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Abstract. The Autonomous Data Language (AuDaLa) is a recently in-
troduced programming language and is supported by an operational se-
mantics. This work presents a new operational semantics for AuDaLa
with relaxed memory consistency and incoherent memory, with the goal
of allowing more compiler optimisations. We show that both semantics
are equivalent under the absence of read/write conflicts. Furthermore,
we translate our operational semantics into an axiomatic memory con-
sistency model and show how the memory operations of our semantics
can be mapped onto the NVIDIA PTX virtual ISA.

1 Introduction

Now that single core performance improvements are running out of steam [39],
there is increasing focus on multicore platforms such as GPUs. While orchestrat-
ing program execution on such a device is a complex task, many purpose-made
languages and frameworks for parallel processing exist [26, 48, 51, 54]. Most of
these take a task-parallel or data-parallel approach [18]. A novel and different
view, the data-autonomous view, is taken by the Autonomous Data Language
(AuDaLa) [20]. In the data-autonomous paradigm, data elements not only store
their data but also perform computations on their data. These computations are
carried out according to a schedule. Data elements can store references to other
elements, enabling communication. AuDaLa presents a significant abstraction
from parallel hardware and instead concentrates on data and its computations.

To be able to make use of existing methods and optimizations for concurrency
and high-performance computing, we have created a compiler prototype from
AuDaLa to CUDA [36]. However, the operational semantics defined in [20] is
relatively strict when it comes to ordering of memory operations, compared
to PTX [42] (the instruction set architecture underlying CUDA). We argue that
AuDaLa can benefit from weaker semantics such that more optimisations can be
performed, like reordering of memory operations [45]. This intuition is supported
by test results from tests performed with the compiler [36]. In this work, we
investigate how AuDaLa’s semantics can be weakened.

In literature, two formalisation techniques for memory consistency models
(MCM) are popular: the axiomatic [4,33,42,59] and the operational [4,25,31,46]
approach. In an operational MCM, an outcome is legal if it can be produced by
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an execution of some abstract machine that models the architecture or language.
In an axiomatic MCM, each execution is represented as a graph. Entities in the
program, such as instructions and addresses, are represented as nodes while
relations between these entities, such as “reading from”, are modelled as edges.
Legality of executions is captured in axioms. The operational approach is often
more intuitive, while the axiomatic approach lends itself better to automated
verification [3]. Ideally, both approaches are used and proven equivalent, as is
done in [4, 16,46,49], leaving the choice up to the user.

In this work, we formalise a new operational semantics of AuDaLa, which al-
ready includes its MCM. Yet, we also provide AuDaLa’s MCM in an axiomatic
fashion, derived from the operational semantics. This enables use to compare
with the axiomatic MCM of PTX [42], which powers NVIDIA GPUs. Our con-
tributions are:

– We provide an alternative operational semantics for AuDaLa with a relaxed
and incoherent memory model. The new semantics aims for a more perfor-
mant implementation by exploiting the reorderings that become available
in the relaxed and incoherent memory model [45]. We prove that our new
semantics behaves the same as the original semantics [20] under the absence
of read/write data races (Thm. 1). This is thus an SC-DRF guarantee [1]:
sequentially consistent assuming (read/write) data race freedom.

– We translate our operational semantics into an axiomatic MCM and show
their equivalence (Thm. 2). Using Alloy [28], we formally check for a bounded
program size its correspondence with PTX’s MCM [42]. We show that the
long-standing out-of-thin-air problem [14] causes both models to be incom-
parable when we model dependencies. When we model modulo dependencies,
all possible PTX executions are allowed by AuDaLa’s semantics (Thm. 3).

While these contributions are in the scope of AuDaLa, the methodology
of working with multiple semantics can be generalized to any language that
is conceptually distant from the hardware, like Ly [55], swarm programming [2]
and graph programming [61,62]. By linking multiple semantics together formally,
such languages can aim for intuitive analysis and high performance with separate
semantics.

The structure is as follows: Sect. 2 provides preliminaries on AuDaLa and
memory models. Then, Sect. 3 presents our alternative operational semantics in
detail. We formalise and check the correctness of our mapping from AuDaLa to
PTX in Sect. 4. In Sect. 5, we highlight related work and we conclude in Sect. 6.

2 Preliminaries

In this section, we briefly introduce the background of our work: AuDaLa, mem-
ory consistency models, their axiomatic treatment and the out-of-thin-air prob-
lem. First, we introduce some notation. The set of finite A-sequences is A∗. The
empty list is denoted by ε and ℓ1; ℓ2 is the concatenation of ℓ1 and ℓ2. We identify
singleton lists with their element: e1; e2 is the list containing elements e1 and e2.
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Given a function f : A → B and a ∈ A, b ∈ B, we define a function update
as f [a 7→ b](a) = b and f [a 7→ b](x) = f(x) for all x ̸= a. This is lifted to sets
of updates, i.e., f [{a1 7→ b1, a2 7→ b2, . . .}] = f [a1 7→ b1][a2 7→ b2] . . .. This is
only well defined if the domain of the updates (a1, a2, . . .) is pairwise distinct,
as otherwise the order of updates becomes significant.

2.1 AuDaLa

The data structures in an AuDaLa program are defined using structs, of which
the instances created at runtime are called struct instances. Each struct contains
zero or more named data attributes called parameters. These have a type: Bool,
Int, Nat, or a reference type to another struct. Furthermore, a struct contains
definitions of operations called steps. Finally, an AuDaLa program has a schedule
that forms the final program and dictates when steps are executed by all the
struct instances. Sect. 3 provides an abstract syntax; for the full syntax, see [20].

The semantics of an AuDaLa program are roughly as follows. When a step
appears in the schedule, it is executed concurrently by all struct instances that
contain a definition of that step. Only one step can be executed at a time: all
struct instances must be finished with the previous step before computation can
proceed past a barrier (‘<’ in the schedule). Each step has a body, containing
a sequence of statements. Statements are simple and are either a declaration,
assignment, struct instance construction, or if statement.

It is important to note that there are no loops in AuDaLa. Instead, AuDaLa
relies on fixpoints in its schedule for iteration (keyword ‘Fix’). A fixpoint exe-
cutes the schedule in its argument until a fixpoint is reached, that is, until no
parameters change during an iteration. In this way, all parameters are treated as
both the input and the output for the fixpoint. It follows that after the execution
of a fixpoint, the entire parallel system is stable. The schedule supports nested
fixpoints. At the start of the program, each struct has only one instance called
the null instance. The parameters of the null instances are immutable. The null
instances serve as a default value for reference types and to create other struct
instances.

Example 1. Fig. 1 implements the problem of reachability in a directed graph.
We store for each node whether it is reachable (parameter reachable of Node);
edges are simply combinations of a source and target node. The step init of
struct Node constructs the graph the program operates on by using the construc-
tors Node() and Edge(); in this case, only s1 is initially reachable (Fig. 1b). By
the schedule at the bottom, the init step is executed once (by the null instance
of Node), after which the reachability step is executed in a fixpoint iteration.
In each iteration the propagate_reach step is called and reachability is prop-
agated once along all edges. The fixpoint will perform three iterations: two to
propagate reachability to n2 and n3 and one iteration to conclude stability. ⊓⊔
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1 struct Node (reachable : Bool) { // def. of Node struct
2 init { // definition of the init step
3 Node s1 := Node(true); Node n1 := Node(false);
4 Node n2 := Node(false); Node n3 := Node(false);
5 Edge e1 := Edge(s1, n2); Edge e2 := Edge(n3, n2);
6 Edge e3 := Edge(n1, n3); Edge e4 := Edge(n2, n3);
7 }
8 }
9 struct Edge (source : Node, target : Node) { // def. of Edge

10 propagate_reach { // def. of the reachability step
11 if source.reachable then {
12 target.reachable := true;
13 }
14 }
15 }
16 init < Fix(propagate_reach) // The schedule

(a) An AuDaLa program for computing reachability.

∅
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Fig. 1: An example AuDaLa program specification. It computes the nodes reach-
able from s1 via a parallel breadth-first search. In (b), blue indicates a node
where reachable is true and the dashed node is a null instance.

x = 1; if (y == 1)
y = 1; print x;

(a) message passing

x = 1; r1 = x; r3 = y; y = 1;
r2 = y; r4 = x;

(b) Indep. reads of indep. writes [13]

r1 = y; r2 = x;
x = 42; y = 42;

(c) Load buffering [4]

Fig. 2: Litmus tests: x and y are variables in shared memory (initially 0) and
r1 . . . r4 are thread-local registers.

2.2 Memory Consistency Models

A memory consistency model (MCM) defines what ordering and visibility guar-
antees exist between memory operations (e.g. loads and stores) in a shared-
memory multiprocessor system. The more guarantees an MCM provides, the
stronger or stricter it is said to be. Weaker or more relaxed MCMs have fewer
restrictions and therefore often provide more chances for optimisation. We in-
troduce three relevant MCMs and illustrate them with so called litmus tests.

A strong MCM is is sequential consistency (SC), where an execution appears
as a single total order of reads and writes [34] and both execute atomically.
Multiprocessor programs, therefore, behave as an interleaving of each program’s
instructions in program order. In the litmus test message passing of Fig. 2a, the
printed value of x is always 1, since the instructions of the first thread may not be
re-ordered under SC. Optimisations in compilers may also break SC [9,44,63]. If
common sub-expression elimination is applied to eliminate the second read of x in
r1 = x; if (y == 1) { print x; }, the print statement may yield 0, which
is unexpected under SC. Enforcing SC carries a performance penalty [23,40].
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The Release/Acquire (RA) MCM is intended for message passing, without
having to resort to the expensive SC semantics. If an acquiring read R reads
from a releasing write W, they synchronise [27]: operations before W in program
order are visible to operations after R in program order. The litmus test in
Fig. 2b allows the outcome r1=1, r2=0, r3=1, r4=0 under RA but not under
SC. Here, the middle two threads perceive a different order of writes to x and y.

The relaxed MCM only provides atomicity and a consistent total ordering
of writes to single locations [27, 47]. Fig. 2c allows the outcome r1 = r2 = 42
under relaxed consistency, showing that many operations may be re-ordered.

A related concept is that of coherency : when a system’s memory is coherent,
all processors agree on the value stored at an address at all times: they have the
same view of the memory. Maintaining coherency between caches of different
processors costs performance, so some systems are designed to allow incoherence.

Of the MCMs discussed in this section, the operational semantics of AuDaLa
as introduced in [20] supports sequential consistency, while all MCMs introduced
in this section are supported by PTX [47].

2.3 Out-of-thin-air problem

While weakening the MCM of a language allows more optimisations, weaken-
ing too much causes the MCM to allow nonsensical behaviour not observable in
practice. This is called out-of-thin-air (OOTA) behaviour [9]. OOTA behaviour
makes formal reasoning and compiler optimisation very difficult [8, 14, 56, 57].
How to define relaxed concurrency semantics that prevent OOTA behaviour, al-
low compiler optimisations, are suitable for formal verification, and allow (com-
positional) reasoning is an open problem [29–31,50].

The heart of the OOTA problem lies in the treatment of dependencies. For
example in r = y; if (r == 1) x = 42; else x = 42; , a compiler may
optimise the if statement, because both branches are identical. This, however,
breaks the dependency of x = 42 on r = y, meaning that these instructions
may now be reordered, resulting in different behaviour. The question is thus
whether an MCM should include such dependencies or not. There are roughly
three types of approaches to this [30]. With syntactic dependencies [14,32,33], all
dependencies present in the source code are preserved. This disallows many com-
piler optimisations, but is useful for hardware memory models [4]. With semantic
dependencies [17,31,35,50], formalisations reason over all possible executions of
a program in order to separate the true, semantic, dependencies from the false
dependencies. Finally, the last approach is to (largely) ignore dependencies. This
allows OOTA behaviour but enables optimisations and is currently used by the
C++, PTX, and JavaScript standards [9,42,59]. Each of these three approaches
has its own drawbacks [30], and the OOTA problem is thus not fully solved yet.

Our definition of the operational semantics of AuDaLa effectively falls into
the category of syntactic dependencies. In Sect. 4.2 we define two variants of our
axiomatic MCM. One variant is true to the operational semantics and thus falls
into the syntactic dependencies category, the other variant falls into the largely
ignored dependencies category.
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3 Operational Semantics

This section presents our new operational semantics of AuDaLa, improving on
the original sequentially consistent semantics [20]. Our relaxed semantics are
expected to offer more performance on modern hardware such as GPUs. We
first introduce an abstract syntax for AuDaLa, show how it can be transformed
into a sequence of atomic commands and give a formal definition of the semantic
graph underlying an AuDaLa program.

The type of valid identifiers used within AuDaLa is denoted by ID. For
clarity, we refer to identifiers of steps with IDstep , of structs with IDstr and of
variables/parameters with IDvar . The supported binary operators are of type O,
which contains at least the logical AND and OR operators which are denoted by
&& and || respectively. Furthermore, the supported syntactic types are contained
in T, which is defined as T ≜ {Nat, Int, Bool} ∪ IDstr . AuDaLa’s abstract
syntax is as follows.

Definition 1 (Abstract syntax tree). Let Z be the integer, N the natural
number and B the boolean type, then the expression (E), statement (S), literal
(L) and schedule (SC) types are defined by the following abstract data types:

E ::= Op E×O× E | Cons IDstr × E∗ | Var ID∗
var | Not E | Lit L

S ::= If E× S∗ × S∗ | Declare T× IDvar × E | Assign ID∗
var × E

L ::= Nat N | Int Z | Bool B | Null IDstr | This
SC ::= Call IDstr × IDstep | CallAll IDstep | Fix SC∗ | aFix SC∗

For brevity, we omit the parts of the AST that are irrelevant for our semantic
discussion such as structure definitions. Furthermore, to keep the notation light,
this abstract syntax is loosely typed and admits illegal constructions, which we
assume do not occur.

We assume the function Par : IDstr → ID∗
var , which is such that Par(ϑ) is

the list of parameters of the struct type identified by ϑ ∈ IDstr . In addition, the
function TypeOf : IDstr × IDvar → T is defined so that TypeOf (ϑ, v) is the type
of the parameter v of struct ϑ.

The schedule to be executed is represented by a list of the schedule type SC,
which is either a step call or a fixpoint iteration. We use Call to call a step for
a specific struct type and CallAll to call a step for all the struct types in which
it is defined. aFix is only used as a semantic symbol and is not present in the
initial state of a program.

Within our semantics, we use labels to reference concrete struct instances.
We define L as the set of all labels, which contains sufficiently many elements
to uniquely identify each struct instance. In addition, for each structure type
ϑ ∈ IDstr we also define the null-label, ℓ0ϑ which serves as the default value for a
reference to ϑ. The set of all null-labels is defined as L0, such that L0 ⊆ L.

All semantic values are contained in the set V, which contains the natural
numbers, integers, booleans and labels, i.e., V ≜ N ∪ Z ∪ B ∪ L. We define a
default value for each syntactic type T ∈ T via the function defaultVal : T → V,
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such that defaultVal(Bool) = false, defaultVal(T ) = 0 for T ∈ {Nat, Int} and
defaultVal(T ) = ℓ0T for all T ∈ IDstr . We extract the semantic value from a
literal L ∈ L via the function val ℓ : L → V, where ℓ ∈ L, defined as:

val ℓ(Nat(x)) = x val ℓ(Int(x)) = x val ℓ(Bool(x)) = x

val ℓ(Null(ϑ)) = ℓ0ϑ val ℓ(This) = ℓ

The semantics processes expressions much alike a stack machine does (al-
though not necessarily in the same order). Therefore, we first translate AuDaLa
code to atomic operations, called semantic commands.

Definition 2 (Semantic command). The command type C is defined as:

C ::= rd IDvar | wr IDvar | wrP IDvar | cons IDstr

| if (V ∪ C)∗ × (V ∪ C)∗ | not | op O

The rd(v) and wr(v) commands respectively read and write variable v (wrP(v)
is a special case of writing parameters). A new struct instance of type ϑ can be
constructed with the cons(ϑ) command. Conditional execution of either branch
S1 or S2 is performed using the command if(S1, S2). Finally, the not and op(op)
commands respectively perform the negation and op operation.

The translation of AuDaLa code to commands is defined by the interpre-
tation function J·Kℓ. The resulting list combines the commands and the values
they operate on. The reasoning behind this is that our weak semantics does not
necessarily execute commands in a sequential order, and we facilitate different
execution orders by storing these values and commands in adjacent places.

Definition 3 (Interpretation function). Let v , v1, . . . , vn ∈ IDvar be vari-
ables, e, e1, . . . , em ∈ E expressions, T ∈ T a syntactic type, lit ∈ L a literal,
ϑ ∈ IDstr a struct type, s ∈ S a statement, S, S1, S2 ∈ S∗ lists of statements,
op ∈ O\{&&, ||} an operator and let ℓ ∈ L be a label. The interpretation function
J·Kℓ : S∗ ∪ E → (V ∪ C)∗ transforms statements and expressions into commands
and values:

JOp(e1, &&, e2)Kℓ = Je1Kℓ; if(Je2Kℓ, false) JNot(e)Kℓ = JeKℓ;not
JOp(e1, ||, e2)Kℓ = Je1Kℓ; if(true, Je2Kℓ) JLit(lit)Kℓ = val ℓ(lit)

JOp(e1, op, e2)Kℓ = Je1Kℓ; Je2Kℓ;op(op) JεKℓ = ε

JVar(v1; . . . ; vn)Kℓ = ℓ; rd(v1);. . . ;rd(vn) Js;SKℓ = JsKℓ; JSKℓ
JIf(e, S1, S2)Kℓ = JeKℓ; if(JS1Kℓ, JS2Kℓ)

JDeclare(T, v , e)Kℓ = JAssign(v , e)Kℓ
JCons(ϑ, e1; . . . ; em)Kℓ = Je1Kℓ; . . . ; JemKℓ; cons(ϑ)

JAssign(v1; . . . ; vn; v , e)Kℓ = JeKℓ; JVar(v1; . . . ; vn)Kℓ;wr(v)

Note how we apply short circuit evaluation to expressions with the && and ||
operators to prevent side effects of the right-hand side by transforming the ex-
pressions into conditional statements.
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Multiple instances of a struct definition may exist during execution, these
are called the struct instances:

Definition 4 (Struct instance). A struct instance is a tuple ⟨ϑ, χ, ξ⟩ where
ϑ ∈ IDstr is the struct type, χ ∈ (V ∪ C)∗ is a value and command list and
ξ : L× IDvar → V ∪{⊥} is a value cache. The set of all possible struct instances
is S. We denote an empty cache – in which all elements map to ⊥ – with ξ⊥.

Each struct instance independently executes commands from its list. When it
writes a value, it records a copy of that value in its value cache. Each type of
structure has at least one instance, called the null-instance, which is labelled
with the null-label ℓ0ϑ. The null-instance’s parameters cannot be written to.

While each struct instance captures its local state, the global state is captured
by the program execution state:

Definition 5 (State). A state is a tuple ⟨sc, σ, µ, ι, δ⟩, where:

– sc ∈ SC∗ is a schedule,
– σ : L → S ∪ {⊥} is a struct environment,
– µ : L × IDvar → 2V×L, is a global memory of parameter values written

during the current step paired with their writer’s label,
– ι : L × IDvar → V, is a initial value function of parameter values recording

the value of each parameter before the start of the current step,
– δ ∈ B∗ is a stability stack.

We define ST as the set of all possible states. We denote an empty global mem-
ory – in which all label-variable pairs map to the empty set – by µ∅.

All struct instances are uniquely labelled and contained within the labelled struct
environment σ. During a step, struct instances communicate through the global
memory µ, which keeps track of the written values and the instance responsible
for writing each value. When a step is called, all instances initially agree on the
parameter values and these values are recorded in the initial value function ι.
The stability stack δ is used to determine stability of fixpoint iterations.

In the initial state, all instances are null-instances with an empty command
list and value cache. Their parameters are initialised to their default values,
recorded in the initial value function.

Definition 6 (Initial state). Let P be an AuDaLa program, Θ ⊆ IDstr a
corresponding set of struct types defined in P, and scP ∈ SC∗ the schedule of P.
We define σ⊥ to be a struct environment that maps to ⊥ for all elements, and ι?
to be an arbitrary initial value function. We define the initial struct environment
(σ0

P), initial-initial value function (ι0P) and initial state (P0
P) as follows:

σ0
P ≜ σ⊥[{ℓ0ϑ 7→ ⟨ϑ, ε, ξ⊥⟩ | ϑ ∈ Θ}]
ι0P ≜ ι?[{(ℓ0ϑ, v) 7→ defaultVal(TypeOf (ϑ, v)) | ϑ ∈ Θ, v ∈ Par(ϑ)}]
P0
P ≜ ⟨scP , σ0

P , µ∅, ι
0
P , ε⟩
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A command can only be executed if all preceding commands that reference the
same parameter have been executed. This is expressed in the Refs predicate.

Definition 7 (The Refs predicate). The predicate Refs : (V ∪ C)∗ × L ×
IDvar → B is defined as:

Refs(χ, ℓ, v) ≜

∃χ1, χ2 ∈ (V ∪ C)∗, val ∈ {ℓ} ∪ C, cmd ∈ {rd(v),wr(v),wrP(v)}.
χ = (χ1; val ; cmd ;χ2)

∨ ∃χ1, χ2, χ3, χ4 ∈ (V ∪ C)∗.
χ = (χ1; if(χ2, χ3);χ4) ∧ (Refs(χ2, ℓ, v) ∨ Refs(χ3, ℓ, v))

The Refs(χ, ℓ, v) predicate checks if a read or write command is present in χ
that references, i.e., potentially reads or writes, v of ℓ. When commands of the
form if(χ2, χ3) are present in χ, Refs will recursively check both χ2 and χ3.

We next define the transition relation ⇒ between states by listing a set
of derivation rules in the following paragraphs. We use val ∈ V, v ∈ IDvar ,
χ1, χ2 ∈ (V ∪ C)∗, ℓ ∈ L and op ∈ O as variables, possibly with subscripts or
superscripts.

Computation on values is done via operators: the not command simply
negates its operand and the op(op) command applies the binary operator op
to its two operands.

Not
σ(ℓ) = ⟨ϑ, χ1; val ;not;χ2, ξ⟩

⟨sc, σ, µ, ι, δ⟩ ⇒ ⟨sc, σ[ℓ 7→ ⟨ϑ, χ1;¬val ;χ2, ξ⟩], µ, ι, δ⟩

Op
σ(ℓ) = ⟨ϑ, χ1; vala; valb;op(op);χ2, ξ⟩

⟨sc, σ, µ, ι, δ⟩ ⇒ ⟨sc, σ[ℓ 7→ ⟨ϑ, χ1; (vala op valb);χ2, ξ⟩], µ, ι, δ⟩

A read command can retrieve a value either from the initial value function ι, the
value cache ξ or the global memory µ. This choice is non-deterministic. Reads
from the same location are executed in program order, by the Refs function.

Rd-Init
σ(ℓ) = ⟨ϑ, χ1; ℓ

′; rd(v);χ2, ξ⟩ ξ(ℓ′, v) = ⊥ ¬Refs(χ1, ℓ
′, v)

⟨sc, σ, µ, ι, δ⟩ ⇒ ⟨sc, σ[ℓ 7→ ⟨ϑ, χ1; ι(ℓ
′, v);χ2, ξ⟩], µ, ι, δ⟩

Rd-Int
σ(ℓ) = ⟨ϑ, χ1; ℓ

′; rd(v);χ2, ξ⟩ ξ(ℓ′, v) ̸= ⊥ ¬Refs(χ1, ℓ
′, v)

⟨sc, σ, µ, ι, δ⟩ ⇒ ⟨sc, σ[ℓ 7→ ⟨ϑ, χ1; ξ(ℓ
′, v);χ2, ξ⟩], µ, ι, δ⟩

Rd-Ext

σ(ℓ) = ⟨ϑ, χ1; ℓ
′; rd(v);χ2, ξ⟩

(val , ℓw) ∈ µ(ℓ′, v) ℓw ̸= ℓ ¬Refs(χ1, ℓ
′, v)

⟨sc, σ, µ, ι, δ⟩ ⇒ ⟨sc, σ[ℓ 7→ ⟨ϑ, χ1; val ;χ2, ξ⟩], µ, ι, δ⟩

When writing, we identify three variants: writing local variables, null-instance
parameters and parameters of regular instances. Local variables are stored in
the instance’s value cache ξ. Writes to null-instance parameters are treated as a
no-op and, effectively, skipped. Regular parameter writes are split in two steps:
first, the old value is retrieved by spawning a read operation. Then, the write
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completes once the old value is read, clearing the stability stack if the old and
new value differ.

Wr-Local
σ(ℓ) = ⟨ϑ, χ1; val ; ℓ;wr(v);χ2, ξ⟩ v /∈ Par(ϑ) ¬Refs(χ1, ℓ, v)

⟨sc, σ, µ, ι, δ⟩ ⇒ ⟨sc, σ[ℓ 7→ ⟨ϑ, χ1;χ2, ξ[(ℓ, v) 7→ val ]⟩], µ, ι, δ⟩

Wr-Null

σ(ℓ) = ⟨ϑ, χ1; val ; ℓ
′;wr(v);χ2, ξ⟩

σ(ℓ′) = ⟨ϑ′, χ′, ξ′⟩ v ∈ Par(ϑ′) ℓ′ ∈ L0

⟨sc, σ, µ, ι, δ⟩ ⇒ ⟨sc, σ[ℓ 7→ ⟨ϑ, χ1;χ2, ξ⟩], µ, ι, δ⟩

Wr-I

σ(ℓ) = ⟨ϑ, χ1; val ; ℓ
′;wr(v);χ2, ξ⟩

σ(ℓ′) = ⟨ϑ′, χ′, ξ′⟩ v ∈ Par(ϑ′) ℓ′ /∈ L0

⟨sc, σ, µ, ι, δ⟩ ⇒ ⟨sc, σ[ℓ 7→ ⟨ϑ, χ1; ℓ
′; rd(v); val ; ℓ′;wrP(v);χ2, ξ⟩], µ, ι, δ⟩

Wr-II

σ(ℓ) = ⟨ϑ, χ1; valo ; valn ; ℓ
′;wrP(v);χ2, ξ⟩

stable = (valo = valn) ¬Refs(χ1, ℓ
′, v)

⟨sc, σ, µ, ι, δ⟩ ⇒⟨sc, σ[ℓ 7→ ⟨ϑ, χ1;χ2, ξ[(ℓ
′, v) 7→ valn ]⟩],

µ[(ℓ′, v) 7→ µ(ℓ′, v) ∪ {(valn , ℓ)}], ι, δ1 ∧ stable; . . . ; δ|δ| ∧ stable⟩

Newly-constructed instances receive a fresh label and their parameters are pop-
ulated atomically. Furthermore, creating instances clears the stability stack.

Constr

σ(ℓ) = ⟨ϑ, χ1; val1; . . . ; valn; cons(ϑ′);χ2, ξ⟩
Par(ϑ′) = v1; ...; vn σ(ℓ′) = ⊥

⟨sc, σ, µ, ι, δ⟩ ⇒ ⟨sc, σ[{ℓ′ 7→ ⟨ϑ′, ε, ξ⊥⟩, ℓ 7→ ⟨ϑ, χ1; ℓ
′;χ2, ξ⟩}],

µ, ι[{(ℓ′, vi) 7→ val i | 1 ≤ i ≤ n}], false |δ|⟩

AuDaLa supports simple control flow through if statements. Depending on the
condition, either one of its branches is taken and placed on the command list.

If-True
σ(ℓ) = ⟨ϑ, χ1; true; if(S1, S2);χ2, ξ⟩

⟨sc, σ, µ, ι, δ⟩ ⇒ ⟨sc, σ[ℓ 7→ ⟨ϑ, χ1;S1;χ2, ξ⟩], µ, ι, δ⟩

If-False
σ(ℓ) = ⟨ϑ, χ1; false; if(S1, S2);χ2, ξ⟩

⟨sc, σ, µ, ι, δ⟩ ⇒ ⟨sc, σ[ℓ 7→ ⟨ϑ, χ1;S2;χ2, ξ⟩], µ, ι, δ⟩

When only values remain in each instance’s value and command list, a step
is done. We define the predicates End(σ) = ∀ℓ. σ(ℓ) = ⟨ϑ, χ, ξ⟩ ⇒ χ ∈ V∗ and
Done(σ, µ) = End(σ)∧µ = µ∅. When a step is finished executing (End(σ) holds),
all value caches are cleared and the initial value function is non-deterministically
updated with a final parameter value fin(ℓ, v) for each parameter (ℓ, v) (or it
retains its value if no write to (ℓ, v) occurred).

Finish

End(σ) µ ̸= µ∅
W (ℓ, v) = {ξ(ℓ, v) | σ(ℓ′) = ⟨ϑ, χ, ξ⟩} \ {⊥}

fin(ℓ, v) ∈ W (ℓ, v) ∨ (W (ℓ, v) = ∅ ∧ fin(ℓ, v) = ι(ℓ, v))

⟨sc, σ, µ, ι, δ⟩ ⇒ ⟨sc, σ[{ℓ 7→ ⟨ϑ, χℓ, ξ⊥⟩ | σ(ℓ) = ⟨ϑ, χℓ, ξℓ⟩}],
µ∅, ι[{(ℓ, v) 7→ fin(ℓ, v) | (ℓ, v) ∈ L × IDvar}], δ⟩
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We denote the statements of step F ∈ IDstep of struct ϑ ∈ Θ by SF
ϑ ∈ S∗. If

ϑ does not contain F , SF
ϑ = ε. When step F is called for ϑ, all ϑ instances’

command lists are set to JSF
ϑ Kℓ. Step F can be called for a single type ϑ or for

all ϑ ∈ Θ.

Step
Done(σ, µ)

⟨Call(ϑ, F ); sc, σ, µ, ι, δ⟩ ⇒
⟨sc, σ[{ℓ 7→ ⟨ϑ, JSF

ϑ Kℓ, ξℓ⟩ | σ(ℓ) = ⟨ϑ, χℓ, ξℓ⟩}], µ, ι, δ⟩

StepAll
Done(σ, µ)

⟨CallAll(F ); sc, σ, µ, ι, δ⟩ ⇒
⟨sc, σ[{ℓ 7→ ⟨ϑℓ, JSF

ϑℓ
Kℓ, ξℓ⟩ | σ(ℓ) = ⟨ϑℓ, χℓ, ξℓ⟩}], µ, ι, δ⟩

A fixpoint Fix(sc) is initiated by pushing true on the stability stack and placing
sc on the schedule list followed by aFix(sc). Once aFix(sc) is encountered again,
the topmost value of the stability stack is checked: if true, the fixpoint is resolved,
if false, another iteration is executed.

Fix-Init
Done(σ, µ)

⟨Fix(sc1); sc2, σ, µ, ι, δ⟩ ⇒ ⟨sc1;aFix(sc1); sc2, σ, µ, ι, δ; true⟩

Fix-Iter
Done(σ, µ)

⟨aFix(sc1); sc2, σ, µ, ι, δ; false⟩ ⇒ ⟨sc1;aFix(sc1); sc2, σ, µ, ι, δ; true⟩

Fix-Resolve
Done(σ, µ)

⟨aFix(sc1); sc2, σ, µ, ι, δ; true⟩ ⇒ ⟨sc2, σ, µ, ι, δ⟩

Our definition of the transition relation ⇒ is now complete. We combine ⇒ with
our earlier definitions of the state space to formally define AuDaLa’s semantics:

Definition 8 (AuDaLa’s graph semantics). Let P be an AuDaLa program.
We define the graph semantics of P as a tuple LPM = ⟨ST ,⇒,P0

P⟩, where ST is
the set of states as defined in Def. 5, ⇒ is the transition relation defined by the
derivation rules as given above, and P0

P is the initial state of P (Def. 6).

The relation between these weak semantics and the sequentially consistent
graph semantics defined by Franken et al. [20, Def. 7] is given in the following
theorem:

Theorem 1. For any AuDaLa program P without read-write data races, the
sequentially consistent graph semantics for a program P and the weak graph
semantics for a program according to Def. 8 are stutter trace equivalent [6, Def.
7.89].

Proof (outline). We prove this by defining a labelling C for both semantics which
makes the contents of the states comparable. Then, with P some program, LPMSC
being P’s sequentially consistent semantics and LPMWk being P’s weak semantics,
we perform induction on the length of initial traces for LPMSC and LPMWk . Using



12 G.P. Leemrijse et al.

this induction, we prove that for any initial trace in LPMSC there exists a C-
stutter-equivalent initial trace for LPMWk and vice versa. In the proof, we consider
only programs which takes the interpreter differences between the semantics
into account; for programs that do not, we provide syntactic transformations to
programs that do. ⊓⊔

4 Axiomatic memory semantics

In this section, we compare AuDaLa’s graph semantics with that of NVIDIA’s
PTX ISA [47], which has been formally defined as an axiomatic model [41, 42],
to see whether AuDaLa’s supports the Release/Acquire and Relaxed MCMs. We
first transform AuDaLa’s operational semantic model into an axiomatic model.
Then, we compare AuDaLa’s and PTX’s axiomatic models with the Alloy anal-
yser [28].

We adopt some terminology from [46]. Our axiomatic model reasons not
on the program source code, but on candidate executions expressed as graphs.
The basis of a candidate execution is formed by a pre-execution: a straight-line
execution in which all addresses and control flow have been resolved. Therefore,
different pre-executions represent different runs of the same program. In addition,
a pre-execution models dependencies and threads.

A pre-execution does not contain information on how reads and writes inter-
act; this is contained in an additional set of edges called the execution witness.
An execution witness completes a pre-execution to form a candidate execution.
Which candidate executions are legal is formalised in a set of axioms.

Given a binary relation R, we write R∗ for its reflexive-transitive closure, R+

for its transitive closure, and R−1 for its inverse. We write R1;R2 for the left
composition of relations R1 and R2. We assume that −1, +, and ∗ bind strongest
and ; binds stronger than ∪ and \. The identity relation is denoted by I. We
define the following predicates on relations:

– lone(R) ≜ ∀(a, b), (a, b′) ∈ R. b = b′. That is, the relation R is a (partial)
function.

– acyclic(R) ≜ R+ ∩ I = ∅
– total(R,S) ≜ acyclic(R) ∧ ∀s1, s2 ∈ S. s1 ̸= s2 ⇒ (s1, s2), (s2, s1) ∈ (R+ ∪

(R−1)+)
– injective(R,S1, S2) ≜ S2;R

−1 = S1 ∧ lone(R−1).
– bijective(R,S1, S2) ≜ (∀s ∈ S1. |s;R| = 1∧s;R ∈ S2)∧ (∀s ∈ S2. |s;R−1| =

1 ∧ s;R−1 ∈ S1).

4.1 AuDaLa candidate executions

In the graph that forms a candidate execution, program entities and events form
the nodes, while their relations and interactions form the edges. This set of edges
can be divided into the pre-execution and execution witness components.

To model the nodes of AuDaLa execution graphs, we define the following
sets: Loc models the label-variable pairs (ℓ, v) that are read from or written to
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Table 1: Overview of relations in AuDaLa pre-executions and witnesses.
notation name subset of description/definition

pr
e-

ex
ec

ut
io

n
nxt next command Cmd× Cmd sequence of commands
start first command Inst× Cmd first command of an instance
loc location Cmd× Loc location of read or write
dep dependency RdCmd× Cmd read dependency
po program order Cmd× Cmd nxt+

inst instance Cmd× Inst (start; nxt∗)−1

same-loc same location Cmd× Cmd loc; loc−1

same-inst same instance Cmd× Cmd inst; inst−1

po-loc pr. order by loc. Cmd× Cmd po ∩ same-loc

w
it

ne
ss

rf reads from WrCmd× RdCmd origin of the value in a read op.
co coherence WrCmd× WrCmd order of writes within an instance
frbase from reads base RdCmd× WrCmd (rf ∩ same-inst)−1; co+

frinit from reads initial RdCmd× WrCmd ((RdCmd \ (WrCmd; rf)) × WrCmd) ∩
same-inst ∩ same-loc

fr from reads RdCmd× WrCmd frbase ∪ frinit

in the operational semantics. The set Inst models the struct instances. Since we
are interested in the memory model, we only model read and write commands,
contained in the disjoint sets RdCmd and WrCmd, respectively. We define Cmd ≜
RdCmd ∪ WrCmd as the set of all commands. We do not consider the working of
the schedule here, i.e., the operational rules with the premise Done(σ, µ) also
fall outside the axiomatic model.

Table 1 gives an overview of the relations within a pre-execution. Each struct
instance carries a list χ of commands corresponding to a single step call. We
model this in the next command relation nxt ⊆ Cmd×Cmd, e.g., (a, b), (b, c) ∈ nxt
is the list a; b; c. The relation start ⊆ Inst × Cmd associates each instance
to the first command in its list. Each Cmd writes or reads exactly one Loc,
this is captured in loc ⊆ Cmd × Loc. When (the execution of) a command
depends on an earlier read command in the same struct instance, we model this
via the dep ⊆ RdCmd × Cmd relation. We introduce a few derived relations to
represent things such as “which instance does a command belong to” (inst) and
“which commands operate on the same (memory) locations” (same-loc); see
again Table 1.

Definition 9 (The WELLFORMED_PREEX predicate). A pre-execution is well-
formed iff the following all hold:

1. lone(nxt)∧lone(nxt−1), commands have at most one successor/predecessor.
2. injective(start, Inst, Cmd), each instance has exactly one start successor

and each command has at most one start predecessor.
3. acyclic(nxt), no circular command lists.
4. Cmd \ Cmd; nxt = Inst; start, the commands without nxt predecessor have

an incoming start relation.
5. dep ⊆ po, dependencies follow program order.



14 G.P. Leemrijse et al.

struct S1(a:Int,
b:Int,

other:S1){
step {
other.a:=a+b;

}
}

(a) AuDaLa source.

ℓ1;
rd(a);
ℓ1;
rd(b);
op(+);
ℓ1;
rd(other);
wr(a)

ℓ2;
rd(a);
ℓ2;
rd(b);
op(+);
ℓ2;
rd(other);
wr(a)

(b) commands

Inst1 R[a1]

R[b1]

R[other1]

W[a2]

Inst2 R[a2]

R[b2]

R[other2]

W[a1]

start start

nxt

nxt

nxt

nxt

nxt

nxt

sa
me
-l
oc

same-lo c

dep

de
p

de
p

dep

dep
dep

(c) pre-execution graph

Fig. 3: A program in three abstractions. We denote the locations in square brack-
ets (instead of using Loc and loc). Dashed arrows indicate derived relations and
we omit po, inst, and same-inst for clarity. The po-loc relation is empty.

6. Cmd; loc = Loc, all locations are referenced (constrains the state space).

Example 2. Fig. 3 presents the same program thrice: as AuDaLa source code, se-
mantic commands, and as pre-execution. There are two S1 instances, labelled ℓ1
and ℓ2. Each instance has the other’s label as its other parameter. Only read and
write commands are used in the pre-execution, but dependencies carried through
other commands are preserved. Note that the write to the other instance’s a is
dependent on the reads of its own a and b, but those are not dependent on each
other. The semantics can therefore freely choose between reading a or b first. ⊓⊔

An execution witness captures the origin of reads in the reads-from relation rf:
for every write, it provides all the reads that read from it. Some read operations
read from the initial value function ι and do not occur in rf. The coherence
relation co relates a WrCmd to another WrCmd that overwrites its value in the
instance’s value cache ξ. Our co relation is somewhat unconventional compared
to other MCMs. Because a write can only be overwritten in the (local) cache, but
not in the global memory, co only relates writes of the same instance. A derived
relation is the from-reads relation fr, which indicates, given a read operation,
which writes occur at a later moment. If R reads from W_1 and W_1 is overwritten
by W_2 (i.e., (W_1, W_2) ∈ co), then W_2 must have occurred after R so (R, W_2) ∈
fr. This pattern is captured in frbase. If R reads from the initial value function,
then successive writes are captured in frinit; see Table 1.

Definition 10 (The WELLFORMED_WITNESS predicate). An execution witness
is well-formed iff the following all hold:

1. rf ∪ co ⊆ same-loc, reading/overwriting only occurs within a location.
2. lone(rf−1), a read operation can read from at most one write operation.
3. co ⊆ same-inst, overwriting can only occur within the same instance.
4. ∀l ∈ Loc, i ∈ Inst. total(co, WrCmd ∩ l; loc−1 ∩ i; inst−1), for every pair of

location and instance, all corresponding writes are totally ordered by co.
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4.2 Deriving AuDaLa’s axioms

In our axiomatic model, the RdCmd and WrCmd nodes correspond to the execution
of the operational rules Rd-Init, Rd-Int, Rd-Ext and Wr-II for their respec-
tive instances. A derivation order is legal if the premise of each derivation rule is
satisfied when following that order. Given a candidate execution, we can reason
about the order of its nodes enforced by the operational rules. We capture this
in the so called semantic ordering sem ⊆ Cmd× Cmd.

Most common MCMs have a handful of axioms, usually related to its methods
of synchronisation (e.g. fences) or type of forbidden behaviour (e.g. thin-air) [4,
33, 42]. Since AuDaLa’s MCM is simple, we have only one axiom which forbids
those executions in which an inconsistency between the order of derivation steps
exists, i.e., cyclic orderings: CONSISTENCY ≜ acyclic(sem).

The semantic order is a partial ordering as the same candidate execution can
correspond to multiple derivation sequences. We derive the relations that the
semantic ordering necessarily needs to follow:

Theorem 2. The semantic ordering of legal derivations is equivalent to the
union of the program order by the location, reads-from, coherence, from-reads
and dependency relations. Formally: sem = po-loc ∪ rf ∪ co ∪ fr ∪ dep

Proof (outline). We separately consider po-loc ∪ rf ∪ co ∪ fr ∪ dep ⊆ sem and
po-loc∪rf∪co∪fr∪dep ⊇ sem. To prove the first, let r ∈ {po-loc, rf, co, fr,
dep}. We take an arbitrary pair (c1, c2) ∈ r and show that (c1, c2) ∈ sem. It
turns out that all relations are necessary for the operational semantics to lead
to a legal execution order. For example, the operational semantics defines that
a value read from global memory or the value cache must have been generated
from some write command executed before, and therefore, rf ⊆ sem.

To prove the second, we do the opposite. We take an arbitrary pair (c1, c2) ∈
sem and, after some case distinctions, find an r ∈ {po-loc, rf, co, fr, dep} such
that (c1, c2) ∈ r. For the pairs (c1, c2) in sem, either the resolution of c1 would
be different if c2 had been resolved before c1, in which case (c1, c2) ∈ fr, or c1
blocks c2 in one of the following ways:

– c1 belongs to the same expressions as c2, then (c1, c2) ∈ dep;
– c1 writes the value read during the resolution of c2, then (c1, c2) ∈ rf; or
– c1 blocks the resolution of c2 through the Refs-predicate, then it holds that

either (c1, c2) ∈ po-loc or (c1, c2) ∈ dep. ⊓⊔

Legal executions Using sem and CONSISTENCY, we define the predicate for a legal
AuDaLa execution:

LEGAL_EXEC ≜ WELLFORMED_WITNESS ∧ CONSISTENCY

Given a well-formed pre-execution for which LEGAL_EXEC holds, a derivation
order in the operational semantics exists such that the outcome (what values
are read and stored) is the same for both the axiomatic and operational model.
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Observe that LEGAL_EXEC∧WELLFORMED_PREEX implies co ⊆ po-loc, illustrating
that our co is unconventional.

Since the interpretation function of the operational semantics (Def. 3) does
not perform optimisations, any dependencies in the AuDaLa source code are
also present in the semantic command list. An optimising compiler, however,
might perform some optimisations and break some dependencies, but specifying
this exactly is difficult (see Sect. 2.3). PTX also suffers from this problem. Until
consensus is reached on how to treat dependencies in an MCM, the PTX memory
model chooses to not respect any dependencies, except that reads can not read
from writes that (transitively) depend on them. However, some dependencies
are essential to maintain program semantics when run in parallel with another
program. Therefore, the PTX MCM still suffers from thin-air-executions.

To be able to compare both memory models modulo dependencies, we provide
an alternative, weaker, legal execution predicate LEGAL_EXEC⋆. It uses a weak-
ened consistency axiom CONSISTENCY⋆ and introduces a new axiom NO_THIN_AIR:

CONSISTENCY⋆ ≜ acyclic(po-loc ∪ rf ∪ co ∪ fr)

NO_THIN_AIR ≜ acyclic(rf ∪ dep)

LEGAL_EXEC⋆ ≜ WELLFORMED_WITNESS ∧ CONSISTENCY⋆ ∧ NO_THIN_AIR

Our NO_THIN_AIR axiom is identical to PTX’s no-thin-air axiom and prevents
reads from reading writes that are (transitively) dependent on them. The axiom
CONSISTENCY⋆ is very similar to CONSISTENCY, except we exclude dep from sem.

Example 3. In Fig. 4 two instances execute two different programs represented
as AuDaLa source code. Assume a shared reference to some gm struct with
integer parameters x and y, both initially 0. For brevity, we omit the reads
of the gm reference so that the expression gm.y is a single read in the exe-
cution graph. When using the LEGAL_EXEC predicate, two results are allowed:
r1 = 0, r2 = 0 (not shown) or r1 = 42, r2 = 0 (depicted in Fig. 4b). The
result r1 = 42, r2 = 42 (depicted in Fig. 4c) is illegal for LEGAL_EXEC but le-
gal for LEGAL_EXEC⋆. It contains a sem cycle violating CONSISTENCY, but not
CONSISTENCY⋆. One could argue that LEGAL_EXEC⋆ correctly recognises this ex-
ecution as legal, arguing that a valid compiler optimisation would be to remove
the store of r2 to gm.x, as it will be overwritten immediately with 42 anyway.
However, the same execution graph can correspond to a program in which the
store of r2 to gm.x can absolutely not be removed. For example, if its address
depends on the load of gm.y the compiler would not be able to recognise that
gm.x will be overwritten immediately and the ordering should be maintained.
Thus, the execution would be considered an OOTA execution. ⊓⊔

4.3 Mapping to and from PTX

We next compare the axiomatic MCMs of AuDaLa and PTX by mapping Au-
DaLa pre-executions onto PTX pre-executions and mapping PTX execution wit-
nesses onto AuDaLa execution witnesses and checking their legality. This method
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Inst1
Int r1 := gm.x;
gm.y := r1;

Inst2
Int r2 := gm.y;
gm.x := r2;
gm.x := 42;

(a) AuDaLa program.

Inst1

R[x]

W[y]

Inst2

R[y]

W[x]

W[x]

start start

nxt nxt

nxt

dep dep

co

po-loc

rf

(b) A legal execution.

Inst1

R[x]

W[y]

Inst2

R[y]

W[x]

W[x]

start start

nxt nxt

nxt

dep dep

co

po-loc

rf

rf

(c) Controversial execution.

Fig. 4: A simple test program with two corresponding execution graphs. Fig. 4b
shows a legal execution and Fig. 4c shows a controversial execution that could
also be interpreted as an OOTA execution. We again omit Loc, loc, po, inst,
same-inst, and same-loc. The fr relation is empty.

follows standard practice for this type of proof [10, 42, 60]. We use the formal
PTX MCM provided in [42], we discuss its most relevant concepts below.

In the PTX model, the sets corresponding to Cmd, Loc and Inst are Op, Addr
and Thread respectively. We further divide Cmd into RdCmd and WrCmd, which
PTX does in a similar manner through the sets RdOp and WrOp. Unlike AuDaLa,
PTX divides RdOp and WrOp further by their memory order semantics: PTX
defines acquire-reads as RdAcq, relaxed-reads as RdRlx, release-writes as WrRel
and relaxed-writes as WrRlx. This means that we have to choose the memory
semantics to which we map AuDaLa’s operations. Additionally, PTX operations
have a scope attribute, which we fix to a single Device scope.

The non-derived relations in PTX are nxtptx ⊆ Op×Op, startptx ⊆ Thread×
Op, locptx ⊆ Op × Addr and depptx ⊆ RdOp × Op. We establish a mapping
between AuDaLa and PTX pre-executions via the relations cmd-map ⊆ Cmd×Op,
loc-map ⊆ Loc × Addr and inst-map ⊆ Inst × Thread. This mapping follows
the MAP_PREEX predicate:

Definition 11 (The MAP_PREEX predicate). A pre-execution is correctly mapped
iff all of the following hold:

– bijective(cmd-map, Cmd, Op), bijective(loc-map, Loc, Addr), and
bijective(inst-map, Inst, Thread): mappings are one-to-one.

– locptx = cmd-map−1; loc; loc-map, we map loc onto locptx.
– nxtptx = cmd-map−1; nxt; cmd-map, we map nxt onto nxtptx.
– startptx = inst-map−1; start; cmd-map, we map start onto startptx.
– depptx = cmd-map−1; dep; cmd-map, we map dep onto depptx.
– Finally, we decide which memory order semantics to use via either:

• cmd-map ⊆ RdCmd× RdAcq ∪ WrCmd× WrRel, i.e., using Release/Acquire
semantics; or,

• cmd-map ⊆ RdCmd×RdRlx∪WrCmd×WrRlx, i.e., using Relaxed semantics.

For execution witnesses, we reverse the direction of the mapping: we map a PTX
execution witness back to an AuDaLa execution witness. The PTX counterparts
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of rf and co are denoted by rfptx ⊆ WrOp × RdOp and coptx ⊆ WrOp × WrOp
respectively. PTX’s analogue to same-inst is same-thread.

Definition 12 (The MAP_WITNESS predicate). A PTX execution witness is
correctly mapped iff the following all hold:

– rf = cmd-map; rfptx; cmd-map−1, we map rfptx onto rf.
– co = cmd-map; (coptx+ ∩ same-thread); cmd-map−1, we map the subset of

coptx+ that relates writes by the same thread onto co.

4.4 Empirical correctness results

We formalise our model in the Alloy analyser [28], a relational modelling tool
capable of reasoning over graphs, often used to analyse MCMs [24, 41–43, 59,
60]. Alloy’s relational algebra is similar to our definitions. Our complete Alloy
formalisation can be found on [37], a reproducibility package on [38].

We wish to assert that when an AuDaLa program is compiled to a PTX
program according to the mapping defined by MAP_PREEX, any legal PTX execu-
tion is also legal when interpreted as an AuDaLa execution. The PTX axiomatic
MCM defines the predicate PTX_MM, which holds if and only if the PTX execution
is legal. We use this predicate to define correctness for our mapping:

Theorem 3 (Correctness of MAP_PREEX). Given a valid AuDaLa pre-execution
pAuDaLa, suppose we map pAuDaLa onto a PTX pre-execution pPTX, and suppose wPTX
is a legal execution witness of pPTX. If we interpret wPTX as an AuDaLa execution
witness wAuDaLa, then wAuDaLa is a legal execution witness of pAuDaLa. Equivalently:

WELLFORMED_PREEX ∧ MAP_PREEX ∧ PTX_MM ∧ MAP_WITNESS ⇒ LEGAL_EXEC

We test Thm. 3 in Alloy 6 [28] using Z3 [19] version 4.13 as SAT solver and report
its runtime on a system with an Intel i9-13900K CPU and 32GB RAM. We do
this for small (4-8) pre-execution sizes, larger pre-executions quickly become
intractable. However, some of the most important litmus tests for GPUs can be
defined using six or fewer events [52]. We test three configurations: RelAcq,
Rlx and Rlx⋆. The first two configurations test both options of the MAP_PREEX
predicate, i.e., with Release/Acquire semantics and with Relaxed semantics.
The third configuration, Rlx⋆, uses the Relaxed version of MAP_PREEX but uses
LEGAL_EXEC⋆ as conclusion of the implication of Thm. 3. Therefore, Rlx⋆ tests
a weaker version of the axiomatic model in which not all dependencies need to
be respected. The results of our empirical testing are presented in Table 2.The
table suggests that it is safe to compile to the Release/Acquire memory order.
We discuss the counter-examples for the Relaxed memory order below. If we
model modulo dependencies (Rlx⋆), no counterexamples are found.

Two counter-examples of five events are found for Thm. 3 under the Rlx
configuration; the larger counter-examples are variations of these. One coun-
terexample is already discussed in Sect. 4.2 and shown in Fig. 4c. The other
counterexample is similar.
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Table 2: The verdict and solve time for Thm. 3 in three configurations: Re-
lease/Acquire semantics, Relaxed semantics, and Relaxed semantics with the
LEGAL_EXEC⋆ predicate. Solve time has been rounded up to the nearest second.

Size 4 5 6 7 8

RelAcq ✓(<1s) ✓(7s) ✓(1m6s) ✓(17m18s) ✓(6h27m40s)
Rlx ✓(<1s) ✗ (<1s) ✗ (12s) ✗ (12s) ✗ (<1s)
Rlx⋆ ✓(<1s) ✓(2s) ✓(18s) ✓(4m37s) ✓(1h39m40s)

4.5 Discussion

We have demonstrated that the PTX MCM is susceptible to the OOTA prob-
lem. This makes it difficult to conclusively state the relation between AuDaLa
and PTX for the Relaxed memory order. When dependencies are not completely
modelled (Rlx⋆), the Relaxed memory order is shown to be safe to compile Au-
DaLa’s memory operations to. This does mean, however, that we should trust the
compiler not to break any dependencies that required are for program correct-
ness. We use the word “trust”, because the current PTX MCM does not clearly
define which dependencies are inviolable. To be completely certain that no thread
will observe the compiler breaking a dependency, and thus violating our opera-
tional semantics in which no dependencies can be broken, the Release/Acquire
memory order can also be used as an alternative.

5 Related Work

Our approach of using Alloy to analyse MCMs is related to [60], which uses
Alloy to derive litmus tests that distinguish MCMs. The PTX MCM is given
in [42] and compared with the C++ MCM of [33]. Their approach of forward
mapping pre-executions and reverse mapping execution witnesses is similar to
ours, but they use both Alloy and Coq [53]. No operational model of the PTX
MCM is given, however. A generic framework for MCMs, both axiomatic and
operational, is given in [4], including a Coq proof that these models correspond.

The literature on relaxed memory semantics can be divided according to the
approach to dependency tracking, using either strong dependencies [14,32,33] or
no dependencies [11,42,59] (but allowing OOTA behaviour). Our two axiomatic
models fall in either category. Many works aim to find a solution to the OOTA
problem, such as promosing semantics [31] or modular relaxed dependencies [50].

Several parallel languages have similarities with AuDaLa. The CHemical Ab-
stract Machine (CHAM) [12] is based on the Γ -calculus [7] in which molecules
react with each other to form new molecules. Reactions can happen in par-
allel, making the Γ -calculus suitable for a GPU implementation [21, 22]. Au-
DaLa also has similarities to message-passing languages, such as the ParCel
languages [15, 58], and actor languages, such as Ly [55] and A-NETL [5]. For a
full overview, see [20].
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6 Conclusion

We have investigated a relaxed memory semantics for AuDaLa based on a new
operational semantics and a corresponding axiomatic semantics. Experiments
with Alloy indicate that this semantics can be mapped to PTX’s Release/Acquire
and Relaxed operations (assuming no dependencies are broken by the compiler).
Using this foundation, we aim to build a compiler from AuDaLa to CUDA,
enabling its execution on GPUs.
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