence of variables and ep is a sequence of expressions
and dp and ep are of equal length and sort.

In the PBES manipulations we present below, we apply the information contained
in propagated values to manipulate one or more right-hand sides in a PBES. We
do this as follows: given a propagated value (Qp,dp, ep) and a right-hand side ϕ,
we substitute each variable dp[i] by the corresponding expression ep[i] and ensure
that variables in ep are bound according to Qp. This yields the updated right-hand
side Qp. ϕ[ep/dp]. The substitution of dp by ep motivates the alternative notation
Qp.dp := ep, which we will use henceforth. The propagated value (ε, ε, ε) is denoted
⊥.

Example 7.3. Recall again the three PBESs from Example 7.1. Between the first
and second PBES, we performed propagation with the propagated value b := true.
The propagated value that characterises the transformation of the first PBES to the
third PBES is ∃n′:N. (n, b) :=(2 + n′, true).

In general, the modification of right-hand sides based on arbitrary propagated
values does not preserve the semantics of the enclosing PBES. Whether transforming
ϕX into Qp. ϕX [ep/dp] is solution-preserving depends, among other things, on which
QPVIs the corresponding predicate variable X occurs in. We capture this in the
concept of a propagation relation.

Definition 7.4. A binary relation P between QPVIs and propagated values is a
propagation relation if and only if for all (Q. X(e)) P Qp.dp := ep the following
conditions hold:

• Q = Q′ ++ Qp for some Q′; and

• there is a characterising function f such that ep vf e and dp vf dX ; and

• vars(e \ ep) ∩ v(Qp) = ∅ and vars(ep) ⊆ v(Qp).

The largest propagation relation is ↪→ =
⋃
{P | P is a propagation relation}.

The largest propagation relation ↪→ is well defined, since the union of all propagation
relations is itself a propagation relation. Note that every element in dX is unique, so
for every sequence dp, there is at most one function f such that dp vf dX . Thus,
given Q. X(e) ↪→ Qp.dp := ep, the sequence dp uniquely determines ep.

Let Q. X(e)↪→ denote left projection, i.e., Q. X(e)↪→ = {y | Q. X(e) ↪→ y}. A
propagated value y = Q′.d := e is associated to a predicate variable X iff y ∈⋃

Q,e Q. X(e)↪→. To indicate this, we write Q′.d :X= e. A propagated value may
be associated to more than one predicate variable, e.g., the propagated value ⊥
is associated to all predicate variables. Given some predicate variable X and two
propagated values y = Qp.dp :X= dp and y′ = Q′p.d

′
p :X= e′p, we write y 4X y′ if and

only if, for some f , dp vf d′p, ep vf e′p and Qp is a suffix of Q′p. Note again
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that there is at most one such f , due to the uniqueness of elements in dX . The
preorder 4X gives rise to a unique infimum and supremum and Q. X(e)↪→ is finite,
so (Q. X(e)↪→,4X) is a complete lattice. Although the correctness of our theory
does not depend on choosing a specific propagated value in Q. X(e)↪→, we are often
interested in the supremum, denoted with

∨
Q. X(e)↪→. In the next section, we

also consider the complete lattice (Q. X(e)↪→∩Q′. X(e′)↪→,4X) that contains the
propagated values of two QPVIs.

Example 7.5. Let X be a predicate variable, with parameters dX = (d1, d2, d3). We
have ∀m:N. ∃n:N.X(d3,m + d2, 2n)↪→ = {⊥,∃n:N. d3 := 2n}. The parameters d1

and d2 do not occur in a propagated value since the corresponding expressions d3 and
m+d2 respectively contain variables d3 and d2 that are not bound in the surrounding
quantifiers, and hence violate the condition vars(ep) ⊆ v(Qp). Consequently, vars(e \
ep) contains at least m, d2 and d3; the quantifier ∀m thus cannot occur in a propagated
value since this would violate the condition vars(e \ ep) ∩ v(Qp) = ∅. For the QPVI
ϕ = ∃n:N.X(3, d2, n+ 1), we have

∨
ϕ↪→ = ∃n:N. d1, d3 := 3, n+ 1.

With the conditions captured in ↪→, we are able to formalise the operation of
quantifier propagation. To support propagation on a predicate variables that occur
in multiple PVIs, quantifier propagation duplicates the corresponding equation.

Definition 7.6. Given a PBES E = E1(σX(dX :DX) = ϕX)E2 and a QPVI Q. X(e),
the function qprop applies quantifier propagation in the following way:

qprop(E1(σX(dX :DX) = ϕX)E2,Q. X(e)) = E1[Q. X̃(e)/Q. X(e)]

(σX(dX :DX) = ϕX [Q. X̃(e)/Q. X(e)])

(σX̃(dX :DX) = Qp. ϕX [ep/dp])

E2[Q. X̃(e)/Q. X(e)]

where X̃ /∈ bnd(E) and (Qp.dp := ep) =
∨

Q. X(e)↪→.

In the resulting PBES, we created a new equation for X̃, whose right-hand side is
constructed based on the right-hand side of X and the propagated value Qp.dp := ep.

The QPVI Q. X(e) is replaced by Q. X̃(e) in the whole PBES, except for the right-
hand side of X̃. Note that the variables in dp, which is a subsequence of the parameter

list dX , do not occur in Qp. ϕX [ep/dp]; they are thus not relevant in X̃. This is also
illustrated by the following example.

Example 7.7. Consider the PBES below.

νX(n,m:N) = m ≤ n2 ⇒ (n ≥ 2 ∧X(n− 1,m) ∧ Y )

µY = X(0, 0) ∨ ∀m′:N.X(4,m′)

We apply quantifier propagation based on the QPVI ∀m′:N.X(4,m′), whose maximal
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propagated value is ∀m′:N. (n,m) :=(4,m′). The resulting PBES is:

νX(n,m:N) = m ≤ n2 ⇒ (n ≥ 2 ∧X(n− 1,m) ∧ Y )

νX̃(n,m:N) = ∀m′:N. (m′ ≤ 42 ⇒ (4 ≥ 2 ∧X(4− 1,m′) ∧ Y ))

µY = X(0, 0) ∨ ∀m′:N. X̃(4,m′)

Neither parameter n, nor m of X̃ is relevant in the right-hand side: they can be
removed through parameter elimination. Subsequently, the quantifier in the QPVI
∀m′:N. X̃ in the right-hand side of Y can be eliminated with the quantifier-inside
rewriter. This results in the PBES

νX(n,m:N) = m ≤ n2 ⇒ (n ≥ 2 ∧X(n− 1,m) ∧ Y )

νX̃ = ∀m′:N. (m′ ≤ 42 ⇒ (4 ≥ 2 ∧X(4− 1,m′) ∧ Y ))

µY = X(0, 0) ∨ X̃

This PBES can more easily be solved through instantiation since parameter m of X
is now bounded by 42. Note that it is not possible to obtain the same result when
only using the substitution rule, since the equation for X occurs before the equation
for Y in the PBES.

Remark 7.8. An alternative approach to quantifier propagation, is allowing the
propagation of free variables. For example, if X is a predicate variable with one
parameter b:B, then the QPVI ∀n:N.X(m + n ≥ 12) can be replaced by X̃(m),
where the equation for X̃ is σXX̃(m:N) = ∀n:N.ϕX [(m+n ≥ 12)/b]. Here, m is the
free variable that is propagated as a parameter. Note that, as a result of introducing
X̃(m:N), the signature sig(E ′) of the resulting PBES E ′ is no longer finite. Thus, it
can be harder to solve than the original PBES.

Before we prove that quantifier propagation preserves the semantics of the PBES,
we reproduce several existing results from literature. These results will be used in
the main correctness proof. Firstly, we rely on the substitution rule [59, Lemma 18]
(see also Section 7.3); recall that it states that for all η and δ, it holds that

J(σXX(d:D) = ϕX)E(σY Y (dY :D) = ϕY )E ′Kηδ =

J(σXX(d:D) = ϕX [ϕY /Y ])E(σY Y (dY :D) = ϕY )E ′Kηδ

Furthermore, we reproduce a number of auxiliary lemmata that occurred in [117]
for the more general setting of fixpoint equation systems. Here, we present those
lemmata in terms of PBESs.

These results also apply to PBESs that are not closed in the predicate variables. In
particular, some proofs apply induction on the structure of a PBES, so the equation
systems we consider there are, in many cases, not closed in the predicate variables.
Furthermore, although we present the results for PBESs where each equation has a
single parameter, each lemma can be trivially generalised to multi-parameter PBESs.
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The first lemma states that a predicate environment that is used to interpret
semantics of a PBES E is not changed in those variables that are not bound in E .

Lemma 7.9. [117, Lemma 11], [114, Lemma 1] Let E be a PBES. If X /∈ bnd(E),
then (JEKηδ)(X) = η(X) for all δ.

Proof. By structural induction on E . For the base case, where E = ∅, (J∅Kηδ)(X) =
η(X) follows directly from the definition of the semantics of a PBES. For the
induction step, where E = (σY (d:D) = ϕY )E ′ for some Y 6= X and E ′ such that
X /∈ bnd(E ′), take as hypothesis that (JE ′Kηδ)(X) = η(X). We follow the reasoning
below; application of the induction hypothesis is indicated with †.

(J(σY (d:D) = ϕY )E ′Kηδ)(X)

= (JE ′Kη[σTY /Y ]δ)(X)
(†)
= η[σTY /Y ](X)

= η(X)

Next, we show how the substitution rule can be generalised to also allow substitution
of X in its own right-hand side. We will refer to this as the self-substitution rule. We
remark that this rule bears similarities to the square rule for fixpoints [117], which is
defined as σx. f(x) = σx. f(f(x)).

Lemma 7.10. [117, Lemma 15] For all η and δ, it holds that

J(σX(d:D) = ϕX)EKηδ = J(σX(d:D) = ϕX [ϕX/X])EKηδ

Proof. Consider the following predicate transformers, where X /∈ bnd(E):

F (R) = {v ∈ D | JϕXK(JEKη[R/X]δ)δ[v/d]}
G(R) = {v ∈ D | JϕX [ϕX/X]K(JEKη[R/X]δ)δ[v/d]}

H(R,P ) = {v ∈ D | JϕXK((JEKη[R/X]δ)[P/X])δ[v/d]}

Below, we use the property σx.H(x, x) = σx.H(x,H(x, x)), known as the unfolding
rule, which holds since H is monotonic and (2D,⊆) is a complete lattice. For the
proof of this property, we refer to [117, Lemma 5.7]. Furthermore, since X /∈ bnd(E),
we can use Lemma 7.9 to obtain:

JEKη[R/X]δ = (JEKη[R/X]δ)[R/X] (∗)

As a consequence of the above, we have F (R) = H(R,R). We derive equality of the
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fixpoints σF and σG as follows:

σR.F (R)
(∗)
= σR.H(R,R)

= σR.H(R,H(R,R))
(∗)
= σR.H(R,F (R))

def.H
= σR. {v ∈ D | JϕXK((JEKη[R/X]δ)[F (R)/X])δ[v/d]}

def.F
= σR. {v ∈ D | JϕXK

((JEKη[R/X]δ)[{v ∈ D | JϕXK(JEKη[R/X]δ)δ[v/d]}/X])δ[v/d]}
= σR. {v ∈ D | JϕX [ϕX/X]K(JEKη[R/X]δ)δ[v/d]}
= σR.G(R)

At the penultimate step, we moved the substitution of X from the predicate environ-
ment into the syntax. As a result of σF = σG, we have the following equality:

J(σX(d:D) = ϕX)EKηδ
= JEKη[σF/X]δ

= JEKη[σG/X]δ

= J(σX(d:D) = ϕX [ϕX/X])EKηδ

Now we are ready to prove the correctness of quantifier propagation through
several lemmata and a theorem. The first lemma provides the core argument for
why all QPVIs Q. X(e) may be replaced by Q. X̃(e), assuming that the predicate
environment these QPVIs are evaluated under respects the equations for X and X̃.

Lemma 7.11. Let η be a predicate environment such that for all δ′, it holds that
there is some η′ such that

JX(e)Kηδ′ = JϕXKη′δ′[JeKδ′/dX ] and JX̃(e)Kηδ′ = JQp. ϕX [ep/dp]Kη′δ′[JeKδ′/dX ]
(†)

Then, for all QPVIs Q. X(e) such that Q. X(e) ↪→ Qp.dp := ep and all δ, it holds

that JQ. X(e)Kηδ = JQ. X̃(e)Kηδ.

Proof. Let η be as above and let Q. X(e) be an arbitrary QPVI such that Q. X(e) ↪→
Qp.dp := ep. Furthermore, let δ be arbitrary and assume that the environment
for which (†) holds is η′. We perform the following derivation. Below, let δ′ =
δ[v(Q)/v(Q)].

JQ. X̃(e)Kηδ

= Q. JX̃(e)Kηδ′
(†)
= Q. JQp. ϕX [ep/dp]Kη′δ′[JeKδ′/dX ]

= Q.Qp. JϕX [ep/dp]Kη′δ′[JeKδ′/dX ][v(Qp)/v(Qp)]
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By Q. X(e) ↪→ Qp.dp := ep, we have vars(e \ ep) ∩ v(Qp) = ∅ and vars(ep) ⊆ v(Qp),
i.e., the variables in ep only occur in v(Qp) and vice versa. Hence, ϕX [ep/dp] can be
eliminated as follows:

Q.Qp. JϕX [ep/dp]Kη′δ′[JeKδ′/dX ][v(Qp)/v(Qp)]

= Q.Qp. JϕXKη′δ′[JeKδ′/dX ][JepKδ0[v(Qp)/v(Qp)]/dp]

Since Qp is a suffix of Q, those values in Q are bound again in Qp. Those irrelevant
values can be eliminated. Furthermore, we have ep v e, so we can merge the data
environment updates:

Q.Qp. JϕXKη′δ′[JeKδ′/dX ][JepKδ0[v(Qp)/v(Qp)]/dp]

= Q. JϕXKη′δ′[JeKδ′/dX ]
(†)
= Q. JX(e)Kηδ′

= JQ. X(e)Kηδ

As per the following lemma, a predicate environment η that identifies Q. X(e) and
Q. X̃(e), allows the former to be substituted by the latter in a PBES E , without
affecting its semantics under η.

Lemma 7.12. Let E be a PBES such that X, X̃ /∈ bnd(E) and η a predicate en-
vironment. If, for all δ, JQ. X(e)Kηδ = JQ. X̃(e)Kηδ, then it holds, for all δ, that
JEKηδ = JE [Q. X̃(e)/Q. X(e)]Kηδ.

Proof. By induction. Let E and η be as above and let δ be arbitrary. For the base
case, where E = ∅, the lemma trivially holds. For the induction step, we assume
that JEKηδ = JE [Q. X̃(e)/Q. X(e)]Kηδ and we show that the same holds when an
equation σY (d:D) = ϕY , with Y 6= X and Y 6= X̃, is added in front of E . Consider
the following three predicate transformers:

TY (R) = {v ∈ DDD | JϕY K(JEKη[R/Y ]δ)δ[v/d]}
T ′Y (R) = {v ∈ DDD | JϕY K(JE [Q. X̃(e)/Q. X(e)]Kη[R/Y ]δ)δ[v/d]}
T ′′Y (R) = {v ∈ DDD | JϕY [Q. X̃(e)/Q. X(e)]K(JE [Q. X̃(e)/Q. X(e)]Kη[R/Y ]δ)δ[v/d]}

Observe that, for all R, TY (R) = T ′Y (R) by the induction hypothesis and the fact
that the values for X and X̃ are not overwritten in η[R/Y ]. Furthermore, we have
the assumption that JQ. X(e)Kηδ = JQ. X̃(e)Kηδ and Lemma 7.9 yields

(JE [Q. X̃(e)/Q. X(e)]Kη[R/Y ]δ)(X) = η[R/Y ](X) = η(X)

(and likewise for X̃), so the substitution can also be applied to ϕY , and we obtain
T ′Y (R) = T ′′Y (R). Hence these transformers all have the same fixpoints, and we derive

128



7.4 Quantifier Propagation

the following:

J(σY (d:D) = ϕY )EKηδ
= JEKη[σTY /Y ]δ

(IH)
= JE [Q. X̃(e)/Q. X(e)]Kη[σTY /Y ]δ

(IH)
= JE [Q. X̃(e)/Q. X(e)]Kη[σT ′Y /Y ]δ

= JE [Q. X̃(e)/Q. X(e)]Kη[σT ′′Y /Y ]δ

= J(σY (d:D) = ϕY [Q. X̃(e)/Q. X(e)])E [Q. X̃(e)/Q. X(e)]Kηδ

We next combine the results of the previous two lemmata and show how they
can be applied to show correctness of the substitution E2[Q. X̃(e)/Q. X(e)] in the
context of quantifier propagation. Before we proceed, however, we shortly introduce
the application of Bekič’s lemma on simultaneous fixpoints [13] on PBES semantics.
The standard definition of PBES semantics recurses through the PBES one equation
at a time. For consecutive equations that carry the same fixpoint symbol, it is also
possible to capture both their semantics in the fixpoint of one single transformer, as
follows:

J(σX(d:D) = ϕX)(σY (d:D) = ϕY )EKηδ = JEKη[σTX,Y /(X,Y )]δ

where

TX,Y (R,R′) = ({v ∈ D | JϕXK(JEKη[(R,R′)/(X,Y )]δ)δ[v/d]},
{v ∈ D | JϕY K(JEKη[(R,R′)/(X,Y )]δ)δ[v/d]})

Here, we restricted ourselves to the case of two consecutive equations, since this
suffices for our application.

Lemma 7.13. Let E = (σX(d:D) = ϕX)(σX̃(d:D) = Qp. ϕX [ep/dp])E2 be a PBES
and Q. X(e) a QPVI such that Q. X(e) ↪→ Qp.dp := ep. Then, for all η and δ, it
holds that

JEKηδ = J(σX(d:D) = ϕX)(σX̃(d:D) = Qp. ϕX [ep/dp])E2[Q. X̃(e)/Q. X(e)]Kηδ

Proof. Let E and Q. X(e) be as above and let η and δ be arbitrary. Furthermore,
let E ′2 = E2[Q. X̃(e)/Q. X(e)]. We define the following two predicate transformers
relative to E2 and E ′2:

TX,X̃(R, R̃) = ({v ∈ DDD | JϕXK(JE2Kη[(R, R̃)/(X, X̃)]δ)δ[v/d]},
{v ∈ DDD | JQp. ϕX [ep/dp]K(JE2Kη[(R, R̃)/(X, X̃)]δ)δ[v/d]})

T ′X,X̃(R, R̃) = ({v ∈ DDD | JϕXK(JE ′2Kη[(R, R̃)/(X, X̃)]δ)δ[v/d]},
{v ∈ DDD | JQp. ϕX [ep/dp]K(JE ′2Kη[(R, R̃)/(X, X̃)]δ)δ[v/d]})

129



7 Quantifier Manipulation in PBESs

To show that σTX,X̃ = σT ′
X,X̃

, we prove that TX,X̃ and T ′
X,X̃

have the same fixpoints.

Let A ∈ 2DDD × 2DDD be an arbitrary fixpoint of TX,X̃ . We derive:

JX(e)Kη[A/(X, X̃)]δ

= JeKδ ∈ η[A/(X, X̃)](X)

= JeKδ ∈ A[1]

= JeKδ ∈ TX,X̃(A)[1]

= JeKδ ∈ {v ∈ DDD | JϕXK(JE2Kη[A/(X, X̃)]δ)δ[v/d]}
= JϕXK(JE2Kη[A/(X, X̃)]δ)δ[JeKδ/d]

Similarly, we derive that

JX̃(e)Kη[A/(X, X̃)]δ = JQp. ϕX [ep/dp]K(JE2Kη[A/(X, X̃)]δ)δ[JeKδ/d]

Hence, η[A/(X, X̃)] satisfies the assumptions of Lemma 7.11, and consequently, also
those of Lemma 7.12. We obtain JE2Kη[A/(X, X̃)]δ = JE ′2Kη[A/(X, X̃)]δ. With this,
we can reason about A as follows:

A

= TX,X̃(A)

= ({v ∈ DDD | JϕXK(JE2Kη[A/(X, X̃)]δ)δ[v/d]},
{v ∈ DDD | JQp. ϕX [ep/dp]K(JE2Kη[A/(X, X̃)]δ)δ[v/d]})

= ({v ∈ DDD | JϕXK(JE ′2Kη[A/(X, X̃)]δ)δ[v/d]},
{v ∈ DDD | JQp. ϕX [ep/dp]K(JE ′2Kη[A/(X, X̃)]δ)δ[v/d]})

= T ′X,X̃(A)

Thus, A is also a fixpoint of T ′
X,X̃

. An analogous reasoning can be followed to show that
every fixpoint of T ′

X,X̃
is also a fixpoint of TX,X̃ . We conclude that σTX,X̃ = σT ′

X,X̃
.

As explained earlier, with Bekič’s lemma on simultaneous fixpoints we have JEKηδ =
JE2Kη[σTX,X̃/(X, X̃)]δ. Furthermore, as a special case of the reasoning above, it holds
that JE2Kη[σTX,X̃/(X, X̃)]δ = JE ′2Kη[σTX,X̃/(X, X̃)]δ. We subsequently apply these
two facts in the next derivation:

JEKηδ
= JE2Kη[σTX,X̃/(X, X̃)]δ

= JE ′2Kη[σTX,X̃/(X, X̃)]δ

= JE ′2Kη[σT ′X,X̃/(X, X̃)]δ

= J(σX(d:D) = ϕX)(σX̃(d:D) = Qp. ϕX [ep/dp])E ′2Kηδ

The correctness of the other substitutions performed by the qprop function is
relatively straightforward to prove through the use of the substitution rule.
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Lemma 7.14. Let E = E1(σX(d:D) = ϕX)(σX̃(d:D) = Qp. ϕX [ep/dp])E2 be a
PBES and Q. X(e) a QPVI such that Q. X(e) ↪→ Qp.dp := ep. Furthermore let E ′
be defined as

E ′ = E1[Q. X̃(e)/Q. X(e)](σX(d:D) = ϕX [Q. X̃(e)/Q. X(e)])

(σX̃(d:D) = Qp. ϕX [ep/dp])E2

Then, for all η and δ, it holds that JEKηδ = JE ′Kηδ.

Proof. Let the PBES E and the QPVI Q. X(e) be as above. Consider an equation
σY Y (dY :DY ) = ϕY that occurs before X̃ in E (Y = X is allowed). We show that
the semantics of E are preserved if Q. X(e) is replaced by Q. X̃(e) in the right-hand
side of Y . First, we apply the substitution rule (or, if Y = X, the self-substitution
rule of Lemma 7.10) to obtain

σY Y (dY :DY ) = ϕY [Q. ϕX [e/d]/Q. X(e)]

Then, we duplicate the quantifiers in Qp, which is a suffix of Q, and we duplicate
the substitution of dp, which is possible since dp vf d and ep vf e for some f . This
yields:

σY Y (dY :DY ) = ϕY [Q. (Qp. ϕX [ep/dp])[e/d]/Q. X(e)]

Now we can substitute back the PVI of X̃, resulting in:

σY Y (dY :DY ) = ϕY [Q. X̃(e)/Q. X(e)]

The same procedure can be repeated for all equations that precede X̃ (including X),
without affecting the semantics. This results in the desired PBES E ′ and we conclude
that JEKηδ = JE ′Kηδ for all η and δ.

Observe that, according the semantics of a PBES, if JE2Kηδ = JE ′2Kηδ for all η and δ,
then JE1E2Kηδ = JE1E ′2Kηδ for all η and δ, as long as bnd(E1)∩ (bnd(E2)∪bnd(E ′2)) = ∅.
This observation is formalised in [59, Corollary 16], albeit with slightly different
assumptions on the relation between E2 and E ′2. We apply the idea of compositional
reasoning in the proof of the next theorem.

Theorem 7.15. Let E be a closed PBES and Q. X(e) a QPVI that occurs in
E. Then, for all Y ∈ bnd(E) and v ∈ DDD, it holds that v ∈ JEK(Y ) iff v ∈
Jqprop(E ,Q. X(e))K(Y ).

Proof. Let E and Q. X(e) be as above and let
∨

Q. X(e)↪→ = Qp.dp := ep. If
E = E1(σX(dX :DX) = ϕX)E2 for some E1 and E2, then let E ′ be the PBES defined
as E ′ = E1(σX(dX :DX) = ϕX)(σX̃(dX :DX) = Qp. ϕX [ep/dp])E2. Clearly, we have
for all Y ∈ bnd(E) and v ∈ DDD that v ∈ JEK(Y ) iff v ∈ JE ′K(Y ), since the addition
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of an equation does not influence the solution of the other predicate variables. By
Lemma 7.13 and compositionality of PBESs, we have

JE ′K = JE1(σX(dX :DX) = ϕX)

(σX̃(dX :DX) = Qp. ϕX [ep/dp])E2[Q. X̃(e)/Q. X(e)]K

On the latter PBES, we apply Lemma 7.14, which yields JE ′K = Jqprop(E ,Q. X(e))K.
We obtain that for all Y ∈ bnd(E) and v ∈ DDD, it holds that v ∈ JEK(Y ) iff v ∈
Jqprop(E ,Q. X(e))K(Y )

Although Example 7.7 and the example from Section 7.3 illustrate that quantifier
propagation works well for some PBESs, two issues still remain. First of all, if we
want to create a fully automated implementation of quantifier propagation, we have
to decide which QPVIs propagation should be applied on. Propagating all QPVIs
can blow up the number of equations in the PBES unnecessarily. For example, in the
PBES νX(n:N) = X(0) ∧X(1) ∧X(2) ∧X(3), propagation of all QPVIs introduces
four new equations, without actually reducing the size of the underlying graph. It
is thus desirable to determine a priori which QPVIs one can propagate without
significantly increasing the size of the PBES itself.

The second issue is that, even if we have such a decision procedure, we are never
able to eliminate a quantifier if its variable always occurs in a PVI, even after several
propagation steps. This is illustrated in the next example.

Example 7.16. Consider the PBES below.

µX = ∀n′:N.Y (n′)

νY (n:N) = n ≤ 5 ∧ Y (n)

If we apply quantifier propagation on ∀n′:N.Y (n′), we obtain a new equation νỸ =
∀n′:N.n′ ≤ 5 ∧ Y (n′). After applying the quantifier-inside rewriter to the right-hand
side of Ỹ , its equation becomes νỸ = (∀n′:N.n′ ≤ 5) ∧ (∀n′:N.Y (n′)), and we
again encounter the QPVI ∀n′:N.Y (n′). Now, propagation is again possible on
∀n′:N.Y (n′), and we obtain another equation νỸ ′ = ∀n′:N.n′ ≤ 5 ∧ Y (n′). Its
right-hand side is the same as the original right-hand side of Ỹ , and we have actually
increased the size of the underlying dependency graph. Ideally, we would like to
identify that the equations for Ỹ and Ỹ ′ are the same, and substitute ∀n′:N.Y (n′)
by Ỹ , yielding

µX = Ỹ

νY (n:N) = n ≤ 5 ∧ Y (n)

νỸ = (∀n′:N.n′ ≤ 5) ∧ Ỹ

We address these issues in the next section, where we propose a fully automated
technique that can determine which propagated values can be eliminated.
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7.5 Finding Global Propagated Values

To determine whether the propagation of QPVIs results in many new equations
and to find quantifiers that can be eliminated according to the scheme suggested in
Example 7.16, we gather all QPVIs that occur in a PBES and analyse their effect on
quantifier propagation. The analysis starts from a target node X̂(ê) and finds, for
each predicate variable X ∈ bnd(E), the largest propagated value (according to 4X)
that is related to all QPVIs of X which occur as a transitive dependency of X̂(ê).
The resulting global propagated values can be used to transform the PBES, without
the need to introduce new equations. We require that variables bound in quantifiers
can be distinguished from parameters, so we henceforth assume that parameters are
never bound in quantifiers.

To facilitate our static analysis, we extract the set of all QPVIs that occur in a
predicate formula with the function qiocc:

qiocc(Q, b) = ∅
qiocc(Q,¬ϕ) = qiocc(ε, ϕ)
qiocc(Q, ϕ ∧ ψ) = qiocc(ε, ϕ) ∪ qiocc(ε, ψ)
qiocc(Q, ϕ ∨ ψ) = qiocc(ε, ϕ) ∪ qiocc(ε, ψ)
qiocc(Q,∀d:D.ϕ) = qiocc(Q ++ [(∀, d)], ϕ)
qiocc(Q,∃d:D.ϕ) = qiocc(Q ++ [(∃, d)], ϕ)
qiocc(Q, X(e)) = {Q. X(e)}

where Q is a sequence of quantified variables. Furthermore, we overload qiocc, such
that we have qiocc(ϕ) = qiocc(ε, ϕ).

We introduce a special value > such that y 4X > for all propagated values y. The
definition of the infimum ∧· in the lattice (

⋃
Q,e Q. X(e)↪→∪ {>},4X) follows in the

standard way. To support the intuition, we give an equivalent definition of ∧· :

> ∧· > = >
Q.d :X= e ∧· > = Q. e :X= e

> ∧· Q′.d′ :X= e′ = Q′. e′ :X= e′

Q.d :X= e ∧· Q′.d′ :X= e′ =
∨

(Q. X(dX [e/d])↪→∩Q′. X(dX [e′/d′])↪→)

The definition of the first three cases is straightforward. In the fourth case, where
we compute the infimum of two propagated values, we do the following. First, note
that, given a propagated value Q.d :X= e, a QPVI that contains exactly the same
information is Q. X(dX [e/d]) After all, we have (Q.d :X= e) =

∨
Q. X(dX [e/d])↪→.

To compute Q.d :X= e∧· Q′.d′ :X= e′, we take the largest (according to 4X) propagated
value that is related by ↪→ to both QPVIs Q. X(dX [e/d]) and Q′. X(dX [e′/d′]).
More concretely, we compare dX [e/d] and dX [e′/d′] at each position i. If they are
different, the parameter dX [i] should not occur in the resulting propagated value.
The quantifiers in the resulting propagated values must originate from the innermost
quantifiers in Q and Q′. Furthermore, we also follow the restrictions on the variables
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occurring in the quantifiers and the expressions. We lift ∧· to sets in the ordinary
way (note that ∧· is commutative and associative); ∧· of an empty set yields >.

Example 7.17. Consider the following PBES:

νX(n:N) = Q1. X(e1) ∧Q2. X(e2)

µY (n1, n2, n3, n4, n5:N) = X(n1 + n2 + n3 + n4 + n5)

where

Q1. X(e1) = ∀m1:N. ∃m2:N. ∀m3:N. ∃m4:N.Y (n+m1,m2,m3 + 2,m3,m4)

Q2. X(e2) = ∀m1:N. ∀m2:N. ∀m3:N. ∃m4:N.Y (n+m1,m2, 5m3,m3,m4)

We have

(Q.d :X= e) =
∨

(Q1. X(e1)↪→∩Q2. X(e2)↪→) = (∃m4:N.n5 :=m4)

The longest common suffix of Q1 and Q2 is (∀,m3)(∃,m4). Thus, n+m1 /∈ e and
m2 /∈ e, by the condition vars(e) ⊆ v(Q). Furthermore, the expressions m3 + 2
and 5m3 are not equivalent, so n3 /∈ d. Consequently, (∀,m3) /∈ Q, to satisfy the
condition vars(dX \ d) ∩ v(Q) = ∅, and m3 /∈ e, to satisfy vars(e) ⊆ v(Q).

Similar to quantifier propagation, correctness of the approach we propose below
does not depend on the choice of a propagated value in the definition of ∧· . However,
the use of the supremum does ensure that we extract as much information as possible
about possibly globally quantified parameters.

Let X̂(ê) be a target node for which we want to know the solution. Then, given a
PBES E , we can detect globally quantified parameters with the following algorithm.
For now, assume that guardX(e)(ϕ) always returns true; its function will be explained
later.

pv0(X̂) = (dX :X= ê)

for every X ∈ bnd(E) \ {X̂},
pv0(X) = >

for every X ∈ bnd(E),

pvi+1(X) =
∧
� ({pvi(X)} ∪

⋃
{
∨

Q′. X(e′)↪→ | ∃Y ∈ bnd(E).

pvi(Y ) = (Q.d :Y= e) ∧ (Q′. X(e′)) ∈ qiocc(qi(Q. ϕY [e/d])) ∧

∃δ. JguardX(e)(Q. ϕY [e/d])Kδ})

Output: gpv =
∧
�
i≥0

pvi

Initially, we take the ground terms from ê and construct a propagated value dX :X= ê.
For other variables, the initial propagated value is set to >. In every iteration, we
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construct right-hand sides based on the propagated values we have found so far, in a
similar fashion as quantifier propagation. From the new right-hand sides, we extract
quantified predicates and compute their infimum with the current propagated value.
This propagation of information continues until we reach a fixpoint gpv. We remark
that this algorithm generalises the algorithm for finding constant parameters [106],
since any constant value computed by the latter algorithm is also found by our
algorithm.

Applying the global propagated value Given a PBES E , a target node X̂(ê) and
the global propagated value function gpv, we rewrite the right-hand side of each
equation by traversing the PBES recursively:

global-prop(∅) = ∅
global-prop((σX(dX :DX) = ϕX)E ′) ={

(σX(dX :DX) = Q. ϕX [e/d])global-prop(E ′) if gpv(X) = Q.d :X= e

global-prop(E ′) if gpv(X) = >

Note that the parameters of dX that are also contained in d do not occur any longer
in the right-hand side of X. Those parameters are now redundant, and they can be
eliminated with the automatic techniques described in Section 7.1. Subsequently,
the quantifier-inside rewriter can eliminate quantifiers from QPVIs where parameter
elimination has reduced the set of free variables. If gpv(X) = >, then the equation
for X is unreachable from X̂(ê), and it is removed from E .

Example 7.18. Consider the target node X(4) and the PBES below:

µX(n:N) = ∀m′:N.Y (n,m′)

νY (n,m:N) = Z(n,m) ∧ (n ≥ 2⇒ Y (n/2,m)) ∧ (n ≤ 5⇒ Y (n+ 7,m))

µZ(n,m:N) = (n < m ∧ Z(n,m− 1)) ∨ (n ≥ m)

The globally propagated values relative to X(4) are iteratively computed as follows:

pv0(X) = n := 4 pv0(Y ) = > pv0(Z) = >
pv1(X) = n := 4 pv1(Y ) = ∀m′:N.n,m := 4,m′ pv1(Z) = >
pv2(X) = n := 4 pv2(Y ) = ∀m′:N.m :=m′ pv2(Z) = ∀m′:N.n,m := 4,m′

pv3(X) = n := 4 pv3(Y ) = ∀m′:N.m :=m′ pv3(Z) = n,m :=n,m

pv4(X) = n := 4 pv4(Y ) = ∀m′:N.m :=m′ pv4(Z) = ⊥
gpv(X) = n := 4 gpv(Y ) = ∀m′:N.m :=m′ gpv(Z) = ⊥

Parameter n is not constant in the equation for Y , since its value may change through
the PVI Y (n+ 7,m). That updated value can also reach Z through the PVI Z(n,m),
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hence n is also not constant in Z. Applying the global propagated values yields:

µX(n:N) = ∀m′:N.Y (4,m′)

νY (n,m:N) = ∀m′:N. (Z(n,m′) ∧ (n ≥ 2⇒ Y (n/2,m′)) ∧ (n ≤ 5⇒ Y (n+ 7,m′)))

µZ(n,m:N) = (n < m ∧ Z(n,m− 1)) ∨ (n ≥ m)

After parameter elimination, which removes parameter n of X and m of Y , and
pushing quantifiers inside, we obtain

µX = Y (4)

νY (n:N) = (∀m′:N.Z(n,m′)) ∧ (n ≥ 2⇒ Y (n/2)) ∧ (n ≤ 5⇒ Y (n+ 7))

µZ(n,m:N) = (n < m ∧ Z(n,m− 1)) ∨ (n ≥ m)

This PBES has fewer parameters and should thus be easier to solve. In particular,
we avoid the instantiation of many nodes Y (n,m) for all different values of m. For
Z(n,m), though, we still require infinitely many nodes for all values of m.

We continue by proving the correctness of the function global-prop. First, we show
that the computation of global propagated values terminates.

Theorem 7.19. Quantified predicate analysis terminates for every PBES E.

Proof. Let E be a PBES. In every iteration i, there is some X ∈ bnd(E) for which
one of the following happens:

• pvi(X) changes from > to Q.d :X= e; or

• otherwise, if pvi(X) = Q.d :X= e, then either some d[i] is removed from d or
some prefix from Q is removed (or both).

Since E consists of a finite number of equations and each equation has a finite number
of parameters, this process must terminate within a finite number of iterations.

We now continue proving that the function global-prop preserves PBES semantics.
In the reasoning, we reuse some of the lemmata from Section 7.4 and introduce
several new lemmata. Furthermore, we apply the switching rule [59, Lemma 21],
which states that adjacent equations may be swapped if they have the same fixpoint
symbol. In formal terms, that corresponds to the following equality for all η, δ and E
such that X,Y /∈ bnd(E):

J(σX(d:D) = ϕX)(σY (d:D) = ϕY )EKηδ = J(σY (d:D) = ϕY )(σX(d:D) = ϕX)EKηδ

The validity of the switching rule follows quickly from Bekič’s lemma on simultaneous
fixpoints [13] (see also the discussion preceding Lemma 7.13).

The first lemma claims that the solution of a PBES E indeed satisfies the equivalence
specified by each equation. Similar to earlier lemmata, this lemma follows from the
more general result on fixpoint equation systems [117].
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Lemma 7.20. [117, Lemma 12] Let E be a PBES and η and δ arbitrary environments.
If ηE = JEKηδ, then for all X ∈ bnd(E) we have ηE(X) = {v ∈ D | JϕXKηEδ[v/d]}.

Proof. By structural induction on E . The base case, where E = ∅, vacuously holds
since bnd(∅) = ∅. For the induction step, let E = (σY (d:D) = ϕY )E ′ for some E ′.
Assume as induction hypothesis that for all X ∈ bnd(E ′) and environments η and δ,
we have

(JE ′Kηδ)(X) = {v ∈ D | JϕXK(JE ′Kηδ)δ[v/d]} (†)
Let X ∈ bnd(E) be arbitrary; we distinguish two cases:

• X 6= Y . Then it has to hold that X ∈ bnd(E ′). Below, let η and δ be
arbitrary and let TY (R) = {v ∈ D | JϕY K(JE ′Kη[R/Y ]δ)δ[v/d]} be the predicate
transformer for Y .

(J(σY (d:D) = ϕY )E ′Kηδ)(X)

= (JE ′Kη[σTY /Y ]δ)(X)
(†)
= {v ∈ D | JϕXK(JE ′Kη[σTY /Y ]δ)δ[v/d]}
= {v ∈ D | JϕXK(J(σY (d:D) = ϕY )E ′Kηδ)δ[v/d]}

• X = Y . Then we have X /∈ bnd(E ′). Let η and δ again be arbitrary and let
TX(R) = {v ∈ D | JϕXK(JE ′Kη[R/X]δ)δ[v/d]} be the predicate transformer for
X. In the deduction below, ∗ indicates the application of Lemma 7.9.

(J(σX(d:D) = ϕX)E ′Kηδ)(X)

= (JE ′Kη[σTX/X]δ)(X)
(∗)
= σTX

= TX(σTX)

= {v ∈ D | JϕXK(JE ′Kη[σTX/X]δ)δ[v/d]}
= {v ∈ D | JϕXK(J(σX(d:D) = ϕX)E ′Kηδ)δ[v/d]}

We slightly restate the result from the previous lemma, so it follows the format of
the assumptions in Lemma 7.11.

Lemma 7.21. Given a PBES E and a PVI X(e), with X ∈ bnd(E), the following
holds:

JX(e)KηEδ = JϕXKηEδ[JeKδ/dX ]

where ηE = JEK and δ is an arbitrary data environment.

Proof. We use Lemma 7.20 to perform the following deduction.

JX(e)KηEδ
⇔ JeKδ ∈ ηE(X)

⇔ JeKδ ∈ {v ∈ DDD | JϕXKηEδ[v/dX ]}
⇔ JϕXKηEδ[JeKδ/dX ]
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We present another variant of the substitution rule, which allows substituting ϕX
for X in the right-hand side of Y , even though Y occurs after X, as long as X and Y
are adjacent and have the same fixpoint symbol. We refer to this rule as the adjacent
substitution rule.

Lemma 7.22. Let (σX(d:D) = ϕX)(σY (d:D) = ϕY )E be a PBES where X,Y /∈
bnd(E). Then, for all η and δ, it holds that

J(σX(d:D) = ϕX)(σY (d:D) = ϕY )EKηδ
= J(σX(d:D) = ϕX)(σY (d:D) = ϕY [ϕX/X])EKηδ

Proof. Let X, Y and E be as above and let η and δ be arbitrary. We perform the
following derivation, where ∗ indicates use of the switching rule and † indicates use
of the substitution rule.

J(σX(d:D) = ϕX)(σY (d:D) = ϕY )EKηδ
(∗)
= J(σY (d:D) = ϕY )(σX(d:D) = ϕX)EKηδ
(†)
= J(σY (d:D) = ϕY [ϕX/X])(σX(d:D) = ϕX)EKηδ
(∗)
= J(σX(d:D) = ϕX)(σY (d:D) = ϕY [ϕX/X])EKηδ

In similar fashion as Lemma 7.14, the next lemma shows when a QPVI Q. X(e)
can be replaced by Q. X̃(e) in the right-hand side of X̃.

Lemma 7.23. Let E = (σX(d:D) = ϕX)(σX̃(d:D) = Qp. ϕX [ep/dp])E2 be a PBES
and Q. X(e) a QPVI such that Q. X(e) ↪→ Qp.dp := ep. Then

JEKηδ = J(σX(d:D) = ϕX)(σX̃(d:D) = Qp. ϕX [ep/dp][Q. X̃(e)/Q. X(e)])E2Kηδ

holds for all η and δ.

Proof. The proof follows the same reasoning as the proof of Lemma 7.14, but applies
the adjacent substitution rule of Lemma 7.22, instead of the (self-)substitution
rule.

The final lemma before the main theorem provides another result on the substitution
of X by X̃.

Lemma 7.24. Let E = E1E2 be a closed PBES such that X, X̃ ∈ bnd(E2). If
it holds that JQ. X(e)K(JE2Kηδ′)δ = JQ. X̃(e)K(JE2Kηδ′)δ for all η, δ and δ′, then
JEK = JE1[Q. X̃(e)/Q. X(e)]E2K.

Proof. By induction on the length of E1. In the base case, where E1 = ∅, then
the substitution [Q. X̃(e)/Q. X(e)] may trivially be applied to E1. Otherwise, if
E1 = (σX(d:D) = ϕX)E ′, we assume as induction hypothesis that JE ′E2Kηδ =
JE ′[Q. X̃(e)/Q. X(e)]E2Kηδ for all η and δ.
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By the PBES semantics, for all η and δ, there is some η′ such that JE ′E2Kηδ =
JE2Kη′δ and η(X) = η′(X) (and likewise for X̃). Hence, we obtain for all η, δ and δ′

that
JQ. X(e)K(JE ′E2Kηδ′)δ = JQ. X̃(e)K(JE ′E2Kηδ′)δ (∗)

Let η and δ be arbitrary environments. We have the following predicate transform-
ers:

TX(R) = {v ∈ DDD | JϕXK(JE ′E2Kη[R/X]δ)δ[v/d]}
T ′X(R) = {v ∈ DDD | JϕX [Q. X̃(e)/Q. X(e)]K(JE ′E2Kη[R/X]δ)δ[v/d]}
T ′′X(R) = {v ∈ DDD | JϕX [Q. X̃(e)/Q. X(e)]K

(JE ′[Q. X̃(e)/Q. X(e)]E2Kη[R/X]δ)δ[v/d]}

We have for all R that TX(R) (∗)
= T ′X(R) (IH )

= T ′′X(R). Thus it holds that σTX = σT ′′X ,
and we can derive

JE1E2Kηδ
= J(σX(d:D) = ϕX)E ′E2Kηδ
= JE ′E2Kη[σTX/X]δ

(IH)
= JE ′[Q. X̃(e)/Q. X(e)]E2Kη[σTX/X]δ

= JE ′[Q. X̃(e)/Q. X(e)]E2Kη[σT ′′X/X]δ

= J(σX(d:D) = ϕX [Q. X̃(e)/Q. X(e)])E ′[Q. X̃(e)/Q. X(e)]E2Kηδ
= JE1[Q. X̃(e)/Q. X(e)]E2Kηδ

Now we are ready to show that the gpv function preserves the semantics of the
PBES it transforms. Below, we assume the PBES E is such that guard returns a
satisfiable formula for any X(e′) and Q. ϕY [e/d], where gpv(X) = Q.d := e and
X(e) ∈ qiocc(Q. ϕY [e/d]). The proof can be extended to include the case where
guard may return an unsatisfiable formula; in that case the PVI X(e) may be replaced
by any other formula in Q. ϕY [e/d] (see Section 7.6).

Theorem 7.25. Let E be a closed PBES and X̂(ê) some target node. Then JêK ∈
JEK(X̂) if and only if JêK ∈ Jglobal-prop(E)K(X̂).

Proof. As above, let E be a PBES and X̂(ê) a target node. Some predicate variable
X ∈ bnd(E) is irrelevant for the solution of X̂(ê) if there is no sequence of predicate
variables X1 . . . Xn such that X̂ = X1, X = Xn and Xi occurs in the right-hand side
ϕXi−1

for all 1 < i ≤ n. Such a sequence does not exist if and only if gpv(X) = >.
Hence, the equation of any predicate variable X for which gpv(X) = > can be
eliminated from E , according to the definition of global-prop, without affecting the
solution of X̂(ê).

Below, we assume that E is defined as (σ1X1(d1:D1) = ϕ1) . . . (σnXn(dn:Dn) = ϕn)
and that we have gpv(Xi) = Qi.di := ei for all 1 ≤ i ≤ n. Let k be the index of X̂
in E , i.e., X̂ = Xk.
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Then, we define E ′ to be the PBES in which all equation are duplicated, the global
propagated values are applied to the new equations and the quantifiers are pushed
inside; it is formally defined as:

E ′ =
(
σ1X1(d1:D1) = ϕ1

)(
σ1X̃1(d1:D1) = ϕ̃1

)
...(

σnXn(dn:Dn) = ϕn
)(
σnX̃n(dn:Dn) = ϕ̃n

)
where, for each 1 ≤ i ≤ n, ϕ̃i = qi(Qi. ϕi[ei/di]). Since we only added equations to
E to obtain E ′, it holds that JêK ∈ JEK(X̂) if and only if JêK ∈ JE ′K(X̂)

By definition of gpv and ∧· , we have X̂(ê) ↪→ gpv(X̂). Thus, if η = JE ′K, can derive
the following (where ∗ indicates the application of Lemma 7.21):

JX̂(ê)Kηδ
(∗)
= JϕkKηδ[JêKδ/dX ]

= Jϕk[ek/dk]Kηδ[JêKδ/dX ]

= Jqi(ϕk[ek/dk])Kηδ[JêKδ/dX ]

= Jϕ̃kKηδ[JêKδ/dX ]
(∗)
= JX̃k(ê)Kηδ

We consider some predicate variable Xi ∈ bnd(E) and show that all its occurrences
in the new right-hand sides ϕ̃j , with 1 ≤ j ≤ n, can be replaced by the corresponding

variable X̃i, while preserving the semantics of E ′. Let Q. Xi(e) be a QPVI that
occurs in E ′, such that Q. Xi(e) ↪→ Qi.di := ei. Furthermore, let Ei be the sequence
of equations that occur before and E ′i the sequence of equations that occur after X̃i in
E ′. By the subsequent application of Lemmas 7.13 and 7.23, we have for all η and δ:

J(σiXi(di:Di) = ϕi)(σiX̃i(di:Di) = ϕ̃i)E ′iKηδ
= J(σiXi(di:Di) = ϕi)(σiX̃i(di:Di) = ϕ̃i)E ′i [Q. X̃i(e)/Q. Xi(e)]Kηδ

= J(σiXi(di:Di) = ϕi)(σiX̃i(di:Di) = ϕ̃i[Q. X̃i(e)/Q. Xi(e)])

E ′i [Q. X̃i(e)/Q. Xi(e)]Kηδ

By Lemma 7.21, the environment η′ = J(σiXi(di:Di) = ϕi)(σiX̃i(di:Di) = ϕ̃i)E ′iKηδ
satisfies JXi(e)Kη′δ′ = JϕiKη′δ′[JeKδ′/di] for all η, δ and δ′. The same holds for X̃i.
Thus, with Lemmas 7.11 and 7.24, we can derive that

JEi(σiXi(di:Di) = ϕi)(σiX̃i(di:Di) = ϕ̃i)E ′iKηδ
= JEi[Q. X̃i(e)/Q. Xi(e)](σiXi(di:Di) = ϕi)(σiX̃i(di:Di) = ϕ̃i)E ′iKηδ
= JEi[Q. X̃i(e)/Q. Xi(e)](σiXi(di:Di) = ϕi)(σiX̃i(di:Di) = ϕ̃i[Q. X̃i(e)/Q. Xi(e)])

E ′i [Q. X̃i(e)/Q. Xi(e)]Kηδ
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The definitions of gpv and ∧· imply that, for all QPVIs Q′. Xj(e
′) that occur in a

right-hand side ϕ̃l, with 1 ≤ l ≤ n, we have Q′. Xj(e
′) ↪→ Qj .dj := ej . Furthermore,

the above procedure can be repeated independently for each QPVI Q′. Xj(e
′) such

that Q′. Xj(e
′) ↪→ Qj .dj := ej , since none of the involved substitutions affect the

semantics of any suffix of E ′. As a result, we obtain the following PBES that has the
same semantics as E ′:

E ′′ =
(
σ1X1(d1:D1) = ϕ1

)(
σ1X̃1(d1:D1) = ϕ̃1[X̃i/Xi]1≤i≤n

)
...(

σnXn(dn:Dn) = ϕn
)(
σnX̃n(dn:Dn) = ϕ̃n[X̃i/Xi]1≤i≤n

)
Since the predicate variables X1, . . . , Xn do not occur in the equations for X̃1, . . . , X̃n

and we are only interested in JêK ∈ JE ′′K(X̂), we can eliminate the equations for
X1, . . . , Xn, yielding(

σ1X̃1(d1:D1) = ϕ̃1[X̃i/Xi]1≤i≤n
)
· · ·
(
σnX̃n(dn:Dn) = ϕ̃n[X̃i/Xi]1≤i≤n

)
This PBES is isomorph to the following PBES, where every variable X̃i is renamed
to Xi (recall that ϕ̃i = qi(Qi. ϕi[ei/di])):(

σ1X1(d1:D1) = qi(Qi. ϕ1[e1/d1])
)
· · ·
(
σnXn(dn:Dn) = qi(Qi. ϕn[en/dn])

)
Since distribution of quantifiers over other operators, as defined in the quantifier-
inside rewriter, preserves the semantics of predicate formulae, the PBES above has
the same semantics as global-prop(E). Thus we have JêK ∈ Jglobal-prop(E)K(X̂).

7.6 Guards for Predicate Formulae

The analysis of the previous section relies solely on static dependencies between
predicate variables, by extracting all QPVIs Q. X(e) in a right-hand side with the
function qiocc. It does not take into account any other parts of the predicate formula,
which might cause subformula X(e) to be irrelevant. For example, in the formula
n ≤ 2 ∧ X(m), X(m) is irrelevant if the constant n = 7 was deduced. A simple
formula that characterises for which values of m the PVI X(m) is relevant, is called
a guard (a formal definition follows).

Guards also play an important role in other types of static analysis of PBESs. The
concept of guards first appeared in [106], although it only shows how to construct
a guard for a normal form called predicate formula normal form (PFNF). Keiren
et al. [74] propose a function that over-approximates guards for arbitrary predicate
formulae. Correctness results for this guard function can be found in Keiren’s
thesis [73]. Here, we improve on these results by strengthening the guards we
compute and providing a detailed proof of their compositionality.

Before we give a formal definition of a guard, we first introduce several auxiliary
notions. Firstly, → denotes logical implication on predicate formulae: ϕ→ ψ iff for
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all η and δ, JϕKηδ ⇒ JψKηδ. Similarly, we have logical equivalence: ϕ ≡ ψ iff for all η
and δ, JϕKηδ = JψKηδ. Given a predicate formula ϕ, an occurrence Y (e) in ϕ is called
a predicate variable instance (PVI). Furthermore, the number of PVIs occurring in
ϕ is denoted with npred(ϕ) and the ith PVI in ϕ is PVI(ϕ, i). To replace the ith
PVI in ϕ with an arbitrary formula ψ, we define the following syntactic replacement
function.

Definition 7.26. Given a formula ϕ and 1 ≤ i ≤ npred(ϕ), the syntactic replacement
of the ith PVI in ϕ by ψ is denoted ϕ[i 7→ ψ], which is defined inductively as follows:

X(e)[1 7→ ψ] = ψ

(¬ϕ)[i 7→ ψ] = ¬ϕ[i 7→ ψ]

(ϕ1 ∧ ϕ2)[i 7→ ψ] =

{
ϕ1[i 7→ ψ] ∧ ϕ2 if i ≤ npred(ϕ1)

ϕ1 ∧ ϕ2[i− npred(ϕ1) 7→ ψ] if i > npred(ϕ1)

(ϕ1 ∨ ϕ2)[i 7→ ψ] =

{
ϕ1[i 7→ ψ] ∨ ϕ2 if i ≤ npred(ϕ1)

ϕ1 ∨ ϕ2[i− npred(ϕ1) 7→ ψ] if i > npred(ϕ1)

(∀d:D.ϕ)[i 7→ ψ] = ∀d:D.ϕ[i 7→ ψ]

(∃d:D.ϕ)[i 7→ ψ] = ∃d:D.ϕ[i 7→ ψ]

Remark that, in the definition above, we do not need to define the case b[i 7→ ψ],
since i ≤ npred(ϕ) ensures the recursion cannot arrive at a term b. Given an expression
ϕ[i 7→ ψ], we call ϕ the body of the substitution. To denote the simultaneous
substitution of the ith PVI by some formula ψi for all 1 ≤ i ≤ npred(ϕ) that satisfy
the condition f , we write ϕ[i 7→ ψi]f(i).

We are now ready to formally introduce guards and free guards. The definition of
the former originates from [73, Lemma 6.27].

Definition 7.27. Given a predicate formula ϕ, a simple formula ψ is a guard for
the ith PVI of ϕ if and only if ϕ ≡ ϕ[i 7→ ψ ∧ PVI(ϕ, i)].

Definition 7.28. Given a predicate formula ϕ, a simple formula ψ is a free guard
for the ith PVI of ϕ if and only if for all environments η and δ, it holds

¬JψKδ ⇒ Jϕ[i 7→ false]Kηδ = Jϕ[i 7→ trueKηδ

To understand the intuition behind (free) guards, consider an equation σX(d:D) =
ϕ, the ith PVI in ϕ, PVI(ϕ, i) = Y (e) and associated guard ψ and free guard ψf . The
guard ψ expresses for which values of e the PVI Y (e) is relevant in ϕ. After all, if
JψKδ is false, then JY (e)Kηδ is not relevant to the value of the subformula ψ ∧ Y (e).

For our free guard ψf , we have that whenever Jψf Kδ becomes false for some δ,
then the subformula Y (e) is not relevant for the evaluation of ϕ. Note, however, that
JY (e)Kηδ can still influence JϕKηδ if Y (e) also occurs elsewhere in ϕ. On the other
hand, if Jψf Kδ holds, we cannot conclude anything. A meaningful free guard typically
only contains variables that occur freely in ϕ.
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Thus, in general, a (free) guard over-approximates the true dependency between X
and Y , as far as that dependency originates from the occurrence PVI(ϕ, i). Remark
that true is a (free) guard for any PVI. We further demonstrate the concepts in the
next examples.

Example 7.29. Consider the predicate formula

ϕ = (∃m:N.m = 6 ∧ (W (m) ∨X)) ∨ (Y ∧ (¬b⇒ Z))

The PVIs W (m) and X are guarded in the same way: m = 6 is a guard for both
these PVIs. From this, we can deduce that replacing W (m) by W (6) preserves logical
equivalence of ϕ. Observe, however, that the only occurrence of m is not free, thus
m = 6 is not a free guard for these PVIs; their only free guard is true. For Y , the
only (free) guard is true; Z also has ¬b both as guard and free guard. Hence, if we
somehow deduce that b never takes on the value false, the PVI Z can be eliminated
from ϕ.

The following example shows that the substitution applied in the definition of
a guard can yield unexpected results when a variable d has both bound and free
occurrences.

Example 7.30. Consider the formula ϕ = (n < 2)∧∀n:N.X(n). The PVI X(n) occurs
in the conjunctive context of n < 2, which at first sight leads to believe that n < 2
is a guard. However, we have the logical inequivalence ϕ 6≡ ϕ[1 7→ (n < 2) ∧X(n)],
since the new occurrence of n introduced by the substitution is bound instead of free.
Hence, n < 2 is not a guard; it is a free guard, though.

To identify situations such as in the latter example, we say ϕ is capture-avoiding iff
no free variable of ϕ has a bound occurrence in ϕ, i.e., there is no subformula Qd:D.ϕ′

of ϕ such that d ∈ vars(ϕ). Remark that any predicate formula can be transformed
into an equivalent capture-avoiding formula by performing the appropriate alpha
conversion, that is, renaming the variables bound in quantifiers.

Both examples together demonstrate that the concepts of guards and free guards
are in general incomparable. The following proposition gives necessary conditions
under which the notions can be related.

Proposition 7.31. Let ϕ be a predicate formula, ψ a simple formula and X(e) =
PVI(ϕ, i) the ith PVI in ϕ, which we assume occurs monotonically. If ϕ is capture-
avoiding, vars(ψ) ⊆ vars(ϕ) and ψ is a free guard for the ith PVI in ϕ, then ψ is also
a guard for the ith PVI in ϕ.

Proof. Let ϕ, ψ and X(e) = PVI(ϕ, i) be as above and let η and δ be arbitrary
environments. We start by stating that ψ is a free guard:

¬JψKδ ⇒ Jϕ[i 7→ trueKηδ = Jϕ[i 7→ false]Kηδ
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By the monotonic occurrence of PVI(ϕ, i) in ϕ, this implies:

¬JψKδ ⇒ JϕKηδ = Jϕ[i 7→ false]Kηδ

We add the trivially true statement that JψKδ ⇒ JϕKηδ = Jϕ[i 7→ true ∧X(e)]Kηδ:

¬JψKδ ⇒ JϕKηδ = Jϕ[i 7→ false ∧X(e)]Kηδ
∧ JψKδ ⇒ JϕKηδ = Jϕ[i 7→ true ∧X(e)]Kηδ

Since vars(ψ) ⊆ vars(ϕ) and the fact that ϕ is capture-avoiding implies that its free
variables are not bound, we can substitute ψ for false and true respectively:

¬JψKδ ⇒ JϕKηδ = Jϕ[i 7→ ψ ∧X(e)]Kηδ
∧ JψKδ ⇒ JϕKηδ = Jϕ[i 7→ ψ ∧X(e)]Kηδ

By resolution, this is equivalent to:

JϕKηδ = Jϕ[i 7→ ψ ∧X(e)]Kηδ

We conclude that ψ is also a guard.

We remark that the reasoning in the above proof can also be used to show that,
under the same conditions, if ψ satisfies ϕ[i 7→ ψ ⇒ X(e)] ≡ ϕ[i 7→ ψ ∧X(e)] (which
is a stronger notion of guard), then ψ is also a free guard. In the remainder of this
section, we will primarily focus on guards.

7.6.1 Compositionality

Before we show how to compute a guard, we first discuss the topic of compositionality.
Given a predicate formula ϕ and guards ψ1, . . . , ψn for each of the PVIs in ϕ, then
ψ1, . . . , ψn are compositional iff ϕ ≡ ϕ[i 7→ ψi ∧PVI(ϕ, i)]i≤npred(ϕ). When computing
guards, it is desirable that they are compositional. Otherwise, one needs to compute
a guard for the first PVI in ϕ, construct ϕ[1 7→ ψi ∧ PVI(ϕ, 1)], compute a guard
for the second PVI in ϕ[1 7→ ψi ∧ PVI(ϕ, 1)], apply it, and so forth for all the PVIs.
This is not a scalable approach for PBESs with large right-hand sides. Our definition
of guards (Definition 7.27) does not necessarily result in compositional guards, as
demonstrated by the below example.

Example 7.32. Consider the formula ϕ = X ∨ X. According to Definition 7.27,
the simple formula false is a guard for either PVI, since X ∨ X ≡ (X ∨ X)[1 7→
false ∧X] ≡ (X ∨X)[2 7→ false ∧X]. However, these guards cannot both be applied
to ϕ at the same time, since X ∨X 6≡ (X ∨X)[1 7→ false ∧X][2 7→ false ∧X] ≡ false.
Hence, they are not compositional.

In the example, the fact that the formula ϕ contains two PVIs for the same predicate
variable X is crucial. After all, if X occurs just once in ϕ, and the associated guard
is false under δ, then the value of η(X) does not influence JϕKηδ. Thus, we have the
following proposition.
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Proposition 7.33. Let ϕ be a monotone predicate formula, n = npred(ϕ) and
ψ1, . . . , ψn guards for each of the respective PVIs in ϕ. If for every predicate variable
X ∈ X , at most one PVI of X occurs in ϕ, then ψ1, . . . , ψn are compositional.

Proof. Let ϕ and ψ1, . . . , ψn be as above. Here, we denote each PVI PVI(ϕ, i) as
Xi(ei). The uniqueness requirement implies that for all i 6= j, we have Xi 6= Xj .

Let ϕk = ϕ[i 7→ ψi ∧ Xi(ei)]i≤k for all k ≤ n. We perform induction on k. In
case k = 0, we have the syntactic equivalence ϕ = ϕ0 and immediately conclude
ϕ ≡ ϕ0. For the induction step, we assume that ϕ ≡ ϕk−1 for some k ≤ n. In the
deduction below, let η and δ be arbitrary environments. Remark that we have the
syntactic equivalence φk = φ[i 7→ ψi ∧Xi(ei)]i≤k−1[k 7→ ψk ∧Xk(ek)], since the two
substitutions do not interfere with each other. Thus we derive:

JϕkKηδ
⇔ Jϕk−1[k 7→ ψk ∧Xk(ek)]Kηδ

Assume that Xk(ek) occurs in the scope of the quantifiers Q1d1:D1 . . .Qndn:Dn.
Since Xk only occurs once in ϕk−1, the substitution [k 7→ ψk ∧Xk(ek)] can also be
captured in a predicate environment η′, where

η′(Xk) = η(Xk) ∩
⋃

v∈D1×···×Dn

{JekKδ[v/d1, . . . , dn] | JψkKδ[v/d1, . . . , dn]}

and η′(Xj) = η(Xj) for all j 6= k. We continue the derivation and use η′:

Jϕk−1[k 7→ ψk ∧Xk(ek)]Kηδ
⇔ Jϕk−1Kη′δ
(IH)⇔ JϕKη′δ

The PVI Xk(ek) still occurs in the scope of the same quantifiers, so we can reintroduce
the substitution [k 7→ ψk ∧Xk(ek)].

JϕKη′δ
⇔ Jϕ[k 7→ ψk ∧Xk(ek)]Kηδ
⇔ JϕKηδ

This completes the induction step and, thereby, the proof.

7.6.2 Computing Guards

For formulas in PFNF, a guard can be obtained trivially [106]. Let

Q1d1:D1. . . .Qndn:Dn. h ∧
∧
i∈I

(
gi ⇒

∨
j∈Ji

Xj(ej)
)
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be a formula in PFNF. Then a guard for Xj , where j ∈ Ji, is h∧gi. The same applies
to disjunctive and conjunctive predicate formulae, as used in the SRF normal form.
Computing a meaningful guard for a predicate formula with arbitrary structure is
slightly more involved. For this we propose the function guardi(ϕ).

Definition 7.34. Let ϕ be a normalised, capture-avoiding predicate formula and
i ≤ npred(ϕ). Then, the function guard is defined inductively as follows:

guardi(Y (e)) = true

guardi(ϕ ∧ ψ) =

{
s(ϕ) ∧ guardi−npred(ϕ)(ψ) if i > npred(ϕ)

s(ψ) ∧ guardi(ϕ) if i ≤ npred(ϕ)

guardi(ϕ ∨ ψ) =

{
s(¬ϕ) ∧ guardi−npred(ϕ)(ψ) if i > npred(ϕ)

s(¬ψ) ∧ guardi(ϕ) if i ≤ npred(ϕ)

guardi(∀d:D.ϕ) = s(∀d:D.ϕ) ∧ guardi(ϕ)

guardi(∃d:D.ϕ) = s(¬∃d:D.ϕ) ∧ guardi(ϕ)

where
s(ϕ) = ϕ[i 7→ true]i≤npred(ϕ)

s(¬ϕ) = ¬ϕ[i 7→ false]i≤npred(ϕ)

Similar to Definition 7.26, the case guardi(b) cannot occur due to i ≤ npred(ϕ). We
also do not define guardi(¬ϕ), since normalised formulae do not contain negations
and implications. In [74], the function s was defined as s(ϕ) = ϕ if npred(ϕ) = 0, and
true otherwise. Furthermore, quantifiers were not taken into account. That results
in guard yielding a weaker formula than our guard function does. Remark that the
expressions produced by the function guard are not necessarily free guards. Take, for
example, guard1(∃n:N.n ≥ 3 ∧X(n)) = n ≥ 3, which is not a free guard.

Before we prove that our function guard indeed yields proper, compositional guards,
we first introduce several auxiliary lemmata.

Lemma 7.35. For all monotone ϕ, it holds that ϕ→ s(ϕ) and, dually ¬ϕ→ s(¬ϕ).

Proof. We consider the case of s(ϕ), the other case is analogous. Let ϕ be an
arbitrary monotone formula and let η and δ be arbitrary. Furthermore, let ηtrue be
such that v ∈ ηtrue(X) for all X ∈ occ(ϕ) and v ∈ D. Due to monotonicity of ϕ,
JϕKηδ ⇒ JϕKηtrueδ. Moreover, JϕKηtrueδ = Js(ϕ)Kηδ. Using this, we can deduce that
s(ϕ) is weaker than ϕ: JϕKηδ ⇒ JϕKηtrueδ = Js(ϕ)Kηδ.

Lemma 7.36. Let ϕ be a capture-avoiding predicate formula and let I ⊆ {1, . . . ,
npred(ϕ)} be a set of PVI indices. Assume that we have vars(ψ) ⊆ vars(ϕ) and ϕ→ ψ
for some simple ψ and, for all i ∈ I, PVI(ϕ, i) occurs monotonically in ϕ. Then, it
holds that ϕ ≡ ϕ[i 7→ (ψ ∧ PVI(ϕ, i))]i∈I .
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Proof. Let ϕ and I and ψ be as above and let η and δ be arbitrary environments.
Our proof obligation is JϕKηδ = Jϕ[i 7→ ψ ∧ PVI(ϕ, i)]i∈IKηδ. We distinguish two
cases:

• If JϕKηδ = false, we use the monotonic occurrence of every PVI(ϕ, i) to derive
JϕKηδ = Jϕ[i 7→ PVI(ϕ, i)]i∈IKηδ ⇐ Jϕ[i 7→ ψ ∧PVI(ϕ, i)]i∈IKηδ. It follows that
Jϕ[i 7→ ψ ∧ PVI(ϕ, i)]i∈IKηδ = false.

• If JϕKηδ = true, then we use the assumption that ϕ → ψ to derive that
JψKηδ = true. Since vars(ψ) ⊆ vars(ϕ) and ϕ is capture-avoiding, we can derive
that JϕKηδ = Jϕ[i 7→ true ∧PVI(ϕ, i)]i∈IKηδ = Jϕ[i 7→ ψ ∧PVI(ϕ, i)]i∈IKηδ.

Lemma 7.37. Let ϕ and ϕ′ be monotone predicate formulae such that ϕ′ → ϕ
and let I ⊆ {1, . . . , npred(ϕ)} be a set of PVI indices. If ϕ is capture-avoiding and
vars(s(¬ϕ′)) ⊆ vars(ϕ), then it holds that ϕ ≡ ϕ[i 7→ s(¬ϕ′) ∧ PVI(ϕ, i)]i∈I .

Proof. Let ϕ, ϕ′ and I be as above and let η and δ be arbitrary. In case JϕKηδ =
false, we follow the same reasoning as in the proof of Lemma 7.36 to deduce that
Jϕ[i 7→ s(¬ϕ′) ∧ PVI(ϕ, i)]i∈IKηδ = false. Henceforth, assume that JϕKηδ = true. We
distinguish two cases:

• Jϕ[i 7→ false]i∈IKηδ = Jϕ[i 7→ true]i∈IKηδ, that is, none of PVIs characterised
by I is relevant for the truth value of ϕ. From monotonicity of ϕ, it follows
that Jϕ[i 7→ ψ]i∈IKηδ = true for any ψ, and we conclude that Jϕ[i 7→ s(¬ϕ) ∧
PVI(ϕ, i)]Kηδ = true.

• Jϕ[i 7→ false]i∈IKηδ 6= Jϕ[i 7→ true]i∈IKηδ, so at least some PVI(ϕ, i), with
i ∈ I, is relevant in ϕ. With monotonicity of ϕ and the assumption that
JϕKηδ = true, we obtain Jϕ[i 7→ ψ ∧ PVI(ϕ, i)]i∈IKηδ = JψKηδ for all ψ such
that vars(ψ) ⊆ vars(ϕ).

For the predicate formula ϕ[j 7→ ψ∧PVI(ϕ, j)]j≤npred(ϕ), we can distinguish two
similar cases. The first case, where Jϕ[j 7→ ψ∧PVI(ϕ, j)]j≤npred(ϕ)Kηδ = true for
all ψ, is in contradiction with the fact that Jϕ[i 7→ ψ∧PVI(ϕ, i)]i∈IKηδ = JψKηδ
for all ψ, since monotonicity of ϕ yields Jϕ[j 7→ ψ ∧ PVI(ϕ, j)]j≤npred(ϕ)Kηδ ⇒
Jϕ[i 7→ ψ ∧ PVI(ϕ, i)]i∈IKηδ. Hence, we conclude that only the second case can
occur, so we have for all ψ such that vars(ψ) ⊆ vars(ϕ),

Jϕ[j 7→ ψ ∧ PVI(ϕ, j)]j≤npred(ϕ)Kηδ = JψKηδ (†)

From ϕ′ → ϕ, we can derive that

Jϕ′[j 7→ false]j≤npred(ϕ′)Kηδ ⇒ Jϕ[j 7→ false]j≤npred(ϕ)Kηδ (‡)
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Thus, we can derive that

Jϕ[i 7→ s(¬ϕ′) ∧ PVI(ϕ, i)]i∈IKηδ
= Jϕ[i 7→ ¬ϕ′[j 7→ false]j≤npred(ϕ′) ∧ PVI(ϕ, i)]i∈IKηδ
(†)
= J¬ϕ′[j 7→ false]j≤npred(ϕ′)Kηδ
= ¬Jϕ′[j 7→ false]j≤npred(ϕ′)Kηδ
(‡)⇐ ¬Jϕ[j 7→ false]j≤npred(ϕ)Kηδ
= ¬Jϕ[j 7→ false ∧ PVI(ϕ, j)]j≤npred(ϕ)Kηδ
(†)
= ¬JfalseKηδ
= true

= JϕKηδ

Before we continue, we make a few remarks about substitutions. In general, a
substitution may change the number of PVIs in a formula or may change the PVIs
themselves. However, the number of PVIs and their identities are preserved by a
substitution of the shape ϕ[i 7→ ψ ∧ PVI(ϕ, i)] if ψ is simple. This property is used in
the proof below to conclude that some substitutions may be broken up into multiple
substitutions, or that their order may be swapped.

Furthermore, remark that substitution of PVIs is not a congruence under logical
equivalence, as witnessed by X ∨X ≡ X and (X ∨X)[1 7→ false] 6≡ X[1 7→ false].
Hence, in the proof below, we can only manipulate the body of a substitution under
syntactical equivalence. The next theorem shows that our function guard indeed
yields compositional guards.

Theorem 7.38. For all normalised, capture-avoiding formulae ϕ, it holds that

ϕ ≡ ϕ[i 7→ (guardi(ϕ) ∧ PVI(ϕ, i))]i≤npred(ϕ)

Proof. By structural induction on the formula ϕ. The property ϕ ≡ ϕ[i 7→ (guardi(ϕ)
∧PVI(ϕ, i))]i≤npred(ϕ) trivially holds for the base cases ϕ = X(e), since guard1(X(e)) =
true, and ϕ = b, since it does not contain any PVI. We distinguish four cases for the
induction step. Since ϕ is normalised, we do not have to consider the case ϕ = ¬ϕ1.
Note that in none of the cases, guardi(ϕ) contains a quantifier that does not exist
in ϕ, so ϕ[i 7→ guardi(ϕ) ∧ PVI(ϕ, i)]i≤npred(ϕ) is also capture-avoiding. In each of
the derivations below, ? indicates that we use the fact that none of the involved
substitutions affect the number or the identity of PVIs.

Case ϕ = ϕ1∧ϕ2 We assume as induction hypothesis that ϕ1 ≡ ϕ1[i 7→ guardi(ϕ1)∧
PVI(ϕ1, i)]i≤npred(ϕ1) and ϕ2 ≡ ϕ2[i 7→ guardi(ϕ2)∧PVI(ϕ2, i)]i≤npred(ϕ2). We perform
the following derivation:

(ϕ1 ∧ ϕ2)[i 7→ (guardi(ϕ1 ∧ ϕ2) ∧ PVI(ϕ, i))]i≤npred(ϕ)

= (ϕ1 ∧ ϕ2)[i 7→ (guardi(ϕ1 ∧ ϕ2) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

[i 7→ (guardi(ϕ1 ∧ ϕ2) ∧ PVI(ϕ, i))]npred(ϕ1)<i
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= (ϕ1 ∧ ϕ2)[i 7→ (guardi(ϕ1) ∧ s(ϕ2) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

[i 7→ (guardi(ϕ2) ∧ s(ϕ1) ∧ PVI(ϕ, i))]npred(ϕ1)<i

(?)
= (ϕ1 ∧ ϕ2)[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

[i 7→ (s(ϕ2) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

[i 7→ (guardi(ϕ2) ∧ PVI(ϕ, i))]npred(ϕ1)<i

[i 7→ (s(ϕ1) ∧ PVI(ϕ, i))]npred(ϕ1)<i

(?)
= (ϕ1 ∧ ϕ2)[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

[i 7→ (guardi(ϕ2) ∧ PVI(ϕ, i))]npred(ϕ1)<i

[i 7→ (s(ϕ2) ∧ PVI(ϕ, i))]i≤npred(ϕ1)[i 7→ (s(ϕ1) ∧ PVI(ϕ, i))]npred(ϕ1)<i

(†)
≡ (ϕ1 ∧ ϕ2)[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

[i 7→ (guardi(ϕ2) ∧ PVI(ϕ, i))]npred(ϕ1)<i

= ϕ1[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

∧ ϕ2[i 7→ (guardi(ϕ2) ∧ PVI(ϕ, i))]i≤npred(ϕ2)
(IH)
≡ ϕ1 ∧ ϕ2

At †, we apply Lemma 7.36 twice; remark that the body of the substitutions we
remove is stronger than ϕ1 ∧ ϕ2 (by monotonicity of ϕ), so it certainly implies s(ϕ1)
and s(ϕ2) by Lemma 7.35.

Case ϕ = ϕ1∨ϕ2 We assume as induction hypothesis that ϕ1 ≡ ϕ1[i 7→ guardi(ϕ1)∧
PVI(ϕ1, i)]i≤npred(ϕ1) and ϕ2 ≡ ϕ2[i 7→ guardi(ϕ2)∧PVI(ϕ2, i)]i≤npred(ϕ2). We perform
the following derivation:

(ϕ1 ∨ ϕ2)[i 7→ (guardi(ϕ1 ∨ ϕ2) ∧ PVI(ϕ, i))]i≤npred(ϕ)

= (ϕ1 ∨ ϕ2)[i 7→ (guardi(ϕ1 ∨ ϕ2) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

[i 7→ (guardi(ϕ1 ∨ ϕ2) ∧ PVI(ϕ, i))]npred(ϕ1)<i

= (ϕ1 ∨ ϕ2)[i 7→ (guardi(ϕ1) ∧ s(¬ϕ2) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

[i 7→ (guardi(ϕ2) ∧ s(¬ϕ1) ∧ PVI(ϕ, i))]npred(ϕ1)<i

(?)
= (ϕ1 ∨ ϕ2)[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

[i 7→ (s(¬ϕ2) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

[i 7→ (guardi(ϕ2) ∧ PVI(ϕ, i))]npred(ϕ1)<i

[i 7→ (s(¬ϕ1) ∧ PVI(ϕ, i))]npred(ϕ1)<i

(?)
= (ϕ1 ∨ ϕ2)[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

[i 7→ (guardi(ϕ2) ∧ PVI(ϕ, i))]npred(ϕ1)<i

[i 7→ (s(¬ϕ2) ∧ PVI(ϕ, i))]i≤npred(ϕ1)[i 7→ (s(¬ϕ1) ∧ PVI(ϕ, i))]npred(ϕ1)<i
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(†)
≡ (ϕ1 ∨ ϕ2)[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

[i 7→ (guardi(ϕ2) ∧ PVI(ϕ, i))]npred(ϕ1)<i

= ϕ1[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

∨ ϕ2[i 7→ (guardi(ϕ2) ∧ PVI(ϕ, i))]i≤npred(ϕ1)
(IH)
≡ ϕ1 ∨ ϕ2

At †, we apply Lemma 7.37 twice. The assumption ϕ′ → ϕ from the lemma
holds, since ϕ1 → ϕ1 ∨ ϕ2 ≡ (ϕ1 ∨ ϕ2)[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ1)[i 7→
(guardi(ϕ2)∧PVI(ϕ, i))]npred(ϕ1)<i (and similarly for ϕ2), by the induction hypothesis.
Furthermore, the other assumptions of the lemma also hold, since

vars(s(¬ϕ1)) ⊆ vars(ϕ1) ⊆ vars(ϕ1 ∨ ϕ2) = vars((ϕ1 ∨ ϕ2)

[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ1)[i 7→ (guardi(ϕ2) ∧ PVI(ϕ, i))]npred(ϕ1)<i)

The same holds for ϕ2.

Case ϕ = ∀d:D.ϕ1 As induction hypothesis, we assume that ϕ1 ≡ ϕ1[i 7→
guardi(ϕ1) ∧ PVI(ϕ1, i)]i≤npred(ϕ1). We derive:

(∀d:D.ϕ1)[i 7→ (guardi(∀d:D.ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ)

= (∀d:D.ϕ1)[i 7→ (guardi(ϕ1) ∧ s(∀d:D.ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ)

(?)
= (∀d:D.ϕ1)[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ)

[i 7→ (s(∀d:D.ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ)

(†)
≡ (∀d:D.ϕ1)[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ)

= ∀d:D.ϕ1[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ1)
(IH)
≡ ∀d:D.ϕ1

At †, we can apply Lemma 7.36 since we have

(∀d:D.ϕ1)[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ1) → ∀d:D.ϕ1 → s(∀d:D.ϕ1)

which follows from monotonicity of ϕ1 and Lemma 7.35.

Case ϕ = ∃d:D.ϕ1 For the induction hypothesis, we assume that ϕ1 ≡ ϕ1[i 7→
guardi(ϕ1) ∧ PVI(ϕ1, i)]i≤npred(ϕ1). We derive:

(∃d:D.ϕ1)[i 7→ (guardi(∃d:D.ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ)

= (∃d:D.ϕ1)[i 7→ (guardi(ϕ1) ∧ s(¬∃d:D.ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ)

(?)
= (∃d:D.ϕ1)[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ)

[i 7→ (s(¬∃d:D.ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ)

(†)
≡ (∃d:D.ϕ1)[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ)
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= ∃d:D.ϕ1[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ1)
(IH)
≡ ∃d:D.ϕ1

At †, we apply Lemma 7.37. Its assumption ϕ′ → ϕ is valid since

∃d:D.ϕ1 → (∃d:D.ϕ1)[i 7→ (guardi(ϕ1) ∧ PVI(ϕ, i))]i≤npred(ϕ1)

holds by the induction hypothesis. Furthermore, we have vars(s(¬∃d:D.ϕ)) ⊆
vars(∃d:D.ϕ1).

Remark that the assumption that ϕ is capture-avoiding is necessary for the
correctness of the guard function. Without this assumption, we may compute
guard1((n ≤ 2) ∧ ∀n:N.X(n)) = (n ≤ 2), which is not a guard (see also Exam-
ple 7.30). This predicate formula is also a counter-example to the correctness of [73,
Lemma 6.27], which is the counterpart of Theorem 7.38 in the current work. Adding
the assumption that ϕ is capture-avoiding resolves the issue.

7.6.3 Exact Guards

The stronger the guard that we compute, the more information can be extracted
from it. Ideally, we would like to compute the strongest formula that is a guard. We
call this the exact guard : the strongest formula ψ such that ϕ ≡ ϕ[i 7→ ψ ∧ PVI(ϕ, i)].
Example 7.32 already showed that guards are not necessarily compositional. The
same example also shows that exact guards are not compositional, since false is an
exact guard for both PVIs in X ∨X. The next lemma aims to provide some intuition
on why the guard function comes close to the exact guard.

Lemma 7.39. For all monotone ϕ, s(ϕ) is the strongest simple formula χ such
that ϕ → χ, i.e., for all simple ψ, ϕ → ψ implies s(ϕ) → ψ. Dually, s(¬ϕ) is the
strongest simple formula χ′ such that ¬ϕ→ χ′, i.e., for all simple ψ, ¬ϕ→ ψ implies
s(¬ϕ)→ ψ.

Proof. Here, we discuss the case of s(ϕ), the other case is dual. Let ϕ be some
monotone formula and let η and δ be arbitrary. Furthermore, let ηtrue be such that
v ∈ ηtrue(X) for all X ∈ occ(ϕ) and v ∈ D. The implication ϕ→ s(ϕ) follows from
Lemma 7.35.

To prove that s(ϕ) is the strongest simple formula with this property, let ψ be
some simple formula such that JϕKηδ ⇒ JψKηδ. Then, in the particular case that
η = ηtrue , it holds JϕKηtrueδ ⇒ JψKηδ. With JϕKηtrueδ = Js(ϕ)Kηδ, we conclude that
Js(ϕ)Kηδ ⇒ JψKηδ.

7.7 Implementation

The proposed generalisations for constant elimination and guards have been im-
plemented as an extension of the tool pbesconstelm, which implements constant
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elimination and is part of the mCRL2 toolset [26]. Before computing the quantified
constants with the fixpoint algorithm of Section 7.5, all guards and occurrences of
QPVIs are first obtained by recursively traversing each right-hand side in the PBES.
Furthermore, we gather information on the free occurrences of variables, such that
the effect of the quantifier-inside rewriter can be approximated. Hence, no traversal
of the right-hand side is required during the fixpoint computation itself.

To demonstrate a possible application of our ideas, we first perform a small
experiment with a model of the alternating bit protocol (ABP), where the data
domain D has been restricted to only five elements. The LTS of this model has 182
states. We consider the property

∀d:D. νW.
(
[>]W ∧ νX. µY. νZ. ([r(d)]X ∧ (〈r(d)〉true ⇒ [r(d)]Y ) ∧ [r(d)]Z

)
which expresses that whenever r(d) is enabled infinitely often, then it also taken
infinitely often, i.e., it is treated fairly. This formula occurred earlier in [73]. Observe
that the universally quantified value d does not occur meaningfully in the fixpoint
W . We thus expect that the same quantifier in the corresponding PBES can be
eliminated.

We take the PBES that encodes this formula on the ABP and instantiate it to
a parity game. This parity game has 3641 nodes. Applying the original constant
elimination algorithm from [106] on the PBES does not reduce this number. After
applying our generalised algorithm that deals with quantifiers, the instantiated parity
game is reduced to 2913 nodes.

Our second experiment concerns the cache coherence protocol (CCP), as modelled
in [108]. The instance we consider has two threads, two processes and one region.
We slightly altered the specification, such that process identifiers are modelled with
natural number instead of a dedicated finite sort; this does not change its behaviour.
We consider the property that, if the system is stable, each region has no more copies
than the number of processors minus one, formulated in [73] as

∀procId :N.¬
(
µX. 〈true〉 ∨ (〈c copy〉true ∧ 〈lockempty(procId)〉true

∧ 〈homequeueempty(procId)〉true ∧ 〈remotequeueempty(procId)〉true)
)

The corresponding PBES contains a QPVI of the shape ∀procId :N.X(d, procId) and
has an underlying parity game of infinite size; the PBES can hence not be instantiated.
However, after applying global propagation, the size of the parity game is reduced
to 50507 nodes. Global propagation also achieves a reduction when applied to the
original specification, where the sort of variable procId contains only two elements.
In that case, the size of the parity game is reduced from 101197 to 50507 nodes.

7.8 Conclusion

In this chapter, we saw that quantifiers can be a cause of state space explosion in
PBESs. However, quantifiers have barely received attention in the literature on
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syntactic PBES transformations. Hence, we proposed quantifier propagation and
global propagation, which can achieve state space reduction by syntactic manipulation
of the quantifiers in a PBES. Our experiment with global propagation indicates that
it can indeed achieve a reduction of the state space. Furthermore, we identified an
improvement for the computation of guards.

The propagation techniques proposed in this chapter can only deal with quantifiers
that are not accompanied by a bound, i.e., expressions of the shape Qd:D.X(e). When
adding bounds to the quantification, by writing ∀d:D. f(d)⇒ X(e) or ∃d:D. f(d) ∧
X(e), neither technique has any effect. We believe the support of quantifier bounds
will greatly benefit its practical applicability, so we plan to handle these cases in
future work. We also aim to improve the definition of guard, such that it yields a
natural notion of exact guard that is compositional.
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We have studied the theory of µ-calculus model checking through parity games
and parameterised Boolean equation systems. Although the use of PBESs has
several advantages, it does not immediately solve the state explosion problem that
is pervasive in model checking. Consequently, the parity game that is encoded in a
PBES might be prohibitively large, preventing straightforward solving techniques
based on instantiation. Therefore, we investigated the application of several reduction
techniques to PBESs.

8.1 Summary

In Chapter 3 we reviewed several normal forms for PBESs, and proposed two
new normal forms: SRF and CRF. They allow (symbolic) reasoning about the
transitions in the dependency graph and, because alternations between conjunctions
and disjunctions have been eliminated, to construct a dependency space. The
dependency space contains both positive and negative dependencies, and thus captures
sufficient information to solve the PBES. Since dependency spaces coincide with parity
games, we can apply existing fundamental theory for parity games to (symbolically)
solve PBESs.

The normal forms are first applied in Chapter 4, which proposes the symbolic
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technique PBES quotienting. This semi-decision procedure attempts to compute
the bisimulation quotient of the associated parity game by incrementally refining a
partition of the state space. The application on PBESs and parity games allows two
optimisations that are not possible in the classical LTS setting. In an experimental
evaluation, our implementation of PBES quotienting is able to solve more problem
instances than existing tools. Furthermore, PBES quotienting can be applied as a
semi-decision procedure for (branching) bisimulation on infinite-state systems; to our
knowledge, there is no other fully automated tool that can solve these equivalence
problems.

Next, Chapter 5 introduced the existing theory of partial-order reduction for
LTL−X model checking and shows that, contrary to what is stated in earlier works,
stutter trace equivalence is not necessarily preserved. This is called the inconsistent
labelling problem. It can be remedied by strengthening one of the reduction con-
ditions. We analysed several settings and identified in which cases the inconsistent
labelling problem may occur: the theory of at least four related works is affected.
Fortunately, the practical implications seem limited: all implementations approximate
the reduction based on stronger conditions, thereby avoiding the problem.

We applied the updated conditions in the setting of PBESs and parity games in
Chapter 6. The correctness proof is non-trivial: it does not automatically follow from
preservation of stutter trace equivalence of the LSTS that corresponds to a parity
game. Here, we again relied on the SRF normal form to reason about the associated
parity game of a PBES. Experimental results show that POR can achieve significant
reductions; a reduction of more than 90% is not uncommon.

Finally, Chapter 7 discussed the topic of syntactical transformations on PBESs that
aim to reduce the size of the underlying parity game. We proposed a generalisation
of the constant elimination technique for PBESs that also involves quantifiers. Our
implementation is able to transform a PBES, such that its underlying graph structure
becomes finite, and the PBES can be solved through instantiation. Furthermore, we
showed how to compute better guards for predicate formulae, a fundamental tool for
many static analysis techniques.

8.2 Discussion

We reflect on the ideas presented in the thesis, and discuss them in the context of
the question whether the application of existing reduction techniques on PBESs has
significant advantages or disadvantages, when compared to their equivalent technique
for LPSs.

The main benefit of model checking with PBESs is that they allow more powerful
abstractions than LPSs. After all, a PBES encodes only a single property, thus we
only have to preserve that property. We have seen several examples that exploit this
fact, they show that our PBES quotienting and POR techniques are more powerful
than their equivalent LPS techniques. Our comparative experiments in Chapter 4
also confirm this intuition: we are able to check several properties through PBES
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quotienting that could not be checked with minimal model generation. The quantifier
manipulation techniques of Chapter 7 do not have a clear equivalent in the setting
of LPSs, again illustrating that PBESs are more versatile than LPSs. A further
benefit of the PBES model checking approach is that the reduction techniques we
have developed can potentially also be used for other types of decision problems that
can be encoded in a PBES.

However, the application of PBESs also has drawbacks. First of all, in case one
wants to check multiple properties on the same LPS, we obtain an equal number of
PBESs that each have to be solved individually. This may cause a lot of repetitive
work. For LPSs where one can efficiently compute an LTS that accurately represent
its semantics, e.g., with state-space exploration or minimal model generation (see
Chapter 4), it can be more efficient to perform model checking on that LTS.

Secondly, the fact that PBESs are widely applicable also implies that it can be
difficult to extract sufficient information on the underlying problem. For example, in
the case of model checking, it is sometimes desirable to know whether (a part of) the
state space is encoded twice in two equations or which parameters belong to the same
concurrent process. In an SRF-PBES, the relation between processes and clauses
is another piece of valuable information that is not easy to recover. This is one of
the main challenges in Chapter 6: since no information on the embedded concurrent
processes and their actions is available in a PBES, it is difficult to determine a good
edge labelling function. Moreover, a significant amount of static analysis is required
to construct the accordance relations. Do note, however, that LPSs are not free from
these problems: in an LPS, the structure of processes is also mostly lost. For PBESs,
a possible solution is to encode the necessary information in the PBES, in a way that
does not affect its solution. This approach is applied in [136], which shows how to
extract a model checking witness/counter-example (in the form of an LPS) after a
PBES has been solved.

8.3 Future Work

The correctness proofs for PBES transformation techniques can be very tricky,
especially when dealing with arbitrary PBESs. Chapter 7 contains several such
proofs. This problem was also identified by Willemse [137], who developed the
notion of consistent correlation with the goal of simplifying such proofs. A consistent
correlation is an equivalence relation on nodes X(e) in a PBES; nodes that are related
by some consistent correlation have the same solution. By relating nodes in the
original PBES and the transformed PBES, one can prove that a transformation is
solution-preserving. However, consistent correlation is strongly related to idempotence-
identifying bisimulation [75]; these notions are equivalent for BESs in SRF [137]. Thus,
consistent correlation is only suited for proving correctness of transformations that
preserve bisimulation. Consistent consequence [34], a similar notion that coincides
with simulation on SRF-BESs, only partially resolves this shortcoming. Some of
the techniques we studied preserve only stutter trace equivalence, which is a weaker
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notion than bisimulation and simulation equivalence. Developing a theory that is
similar to consistent correlation, but based on trace equivalence, can significantly
simplify the correctness proofs of these techniques.

As discussed in the previous section, extracting information from arbitrary PBESs
is difficult. At the same time, this is a cornerstone of many syntactic transformation
techniques. Thus, future research should focus on refining the existing techniques,
such as the guards of Section 7.6 and the control flow analysis of [74], and exploring
new concepts. Here, one may take inspiration from the analysis techniques embedded
in many modern compilers, which require this information for the application of
optimisations. The information obtained through static analysis may also benefit
other techniques. For example, information on the control flow graph encoded in a
PBES may be used to construct a finer initial partition in the symbolic approach of
Chapter 4 or to speed up the static analysis for the POR technique of Chapter 6.

One way to tackle the problem of the choice of labelling function in Chapter 6, is to
generalise the POR theory so it is agnostic of the edge labelling. Here, one can draw
inspiration from the related theory of confluence reduction [57], where all invisible
actions are called τ . Then, the generalisation requires that, instead of choosing a
subset of action labels in each state, one chooses a subset of the outgoing τ -transitions.
A challenge in such a theory is ensuring that the accompanying implementation is
still efficient.

A major obstacle for the practical application of both the symbolic bisimulation
procedures of Chapter 4 and the POR algorithm of Chapter 6 is the reasoning about
predicate formulas containing infinite algebraic data types, such as lists. While SMT
solvers are relatively strong when it comes to deciding satisfiability within theories
over integers, reals or finite arrays, the ability to reason about algebraic data types
(ADTs) is limited. A short experiment with SMT-queries containing lists, produced
by pbespor, revealed that CVC4 [10] also cannot decide satisfiability of all these
expressions, even though it includes several techniques aimed at ADTs [11]. Thus,
more research into deciding ADT theories is required. The ability to decide most
expressions over first-order ADTs, such as lists, can already greatly improve the
practical applicability of our PBES solving techniques.
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[78] B. Knaster, Un théorème sur les fonctions d’ensembles. Annales de la Société
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Summary

Reductions for Parity Games and Model Checking

The design and implementation of software systems has long been recognised to be
a difficult task. In the field of theoretical computer science, formal methods aim
to assist the design process by providing mathematical theories that allow one to
reason about the behaviour of (concurrent) processes. One of the most effective
techniques for analysing concurrent behaviour is model checking, which has seen
many applications over the past 40 years. A typical model checking algorithm takes
a high-level specification of a system’s behaviour and a requirement in the shape of a
formal property and checks whether the transition system underlying the specification
satisfies the property. A fundamental challenge in model checking is the so-called
state-space explosion: the arbitrary interleaving of the behaviour of many parallel
processes causes an exponential blow-up in the size of the underlying transition
system.

This thesis explores several new techniques that aim to address the state-space
explosion problem by reducing parity games and their high-level encoding, param-
eterised Boolean equations systems (PBESs). A PBES is a sequence of Boolean
equations augmented with data, where each equation is furthermore labelled with
a fixpoint, allowing one to distinguish the largest and smallest solutions. PBESs
can encode many types of decision problems, among them model checking problems.
Computing the solution to a PBES answers the decision problem it encodes. PBES
solving often involves generating its underlying parity game, which frequently are
very large due to the state-space explosion, motivating the application of reduction
techniques. All of the reductions we propose exploit the fact that PBESs allows very
coarse abstractions, while (partially) preserving their solution. The contents of the
thesis can be divided up into three parts.

The first part discusses symbolic techniques that enable solving of PBESs with
an infinite underlying parity game. As a prerequisite, we introduce a normal form
for PBESs that enables symbolic reasoning about the transitions it induces in
the underlying game. The solving procedures proposed here perform partition
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refinement, based on a bisimulation relation between the nodes of the parity game.
This technique is provably more general than similar techniques for behavioural
specifications. Furthermore, experimental results show that it also outperforms other
tools. Our tool is the first implementation of a semi-decision procedure for deciding
bisimilarity of arbitrary infinite processes.

The second part of the thesis discusses partial-order reduction (POR), which is a
technique that aims to deal with the state-space explosion problem by not exploring
all similar interleavings of parallel processes. First, we identify a theoretical problem
in related work and show that one variant of POR is not guaranteed to preserve
linear-time properties, contrary to what is claimed in an often-cited theorem. We
propose a solution and show exactly in which derivative works the problem manifests
itself. Subsequently, we apply partial-order reduction to PBESs and parity games.
Compared to traditional POR approaches that operate on transition systems, this has
the benefit that POR can also be applied when checking stutter-sensitive properties.
Furthermore, the property is automatically taken into consideration during the
reduction. Experiments show that substantial reductions can be achieved.

The final part deals with PBESs that contain quantifiers over data. Quantifiers
that have a larger-than-necessary scope can cause the underlying parity game to
grow unnecessarily. We introduce several techniques for transforming PBESs with
quantifiers and show how their scope can be reduced. Furthermore, we discuss
guards for PBESs: expressions that characterise when two equations depend on each
other. Guards are a fundamental tool in several other static analysis techniques. The
guards we compute are stronger than those proposed before, and thus contain more
information on dependencies.
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Samenva�ing

Reducties voor Pariteitsspellen en Modelchecken

Al sinds de begindagen van computers wordt het ontwerpen en implementeren van
softwaresystemen gezien als een complexe aangelegenheid. Binnen het onderzoeksveld
van theoretische informatica zijn formele methoden ontwikkeld die het ontwerpproces
ondersteunen door middel van theorie waarmee men over het gedrag van (parallelle)
processen kan redeneren. Eén van de meest effectieve technieken voor het analyseren
van parallel gedrag is modelchecken, dat veelvuldig is toegepast in de afgelopen 40
jaar. Een typisch modelcheckalgoritme heeft als invoer een abstracte specificatie van
het gedrag van een systeem en een vereiste in de vorm van een formele eigenschap en
controleert of het transitiesysteem dat gemodelleerd wordt door de specificatie, voldoet
aan de eigenschap. De fundamentele uitdaging in modelchecken is de zogenaamde
toestandsruimteontploffing: het arbitrair verweven van het gedrag van vele parallele
processen leidt tot een exponentiële toename van de grootte van het onderliggende
transitiesysteem.

Dit proefschrift verkent een aantal nieuwe technieken die het probleem van toe-
standsruimteontploffing pogen op te lossen door het reduceren van pariteitsspellen
en hun compacte beschrijving, geparametriseerde booleaanse vergelijkingsstelsels
(PBES). Een PBES is een sequentie van booleaanse vergelijkingen die zijn aangevuld
met data en fixpunten, wat het mogelijk maakt om kleinste en grootste oplossingen
te onderscheiden. PBESsen kunnen vele verschillende soorten beslisproblemen be-
schrijven, waaronder modelcheckproblemen. Het berekenen van de oplossing van een
PBES beantwoordt ook het beslisprobleem dat erin beschreven wordt. Het oplossen
van een PBES omvat vaak het genereren van het onderliggende pariteitsspel, dat
regelmatig erg groot wordt door de toestandsruimteontploffing. Dit motiveert het
toepassen van reductietechnieken. Alle reducties die we voorstellen maken gebruik
van het feit dat PBESsen en pariteitsspellen erg grove reducties toestaan, terwijl hun
oplossing (deels) behouden blijft.

De inhoud van dit proefschrift kan opgedeeld worden in drie delen. Het eerste
deel bespreekt symbolische technieken die het mogelijk maken om PBESsen met een
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oneindig onderliggend pariteitsspel op te lossen. Hiervoor is een normaalvorm voor
PBESsen benodigd, die we eerst introduceren. De normaalvorm stelt ons in staat
om symbolisch te redeneren over de transities die door de PBES gëınduceerd worden
in het onderliggende spel. De oplosprocedures die hier voorgesteld worden passen
partitieverfijning toe, gebaseerd op een bisimulatierelatie tussen de knopen van het
pariteitsspel. Deze techniek is bewijsbaar generieker dan vergelijkbare technieken voor
specificaties die gedrag beschrijven. Bovendien laten experimentele resultaten zien dat
onze techniek ook in de praktijk beter presteert dan andere. Onze implementatie is de
eerste implementatie van een semi-beslisprocedure voor het beslissen van bisimulariteit
van willekeurige oneindige processen.

Het tweede deel van het proefschrift bespreekt partiële-ordereductie (POR), een
techniek die het probleem van toestandsruimteontploffing probeert op te lossen door
niet alle verwevingen van parallele processen te verkennen. Allereerst identificeren we
een theoretisch probleem in verwant werk en tonen we aan dat een bepaalde variant
van POR niet noodzakelijkerwijs lineaire-tijdeigenschappen behoudt, in tegenstelling
tot wat beweerd wordt in een vaak geciteerde stelling. We stellen een oplossing voor
en we laten zien in welke afgeleide werken het probleem zich voordoet. Vervolgens
passen we partiële-orderreductie toe op PBESsen en pariteitsspellen. Vergeleken met
traditionele POR-technieken die opereren op transitiesystemen, heeft onze aanpak
als voordeel dat POR ook toegepast kan worden bij het checken van stottergevoelige
eigenschappen en dat de eigenschap automatisch ook beschouwd wordt tijdens de
reductie. Experimenten tonen aan dat significante reductie behaald kunnen worden.

Het laatste deel behandelt PBESsen die kwantoren over data bevatten. Kwantoren
die een groter dan noodzakelijk deel van de PBES omvatten kunnen er toe leiden
dat het onderliggende pariteitsspel onnodig groeit. We introduceren verschillende
technieken voor het transformeren van PBESsen met kwantoren en laten zien hoe
hun reikwijdte verkleind kan worden. Verder bespreken we afhankelijkheidscondities
voor PBESsen. Deze karakteriseren de afhankelijkheid tussen twee vergelijkingen
in een PBES, en zijn daarmee een fundamenteel gereedschap voor andere statische-
analysetechnieken. De afhankelijkheidscondities die wij berekenen zijn sterker dan de
condities die eerder zijn voorgesteld, en bevatten dus meer informatie.
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