Partial-Order Reduction for GPU Model Checking

Thomas Neele!*, Anton Wijs2, Dragan Bosnacki?, and Jaco van de Pol®

! University of Twente, Enschede, The Netherlands
2 Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. Model checking using GPUs has seen increased popularity over the
last years. Because GPUs have a limited amount of memory, only small to medium-
sized systems can be verified. For on-the-fly explicit-state model checking, we
improve memory efficiency by applying partial-order reduction. We propose novel
parallel algorithms for three practical approaches to partial-order reduction. Cor-
rectness of the algorithms is proved using a new, weaker version of the cycle
proviso. Benchmarks show that our implementation achieves a reduction similar
to or better than the state-of-the-art techniques for CPUs, while the amount of
runtime overhead is acceptable.

1 Introduction

The practical applicability of model checking [1, 10] has often been limited by state-
space explosion. Successful solutions to this problem have either depended on efficient
algorithms for state space reduction, or on leveraging new hardware improvements. To
capitalize on new highly parallel processor technology, multi-core [14] and GPU model
checking [7] have been introduced. In recent years, this approach has gained popularity
and multiple mainstream model checkers already have multi-threaded implementations
[3,9,11, 14, 16]. In general, designing multi-threaded algorithms for modern parallel
architectures brings forward new challenges typical for concurrent programming. For
model checking, developing concurrent versions of existing state space algorithms is an
important task.

The massive number of threads that run in parallel makes GPUs attractive for the
computationally intensive task of state space exploration. Their parallel power can
speed-up model checking by up to two orders of magnitude [2, 12,26, 28]. Although the
amount of memory available on GPUs has increased significantly over the last years, it
is still a limiting factor.

In this work we aim to improve the memory efficiency of GPU-based model check-
ing. Therefore, we focus on reconciling partial-order reduction (POR) techniques [13,
21,23] with a GPU-based model checking algorithm [27]. POR exploits the fact that the
state space may contain several paths that are similar, in the sense that their differences
are not relevant for the property under consideration. By pruning certain transitions, the
size of the state space can be reduced. Hence, POR has the potential to increase the
practical applicability of GPUs in model checking.

* We gratefully acknowledge the support of NVIDIA Corporation with the donation of the
GeForce Titan X used for this research.

2 T. Neele, A. Wijs, D. Bo$nacki and J. van de Pol

Contributions We extend GPUEXPLORE [27], one of the first tools that runs a com-
plete model checking algorithm on the GPU, with POR. We propose GPU algorithms
for three practical approaches to POR, based on ample [15], cample [6] and stubborn
sets [23]. We improve the cample-set approach by computing clusters on-the-fly. Al-
though our algorithms contain little synchronization, we prove that they satisfy the ac-
tion ignoring proviso by introducing a new version of the so called cycle proviso, which
is weaker than previous versions [21, 8], possibly leading to better reductions. Our im-
plementation is evaluated by running benchmarks with models from several other tools.
We compare the performance of each of the approaches with LTSMIN [16], which im-
plements state-of-the-art algorithms for explicit-state multi-core POR.

The rest of the paper is organized as follows: section 2 gives an overview of related
work and section 3 introduces the theoretic background of partial-order reduction and
the GPU architecture. The design of our algorithms is described in section 4 and a
formal correctness proof is given in section 5. Finally, section 6 presents the results
obtained from executing our implementation on several models and section 7 provides
a conclusion and suggestions for future work.

2 Related Work

Partial-order reduction. Bosnacki et al. have defined cycle provisos for general state
expanding algorithms [8] (GSEA, a generalization of depth-first search (DFS) and
breadth-first search (BFS)). Although the proposed algorithms are not multi-core, the
theory is relevant for our design, since our GPU model checker uses a BFS-like explo-
ration algorithm.

POR has been implemented in several multi-core tools: Holzmann and Bosnacki
[14] implemented a multi-core version of SPIN that supports POR. They use a slightly
adapted cycle proviso that uses information on the local DFS stack.

Barnat et al. [4] have defined a parallel cycle proviso that is based on a topological
sorting of the state space. A state space cannot be topologically sorted if it contains
cycles. This information is used to determine which states need to be fully expanded.
Their implementation provides competitive reductions. However, it is not clear from the
paper whether it is slower or faster than a standard DFS-based implementation.

Laarman and Wijs [19] designed a multi-core version of POR that yields better
reductions than SPIN’s implementation, but has higher runtimes. The scalability of the
algorithm is good up to at least 64 cores.

GPU model checking. General purpose GPU (GPGPU) techniques have already been
applied in model checking by several people, all with a different approach: Edelkamp
and Sulewski [12] perform successor generation on the GPU and apply delayed du-
plicate detection to store the generated states in main memory. Their implementation
performs better than DIVINE, it is faster and consumes less memory per state. The
performance is worse than multi-core SPIN, however.

Barnat et al. [2] perform state-space generation on the CPU, but offload the detec-
tion of cycles to the GPU. The GPU then applies the Maximal Accepting Predecessors

Partial-order Reduction for GPU Model Checking 3

(MAP) or One Way Catch Them Young (OWCTY) algorithm to find these cycles. This
results in a speed-up over both multi-core DIVINE and multi-core LT SMIN.

GPUEXPLORE by Wijs and BoSnacki [26,27] performs state-space exploration
completely on the GPU. The tool can check for absence of deadlocks and can also check
safety properties. The performance of GPUEXPLORE is similar to LTSMIN running on
about 10 threads.

Bartocci et al. [5] have extended SPIN with a CUDA implementation. Their imple-
mentation has a significant overhead for smaller models, but performs reasonably well
for medium-sized state spaces.

Wau et al. [28] also implemented a complete model checker in CUDA. They adopted
several techniques from GPUEXPLORE, and added dynamic parallelism and global
variables. The speed up gained from dynamic parallelism proved to be minimal. A
comparison with a sequential CPU implementation shows a good speed-up, but it is not
clear from the paper how the performance compares with other parallel tools.

GPUs have also been applied in probabilistic model checking: Bosnacki et al. [7,
25] speed up value-iteration for probabilistic properties by solving linear equation sys-
tems on the GPU. Ceska et al [9] implemented parameter synthesis for parametrized
continuous time Markov chains.

3 Background

Before we introduce the theory of POR, we first establish the basic definitions of la-
belled transitions systems and concurrent processes.

Definition 1. A labelled transition system (LTS) is a tuple T = (S, A, T, §), where:
— S is a finite set of states.
— A is a finite set of actions.
— 7: 8% AXS is the relation that defines transitions between states. Each transition
is labelled with an action a € A.
— § € S is the initial state.

Let enabled(s) = {a|(s,a,t) € 7} be the set of actions that is enabled in state
s and succ(s,a) = {t|(s,a,t) € 7} the set of successors reachable through some
action «. Additionally, we lift these definitions to take a set of states or actions as
argument. The second argument of succ is omitted when all actions are considered:
succ(s) = succ(s, A). If (s,a,t) € T, then we write s —» ¢. We call a sequence of
actions and states sq a1, S1 2z, 2 sy, an execution. We call the sequence of
states visited in an execution a path: m = sy . . . Sy,. If there exists a path sg . . . s, then
we say that s,, is reachable from s.

To specify concurrent systems consisting of a finite number of finite-state processes,
we define a network of LTSs [20]. In this context we also refer to the participating LTSs
as concurrent processes.

Definition 2. A network of LTSs is a tuple N' = (II, V'), where:
— I is alist of n processes II[1],. .., II[n] that are modelled as LTSs.
— V is a set of synchronization rules (t, a), where a is an action and t € {0,1}" is a
synchronization vector that denotes which processes synchronize on a.

4 T. Neele, A. Wijs, D. Bo$nacki and J. van de Pol

For every network, we can define an LTS that represents its state space.

Definition 3. Let N = (I1,V') be a network of processes. Ty = (S, A, 1, 8) is the LTS
induced by this network, where:

- 8 = S8[1] x -+ x S[n] is the cross-product of all the state spaces.

- A= A[1]U---U A[n] is the union of all actions sets.

-7 ={{(s1,.--y8n),a,{t1,...,tn)) | I(t,a) € V : Vi € {L.n} : t(i) = 1 =
(siya,t;) € T[i) At(i) = 0 = s; = t;} is the transition relation that follows from
each of the processes and the synchronization rules.

- §=(3[0],...,8[n]) is the combination of the initial states of the processes.

We distinguish two types of actions: (1) local actions that do not synchronize with
other processes, i.e. all rules for those actions have exactly one element set to 1, and (2)
synchronizing actions that do synchronize with other processes. In the rest of this paper
we assume that local actions are never blocked, i.e. if there is a local action o € A[i]
then there is a rule (¢,) € V such that element ¢ of ¢ is 1 and the other elements are 0.
Note that although processes can only synchronize on actions with the same name, this
does not limit the expressiveness. Any network can be transformed into a network that
follows our definition by proper action renaming.

During state-space exploration, we exhaustively generate all reachable states in T/,
starting from the initial state. When all successors of s have been identified, we say that
s has been explored, and once a state s has been generated, we say that it is visifted.

3.1 Partial-Order Reduction
We first introduce the general concept of a reduction function and a reduced state space.

Definition 4. A reduced LTS can be defined according to some reduction function r :
S — 24, The reduction of T w.r.t. r is denoted by T,. = (S, A, 7., 8), such that:

- (s,a,t) € 7 ifand only if (s, o, t) € T and o € 7(5).

— S, is the set of states reachable from s under T,.

POR is a form of state-space reduction for which the reduction function is usu-
ally computed while exploring the original state space (on-the-fly). That way, we avoid
having to construct the entire state space and we are less likely to encounter memory
limitations. However, a drawback is that we never obtain an overview of the state space
and the reduction function might be larger than necessary.

The main idea behind POR is that not all interleavings of actions of parallel pro-
cesses are relevant to the property under consideration. It suffices to check only one
representative execution from each equivalence class of executions. To reason about
this, we define when actions are independent.

Definition 5. Two actions «, 8 are independent in state s if and only if o, 8 € enabled(s)
implies:
- « € enabled(succ(s, B))
- B € enabled(succ(s, a))
- succ(suce(s, a), B) = succ(suce(s, B), a)

Partial-order Reduction for GPU Model Checking 5

Actions are globally independent if they are independent in every state s € S.

Based on the theory of independent actions, the following restrictions on the reduc-
tion function have been developed [10]:

COa r(s) C enabled(s).
COb 7(s) =0 < enabled(s) = 0.

Cl For all s € S and executions s <% s; 22 ... 21 5 1 2% 5 such that
a1,...,an ¢ r(s), ay is independent in s,,_1 with all actions in 7(s).

COb makes sure that the reduction does not introduce new deadlocks. C1 implies
that all o € r(s) are independent of enabled(s) \ r(s). Informally, this means that only
the execution of independent actions can be postponed to a later state. A set of actions
that satisfies these criteria is called a persistent set. It is hard to compute the smallest
persistent set, therefore several practical approaches have been proposed, which will be
introduced in section 4.

If r is a persistent set, then all deadlocks in an LTS 7 are preserved in 7. Therefore,
persistent sets can be used to speed up checking for deadlocks. However, safety proper-
ties are generally not preserved due to the action-ignoring problem. This occurs when-
ever some action in the original system is ignored indefinitely, i.e. it is never selected
for the reduction function. Since we are dealing with finite state spaces and condition
COb is satisfied, this can only occur on a cycle. To prevent action-ignoring, another
condition, called the action-ignoring proviso, is applied to the reduction function.

C2ai For every state s € S, and every action « € enabled(s), there exists an execution
s 2 s 22 ... 2% s, in the reduced state space, such that a € 7(s,,).

Applying this proviso directly by means of Valmari’s SCC approach [22] introduces
quite some runtime overhead. For this reason, several stronger versions of the action-
ignoring proviso have been defined, generally called cycle provisos. Since GPUEX-
PLORE does not follow a strict BFS order, we will use the closed-set proviso [8] (Closed
is the set of states that have been visited and for which exploration has at least started):

C2c There is at least one action o € 7(s) and state ¢ such that s = ¢ and ¢t ¢ Closed.
Otherwise, (s) = enabled(s).

3.2 GPU Architecture

CUDA! is a programming interface developed by NVIDIA to enable general purpose
programming on a GPU. It provides a unified view of the GPU (‘device’), simplifying
the process of developing for multiple devices. Code to be run on the device (‘kernel’)
can be programmed using a subset of C++.

On the hardware level, a GPU is divided up into several streaming multiproces-
sors (SM) that contain hundreds of cores. On the side of the programmer, threads are
grouped into blocks. The GPU schedules thread blocks on the SMs. One SM can run
multiple blocks at the same time, but one block cannot execute on more than one SM.

! https://developer.nvidia.com/cuda-zone

6 T. Neele, A. Wijs, D. Bo$nacki and J. van de Pol

oooooo

0

.

.
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo

| L1 & L2 cache |

[texture cache |

[global memory |

Fig. 1. Schematic overview of the GPU hardware architecture

Internally, blocks are executed as one or more warps. A warp is a group of 32 threads
that move in lock-step through the program instructions.

Another important aspect of the GPU architecture is the memory hierarchy. Firstly,
each block is allocated shared memory that is shared between its threads. The shared
memory is placed on-chip, therefore it has a low latency. Secondly, there is the global
memory that can be accessed by all the threads. It has a high bandwidth, but also a
high latency. The amount of global memory is typically multiple gigabytes. There are
three caches in between: the L1, L2 and the texture cache. Data in the global memory
that is marked as read-only (a ‘texture’) may be placed in the texture cache. The global
memory can be accessed by the CPU (‘host’), thus it also serves as an interface between
the host and the device. Figure 1 gives a schematic overview of the architecture.

The bandwidth between the SMs and the global memory is used optimally when a
continuous block of 32 integers is fetched by a warp. In that case, the memory transac-
tion is performed in parallel. This is called coalesced access.

4 Design and implementation

4.1 Existing Design

GPUEXPLORE [27] is an explicit-state model checker that can check for deadlocks and
safety properties. GPUEXPLORE executes all the computations on the GPU and does
not rely on any processing by the CPU.

The global memory of the GPU is occupied by a large hash table that uses open
addressing with rehashing. The hash table stores all the visited states, distinguishing
the states that still need to be explored (Open set) from those that do not require this
(Closed). Tt supports a findOrPut operation that inserts states if they are not already
present. The implementation of findOrPut is thread-safe and lockless. It uses the com-
pareAndSwap (CAS) operation to perform atomic inserts.

The threads are organized as follows: each thread is primarily part of a block. As
detailed in section 3.2, the hardware enforces that threads are grouped in warps of size
32. We also created logical groups, called vector groups. The number of threads in a
vector group is equal to the number of processes in the network (cf. section 3). When
computing successors, threads cooperate within their vector group. Each thread has a

Partial-order Reduction for GPU Model Checking 7

Algorithm 1: GPUEXPLORE exploration framework

Data: __global__ table[]
Data: __shared__ workTile[], cache[]

1 vgid < tid / numProc; /* index of the vector group =/
2 vgtid < tid mod numProc; /* 1d of the thread in the group =*/
3 foreach ¢ € 0... NUMITERATIONS do

4 workTile + gatherWork () ;

5 __syncthreads();

6 s + workTile[vgid];

7 foreach ¢ € succygria(s) do

8 L storeInCache (1);

9 _syncthreads();

10 foreach t € cache do

11 if isNew (¢) then

12 findOrPutWarp (f);

13 L markOld (1) ;

vector group thread id (vgtid) and is responsible for generating the successors of process
IT[vgtid]. Successors following from synchronizing actions are generated in coopera-
tion. Threads with vgtid 0 are group leaders. When accessing global memory, threads
cooperate within their warp and read continuous blocks of 32 integers for coalesced
access. Note that the algorithms presented here specify the behaviour of one thread,
but are run on multiple threads and on multiple blocks. Most of the synchronization is
hidden in the functions that access shared or global memory.

A high-level view on the algorithm of GPUEXPLORE is presented in Algorithm 1.
This kernel is executed repetitively until all reachable states have been explored. Sev-
eral iterations may be performed during each launch of the kernel (NUMITERATIONS
is fixed by the user). Each iteration starts with work gathering: blocks search for unex-
plored states in global memory and copy those states to the work tile in shared memory
(line 4). Once the work tile is full, the __syncthreads function from the CUDA API
synchronizes all threads in the block and guarantees that writes to the work tile are
visible to other threads (line 5). Then, each vector group takes a state from the work
tile (line 6) and generates its successors (line 7). To prevent non-coalesced accesses to
global memory, these states are first placed in a cache in shared memory (line 8). When
all the vector groups in a block are done with successor generation, each warp scans the
cache for new states and copies them to global memory (line 12). The states are then
marked old in the cache (line 13), so they are still available for local duplicate detection
later on. For details on successor computation and the hash table, we refer to [27].

In the following sections, we will show how the generation of successors on lines 7
and 8 can be adjusted to apply POR.

4.2 Ample-set Approach

The ample-set approach is based on the idea of safe actions [15]: an action is safe if it
is independent of all actions of all other processes. While exploring a state s, if there

8 T. Neele, A. Wijs, D. Bo$nacki and J. van de Pol

Algorithm 2: Successor generation under the ample-set approach

Data: __global__ table[]
Data: __shared__ cache[], buf]][], reduceProc]]
bufCount <+ 0, reduceProclvgid] - numProcs;
if processHasOnlyLocalTrans(s, vgtid) then
foreach ¢ € succygria(s) do
location < storeInCache (1) ;
buf [tid][bufCount] < location;
bufCount < bufCount + 1;
foreach i € [0..bufCount — 1] do
j < findGlobal (cache[buf[tid][i]]);
9 if j = NOTFOUND V isNew (table[j]) then
10 L atomicMinimum (&reduceProclvgid], vgtid);

A UM B W N =

® 3

11 _syncthreads();

12 if reduce Proclvgid] < numProcs A reduceProc[vgid] # vgtid then
13 foreach i € [0..bufCount — 1] do

14 L markO1ld (cache[buf [tid][3]]) ;

15 _syncthreads();

16 if reduce Proclvgid] = vgtid then

17 foreach i € [0..bufCount — 1] do

18 L markNew (cache[buf [tid][7]]) ;

19 if reduce Proclvgid] > numProcs then

20 L /* generate the remaining successors */

is a process I7]i] that has only safe actions enabled in s, then r(s) = enabled;(s) is a
valid ample set, where enabled;(s) is the set of actions of process II[i] enabled in s.
Otherwise, 7(s) = enabled(s). In our context of an LTS network, only local actions
are safe, so reduction can only be applied if we find a process with only local actions
enabled.

An outline of the GPU ample-set algorithm can be found in Algorithm 2. First,
the successors of processes that have only local actions enabled are generated. These
states are stored in the cache (line 4) by some thread ¢, and their location in the cache
is stored in a buffer that has been allocated in shared memory for each thread (line 5).
Then, line 8 finds the location of the states in global memory. This step is performed by
threads cooperating in warps to ensure coalesced memory accesses. If the state is not
explored yet (line 9), then the cycle proviso has been satisfied and thread ¢ reports it can
apply reduction through the reduceProc shared variable (line 10). In case the process
of some thread has been elected for reduction (reduce Proclvgid] < numProcs), the
other threads apply the reduction by marking successors in their buffer as old in the
cache, so they will not be copied to global memory later. Finally, threads corresponding
to elected processes get a chance to mark their states as new if they have been marked
as old by a thread from another vector group (line 18). In case no thread can apply
reduction, the algorithm continues as normal (line 20).

Partial-order Reduction for GPU Model Checking 9

4.3 Clustered Ample-set Approach

In our definition of a network of LTSs, local actions represent internal process be-
haviour. Since most practical models frequently perform communication, they have
only few local actions and consist mainly of synchronizing actions. The ample-set ap-
proach relies on local actions to achieve reduction, so it often fails to reduce the state
space. To solve this issue, we implemented cluster-based POR [6]. Contrary to the
ample-set approach, all actions of a particular set of processes (the cluster) are selected.
The notion of safe actions is still key. However, the definition is now based on clusters.
An action is safe with respect to a cluster C C {1,...,n} (n is the number of pro-
cesses in the network), if it is part of a process of that cluster and it is independent of all
actions of processes outside the cluster. Now, for any cluster C that has only actions en-
abled that are safe with respect to C, 7(s) = ;. enabled;(s) is a valid cluster-based
ample (cample) set. Note that the cluster containing all processes always yields a valid
cample set.

Whereas Basten and BoSnacki [6] determine a tree-shaped cluster hierarchy a priori
and by hand, our implementation computes the cluster on-the-fly. This should lead to
better reductions, since the fixed hierarchy only works for parallel processes that are
structured as a tree. Dynamic clustering works for any structure, for example ring or
star structured LTS networks. In [6], it is argued that computing the cluster on-the-fly is
an expensive operation, so it should be avoided. Our approach is, when we are exploring
a state s, to compute the smallest cluster C, such that Vi € C : C[i] C C, where Ci
is the set of processes that process ¢ synchronizes with in the state s. This can be done
by running a simple fixed-point algorithm, with complexity O(n), once for every C|[i]
and finding the smallest from those fixed points. This gives a total complexity of O(n?).
However, in our implementation, n parallel threads each compute a fixed point for some
C'[¢]. Therefore, we are able to compute the smallest cluster in linear time with respect
to the amount of processes. Dynamic clusters do not influence the correctness of the
algorithm, the reasoning of [6] still applies.

The algorithm for computing cample-sets suffers from the fact that it is not possi-
ble to determine a good upper bound on the maximum amount of successors that can
follow from a single state. Therefore, it is not possible to statically allocate a buffer, as
was done for Algorithm 2. Dynamic allocation in shared memory is not supported by
CUDA. The only alternative is to alternate between successor generation and checking
whether the last state is marked as new in global memory. During this process, each
thread tracks whether the generated successors satisfy the cycle proviso and with which
other processes it synchronizes, based on the synchronization rules. The next step is to
share this information via shared memory. Then, each thread computes a fixed-point as
detailed above. The group leader selects the smallest of those fixed-points as cluster. All
actions of processes in that closure will form the cample set. Finally, states are marked
as old or new depending on whether they follow from an action in the cample set.

4.4 Stubborn-set Approach

The stubborn-set approach was originally introduced by Valmari [23] and can yield
better reductions than the ample-set approach. This technique is more complicated and

10 T. Neele, A. Wijs, D. Bo$nacki and J. van de Pol

can lead to overhead, since it reasons about all actions, even those that are disabled. The
algorithm starts by selecting one enabled action and builds a stubborn set by iteratively
adding actions as follows: for enabled actions «, all actions that are dependent on « are
added. For disabled actions (3, all actions that can enable S are added. When a closure
has been reached, all enabled actions in the stubborn set together form a persistent set.

Our implementation uses bitvectors to store the stubborn set in shared memory. One
bitvector can be used to represent a subset of the synchronization rules and the local
actions. In case we apply the cycle proviso, we need four such bitvectors: to store the
stubborn set, the set of enabled actions, the set of actions that satisfy the cycle proviso
and a work set to track which actions still need to be processed. This design may have
an impact on the practical applicability of the algorithm, since the amount of shared
memory required is relatively high. However, this is the only approach that results in an
acceptable computational overhead.

To reduce the size of the computed stubborn set, we use the necessary disabling
sets and the heuristic function from Laarman et al. [17]. Contrary to their implemen-
tation, we do not compute a stubborn set for all possible choices of initial action. Our
implementation deterministically picks an action, giving preference to local actions.
Effectively, we sacrifice some reduction potential in order to minimize the overhead of
computing a stubborn set.

In GPUEXPLORE, it is not possible to determine in constant time whether a certain
action is enabled. Therefore, we chose to generate the set of enabled actions before
computing the stubborn set. This also allows us to check which actions satisfy the cycle
proviso. With this information saved in shared memory, a stubborn set can be computed
efficiently. In case the set of actions satisfying the cycle proviso is empty, the set of all
actions is returned. Otherwise, the group leader selects one initial action that satisfies
the cycle proviso for the work set. Then, all threads in the group execute the closure
algorithm in parallel. After computation of the stubborn set has finished, all successors
following from actions in the set are generated and stored in the cache.

5 Proof of Correctness

The correctness of applying Bosnacki et al.’s [8] closed-set proviso C2c¢ in a multi-
threaded environment is not immediately clear. The original correctness proof is based
on the fact that for every execution, states are removed from Open (the set of unexplored
states) in a certain sequence. In a multi-threaded algorithm, however, two states may be
removed from Open at the same time. To prove that the algorithms introduced in the
previous section satisfy the action ignoring proviso, we introduce a new version of the
cycle proviso:

Lemma 1. (closed-set cycle proviso) If a reduction algorithm satisfies conditions COa,
COb and CI and selects for every cycle sg 200 g 2o RN Sn Lny S in the
reduced state space with 8 € enabled(sg) and B # «; for all 0 < i < n, (i) at least
one transition labelled with 3 or (ii) at least one transition that, during the generation
of the reduced state space, led to a state outside the cycle that has not been explored yet

(i.e. 3i3(s4,7,t) € 71y € r(s;) At ¢ Closed); then condition C2ai is satisfied.

Partial-order Reduction for GPU Model Checking 11

Fig. 2. ‘Lasso’ shaped path from the proof of Lemma 1

Proof. Suppose that action 5 € enabled(sg) is always ignored, i.e. condition C2ai is

not satisfied. This means there is no execution sg 204 5 2L Gty Sn ﬁ) t where
a; € r(s;) for all 0 < i < n. Because we are dealing with finite state spaces, every
execution that infinitely ignores S has to end in a cycle. These executions have a ‘lasso’
. e e g [e51 Qi1 a;
shape, they consist of an initial phase and a cycle. Let sy — 51 — ... —— s; —
Qp—1 Qp . . e . . .
... — s, — s; be the execution with the longest initial phase, i.e. with the highest
value 7 (see Figure 2). Since condition C1 is satisfied, 5 is independent of any oy, and
thus enabled on any si with 0 < k < n. It is assumed that for at least one of the states
si ... sy an action exiting the cycle is selected. Let s; be such a state. Since {3 is ignored,
B ¢ r(s;). According to the assumption, one of the successors found through 7(s;) has
not been in Closed. Let this state be ¢. Any finite path starting with s . . . s;¢ cannot end
in a deadlock without taking action 3 at some point (condition COb). Any infinite path
starting with s ... s;¢ has a longer initial phase (after all j + 1 > ¢) than the execution

we assumed had the longest initial phase. Thus, our assumption is contradicted. a

Before we prove that our algorithms satisfy the action ignoring proviso, it is im-
portant to note three things. Firstly, that the work gathering function on line 4 of Algo-
rithm 1 moves the gathered states from Open to Closed. Secondly, the ample/stubborn
set generated by our algorithms satisfies conditions COa, COb and C1, also when ex-
ecuted by multiple vector groups (the proof for this is omitted from this paper). And
lastly, in this theorem the ample-set approach is used as an example, but the reasoning
applies to all three algorithms.

Theorem 1. Algorithm 2 produces a persistent set that satisfies our action-ignoring
proviso, even when executed on multiple blocks.

Proof. Let sg 200 g 2. Onoz, Sn—1 RN so be a cycle in the reduced state
space. In case g is dependent on all other enabled actions in sg, there is no action to
be ignored and C2ai is satisfied.

In case there is an action in s that is independent of «, this action is prone to being
ignored. Let us call this action 3. Because condition Cl1 is satisfied, [is also enabled in
the other states of the cycle: 8 € enabled(s;) forall 0 < i < n.

We now consider the order in which states on the cycle can be explored by multiple
blocks. Let s; be one of the states of this cycle that is gathered from Open first (line 4,
Algorithm 1). There are two possibilities regarding the processing of state s;_1:

— s;—1 is gathered from Open at exactly the same time as s;. When the processing for
s;—1 arrives at line 9 of Algorithm 2, s; will be in Closed.

12 T. Neele, A. Wijs, D. Bo$nacki and J. van de Pol

Table 1. Overview of the models used in the benchmarks

model #states #transitions stub. set size model #states #transitions stub. set size
cache 616 4,631 222 odp.1 7,699,456 31,091,554 556
leader_electionl 4,261 12,653 4,712 1394.1 10,138,812 96,553,318 300
acs 4,764 14,760 134 asyn3 15,688,570 86,458,183 1,315
sieve 23,627 84,707 941 lamport8 62,669,317 304,202,665 305
odp 91,394 641,226 464 szymanskiS 79,518,740 922,428,824 481
1394 198,692 355,338 301 peterson7 142,471,098 626,952,200 2,880
acs.1 200,317 895,004 139 lann6 144,151,629 648,779,852 48
transit 3,763,192 39,925,524 73 lann7 160,025,986 944,322,648 48
wafer_stepper.l 3,772,753 19,028,708 880

— s;_1 is gathered later than s;. Again, s; will be in Closed.

Since s; is in Closed in both cases, at least one other action will be selected for r(s;—1).
If all successors of s;_1 are in Closed, then 3 has to be selected. Otherwise, at least
one transition to a state that is not in Closed will be selected. Now we can apply the
closed-set cycle proviso (Lemma 1). a

6 Experiments

We want to determine the potential of applying POR in GPU model checking and how
it compares to POR on a multi-core platform. Additionally, we want to determine which
POR approach is best suited to GPUs. We will focus on measuring the reduction and
overhead of each implementation.

We implemented the proposed algorithms in GPUEXPLORE?. Since GPUEXPLORE
only accepts EXP models as input, we added an EXP language front-end to LTSMIN
[16] to make a comparison with a state-of-the-art multi-core model checker possible.
We remark that it is out of the scope of this paper to make an absolute speed comparison
between a CPU and a GPU, since it is hard to compare completely different hardware
and tools. Moreover, speed comparisons have already been done before [5, 27, 28].

GPUEXPLORE was benchmarked on an NVIDIA Titan X, which has 24 SMs and
12GB of global memory. We allocated 5GB for the hash table. Our code was run on
3120 blocks of 512 threads and performed 10 iterations per kernel launch (cf. sec-
tion 4.1), since these numbers give the best performance [27].

LTSMIN was benchmarked on a machine with 24GB of memory and two Intel Xeon
E5520 processors, giving a total of 16 threads. We used BFS as search order. The stub-
born sets were generated by the closure algorithm described by Laarman et al. [17].

The models that were used as benchmarks have different origins. Cache, sieve,
odp, transit and asyn3 are all EXP models from the examples included in the
CADP toolkit’. 1394, acs and wafer stepper are originally mCRL2* models and
have been translated to EXP. The 1eader_election, lamport, lann, peterson
and szymanski models come from the BEEM database and have been translated from

2 Sources are available at https://github.com/ThomasNeele/GPUexplore
3 http://cadp.inria.fr
* http://mcrl2.org

Partial-order Reduction for GPU Model Checking 13

100
IS B mample
: 80 |- 0o cample |
N
R 60 | B swb i
§ 00 1tsmin
2 40
20
©
0

W RPN S INDFEPLL O

SNV T I S ST TN I
§ 0 @ ample
e 400 - Oo cample |
g B swb
g _ D [Itsmin
o 200f 3 .
= n
o)
¢ L ha oo
0 NP X N X d NN DD H QL
Wt L R 9 > K& Q) R 1 QSO
SN T @ O & O&OOP‘ ¥R QW

Fig. 3. State space and runtime of POR (no cycle proviso) relative to full exploration.

DVE to EXP. The models with a .1-suffix are enlarged versions of the original models
[27]. The details of the models can be found in Table 1. ‘stub. set size’ indicates the
maximum size of the stubborn set, which is equal to the amount of synchronization
rules plus the total amount of local actions.

For the first set of experiments, we disabled the cycle proviso, which is not needed
when checking for deadlocks. For each model and for each POR approach, we executed
the exploration algorithm ten times. The average size of the reduced state space relative
to the full state space is plotted in the first chart of Figure 3 (the full state space has a
size of 100% for each model). The error margins are not depicted because they are very
small (Iess than one percent point).

The first thing to note is that the state spaces of the leader_electionl and
peterson’ models cannot be computed under the stubborn-set approach. The reason
is that the amount of synchronization rules is very high, so the amount of shared mem-
ory required to compute a stubborn set exceeds the amount of shared memory available.

On average, the stubborn-set approach offers the best reduction, followed by the
cample-set approach. Only for the wafer_stepper.1l model, the stubborn-set ap-
proach offers a significantly worse reduction. As expected, the cample-set approach
always offers roughly similar or better reduction than the ample-set approach, since it
is a generalization of the ample-set approach. Overall, the reduction achieved by GPU-
EXPLORE and LTSMIN is comparable. Note that for GPUEXPLORE, any reduction di-
rectly translates into memory saving. For LTSMIN, this may not be the case, since its
database applies tree compression [18].

14 T. Neele, A. Wijs, D. Bo$nacki and J. van de Pol

100
=
E 80 1
» 60 i
g
& 40 |
=20 |
5}
0
WD RPN I PP LL O
& VT IO & o&x'bqb‘ LIRS

§ 600 |- Elample) N
> 0 cample
g BB swb
g 400 |- O0ttsmin _ - N
e
4
Z 200 - 1 N
=
o)
o~

0

Do @ QDN D FE DN DN DD P H QLD
PO A e & o&\q}qb‘ R QW

Fig. 4. State space and runtime of POR with cycle proviso relative to full exploration.

Additionally, we measured the time it took to generate the full and the reduced
state space. To get a good overview of the overhead resulting from POR, the relative
performance is plotted in the second chart of Figure 3. For each platform, the runtime
of full state-space exploration is set to 100% and is indicated by a red line. Again,
the error margins are very small, so we do not depict them. These results show that
the ample-set approach induces no significant overhead. For models where good re-
duction is achieved, it can speed-up the exploration process by up to 3.6 times for the
acs.1 model. On the other hand, both the cample and stubborn-set approach suffer
from significant overhead. When no or little reduction is possible, this slows down the
exploration process by 2.6 times and 4.8 times respectively for the asyn3 model. This
model has the largest amount of synchronization rules after the leader_electionl
and peterson”7 models.

For the smaller models, the speed-up that can be gained by the parallel power of
thousands of threads is limited. If a frontier (search layer) of states is smaller than the
amount of states that can be processed in parallel, then not all threads are occupied and
the efficiency drops. This problem can only get worse under POR. For the largest mod-
els, the overhead for LTSMIN is two times lower than for GPUEXPLORE’s stubborn-set
approach. This shows that our implementation not only has overhead from generating
all successors twice, but also from the stubborn-set computation.

In the second set of experiments, we used POR with cycle proviso. Figure 4 shows
the size of the state space and the runtime. As expected, less reduction is achieved. The
checking of the cycle proviso induces only a little extra overhead (not more than 5%)
for the ample-set and the cample-set approach. The extra overhead for the stubborn-set

Partial-order Reduction for GPU Model Checking 15

Table 2. Average relative size of reduced state spaces

average size 7, (%) ample cample stubborn Itsmin
no proviso 58.97 43.08 42.30 41.80
cycle proviso 73.74 56.49 55.26 73.45

approach can be significant, however: up to 36% for the 1amport 8 model (comparing
the amount of states visited per second). Here, the reduction achieved by LTSMIN is
significantly worse. This is due to the fact that LTSMIN checks the cycle proviso after
generating the smallest stubborn set. If that set does not satisfy the proviso, then the
set of all actions is returned. Our approach, where the set consisting of only the initial
action already satisfies the cycle proviso, often finds a smaller stubborn set. Therefore,
GPUEXPLORE achieves a higher amount of reduction when applying the cycle proviso.

Table 2 shows the average size of the reduced state space for each implementation.
Since GPUEXPLORE'’s stubborn-set implementation cannot compute 7. for leader_
electionl and peterson?, those models have been excluded.

7 Conclusion

We have shown that partial-order reduction for many-core platforms has similar or bet-
ter reduction potential than for multi-core platforms. Although the implementation suf-
fers from overhead due to the limitations on shared memory, it increases the memory
efficiency and practical applicability of GPU model checking. When the cycle proviso
is applied, our approach performs better than LTSmin.

The cample-set approach performs best with respect to our goal of saving memory
with limited runtime overhead. With our improvement of dynamic clusters, it often
achieves the same reduction as the stubborn-set approach. Additionally, it can also be
applied to models with a large amount of local actions and synchronization rules.

Further research into the memory limitations of GPU model checking is necessary.
A possible approach is to implement a multi-GPU version of GPUEXPLORE. Another
direction for future work is to support POR for linear-time properties, as recently, GPU-
EXPLORE was extended to check such properties on-the-fly [24].

Acknowledgements The authors would like to thank Alfons Laarman for his sugges-
tions on how to improve this work.

References

1. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)

2. Barnat, J., Bauch, P, Brim, L., Ceska, M.: Designing fast LTL model checking algorithms for
many-core GPUs. Journal of Parallel and Distributed Computing 72(9), 1083-1097 (2012)

3. Barnat, J., Brim, L., Roc¢kai, P.: DiVinE multi-core - A parallel LTL model-checker. In:
ATVA. LNCS, vol. 5311, pp. 234-239. Springer (2008)

4. Barnat, J., Brim, L., Rockai, P.: Parallel partial order reduction with topological sort proviso.
In: Proc. of the 8th IEEE International Conference on Software Engineering and Formal
Methods. pp. 222-231. IEEE (2010)

10.
11.

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

T. Neele, A. Wijs, D. Bo$nacki and J. van de Pol

. Bartocci, E., Defrancisco, R., Smolka, S.A.: Towards a GPGPU-Parallel SPIN Model

Checker. In: SPIN 2014, Proceedings. pp. 87-96. ACM, San Jose, CA, USA (2014)

. Basten, T., BoSnacki, D., Geilen, M.: Cluster-Based Partial-Order Reduction. ASE 2004,

Proceedings 11(4), 365-402 (2004)

. Bosnacki, D., Edelkamp, S., Sulewski, D., Wijs, A.: Parallel probabilistic model checking

on general purpose graphics processors. STTT 13(1), 21-35 (2010)

. Bosnacki, D., Leue, S., Lluch-Lafuente, A.: Partial-order reduction for general state explor-

ing algorithms. STTT 11(1), 39-51 (2009)

. Ceéka, M., Pilat, P., Paoletti, N., Brim, L., Kwiatkowska, M.: PRISM-PSY: Precise GPU-

Accelerated Parameter Synthesis for Stochastic Systems. In: TACAS. LNCS, vol. 9636, pp.
367-384. Springer (2016)

Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)

Dalsgaard, A.E., Laarman, A., Larsen, K.G., Olesen, M.C., Van De Pol, J.: Multi-core reach-
ability for timed automata. In: FORMATS. LNCS, vol. 7595, pp. 91-106. Springer (2012)
Edelkamp, S., Sulewski, D.: Efficient explicit-state model checking on general purpose
graphics processors. In: SPIN. LNCS, vol. 6349, pp. 106-123. Springer (2010)

Godefroid, P., Wolper, P.: A Partial Approach to Model Checking. Information and Compu-
tation 110(2), 305-326 (1994)

Holzmann, G.J., BoSnacki, D.: The design of a multicore extension of the SPIN model
checker. IEEE Transactions on Software Engineering 33(10), 659-674 (2007)

Holzmann, G.J., Peled, D.: An Improvement in Formal Verification. In: IFIP Advances in
Information and Communication Technology. pp. 197-211. Springer (1995)

Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin: High
Performance Language-Independent Model Checking. In: TACAS. LNCS, vol. 9035, pp.
692-707. Springer (2015)

Laarman, A., Pater, E., van de Pol, J., Weber, M.: Guard-Based Partial-Order Reduction. In:
SPIN. LNCS, vol. 7976, pp. 227-245. Springer (2013)

. Laarman, A., van de Pol, J., Weber, M.: Parallel Recursive State Compression for Free. In:

SPIN. LNCS, vol. 6823, pp. 38-56. Springer (2011)

Laarman, A., Wijs, A.: Partial-Order Reduction for Multi-core LTL. Model Checking. In:
HVC. LNCS, vol. 8855, pp. 267-283. Springer (2014)

Lang, F.: Exp.Open 2.0: A Flexible Tool Integrating Partial Order, Compositional, and On-
The-Fly Verification Methods. In: IFM. LNCS, vol. 3771, pp. 70-88. Springer (2005)
Peled, D.: All from One, One for All: on Model Checking Using Representatives. In: CAV.
LNCS, vol. 697, pp. 409-423. Springer (1993)

Valmari, A.: A Stubborn Attack on State Explosion. In: CAV. LNCS, vol. 531, pp. 156-165.
Springer (1991)

Valmari, A.: Stubborn sets for reduced state space generation. In: Advances in Petri Nets.
vol. 483, pp. 491-515 (1991)

Wijs, A.: BFS-Based Model Checking of Linear-Time Properties With An Application on
GPUs. In: CAV. LNCS, accepted for publication (2016)

Wijs, A., BoSnacki, D.: Improving GPU Sparse Matrix-Vector Multiplication for Probabilis-
tic Model Checking. In: SPIN. LNCS, vol. 7385, pp. 98-116. Springer (2012)

Wijs, A., Bosnacki, D.: GPUexplore : Many-Core On-the-Fly State Space Exploration Using
GPUs. In: TACAS. LNCS, vol. 8413, pp. 233-247 (2014)

Wijs, A., BoSnacki, D.: Many-core on-the-fly model checking of safety properties using
GPUs. STTT 18(2), 1-17 (2015)

Wu, Z., Liu, Y., Sun, J., Shi, J., Qin, S.: GPU Accelerated On-the-Fly Reachability Check-
ing. In: Proc. of the 20th International Conference on Engineering of Complex Computer
Systems. pp. 100-109. IEEE (2015)

