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Abstract. Automata learning is a technique to infer an automaton
model of a black-box system via queries to the system. In recent years it
has found widespread use both in industry and academia, as it enables
formal verification when no model is available or it is too complex to
create one manually. In this paper we consider the problem of learning
the individual components of a black-box synchronous system, assum-
ing we can only query the whole system. We introduce a compositional
learning approach in which several learners cooperate, each aiming to
learn one of the components. Our experiments show that, in many cases,
our approach requires significantly fewer queries than a widely-used non-
compositional algorithm such as L∗.

1 Introduction

Automata learning is a technique for inferring an automaton from a black-box
system by interacting with it and observing its responses. It can be seen as
a game in which a learner poses queries to a teacher – an abstraction of the
target system – with the intent of inferring a model of the system. The learner
can ask two types of queries: a membership query, asking if a given sequence
of actions is allowed in the system; and an equivalence query, asking if a given
model is correct. The teacher must provide a counter-example in case the model
is incorrect. In practice, membership queries are implemented as tests on the
system, and equivalence queries as conformance test suites.

The original algorithm L∗ proposed by Dana Angluin in 1987 [3] allowed
learning DFAs; since then it has been extended to a variety of richer automata
models, including symbolic [5] and register [7,26] automata, automata for ω-
regular languages [4], and automata with fork-join parallelism [18], to mention re-
cent work. Automata learning enables formal verification when no formal model
is available and also reverse engineering of various systems. Automata learning
has found wide application in both academia and industry. Examples are: the
verification of neural networks [31], finding bugs in specific implementations of
security [29,12] and network protocols [11], or refactoring legacy software [30].
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In this paper we consider the case when the system to be learned consists
of several concurrent components that interact in a synchronous way; the com-
ponents themselves are not accessible, but their number and respective input
alphabets are known. It is well-known that the composite state-space can grow
exponentially with the number of components. If we use L∗ to learn such a system
as a whole, it will take a number of queries that is proportional to the whole state-
space – many more than if we were able to apply L∗ to the individual components.
Since in practice queries are implemented as tests performed on the system (in
the case of equivalence queries, exponentially many tests are required), learning
the whole system may be impractical if tests take a non-negligible amount of
time, e.g., if each test needs to be repeated to ensure accuracy of results or when
each test requires physical interaction with a system.

In this work we introduce a compositional approach that is capable of learning
models for the individual components, by interacting with an ordinary teacher
for the whole system. This is achieved by translating queries on a single com-
ponent to queries on the whole system and interpreting their results on the
level of a single component. The fundamental challenge is that components are
not independent: they interact synchronously, meaning that sequences of actions
in the composite system are realised by the individual components performing
their actions in a certain relative order. The implications are that: (i) the answer
to some membership queries for a specific component may be unknown if the
correct sequence of interactions with other components has not yet been dis-
covered; and (ii) counter-examples for the global system cannot univocally be
decomposed into counter-examples for individual components, therefore some of
them may result in spurious counter-examples that need to be corrected later.

To tackle these issues, we make the following contributions:

– A compositional learning framework, orchestrating several instances of (an
extension of) L∗ with the purpose to learn models for the individual compo-
nents from an ordinary monolithic teacher. An adapter transforms queries
on single components into queries to the monolithic teacher.

– An extension of L∗ that can deal with unknown membership query re-
sults and spurious counter-examples; when plugged into the aforementioned
framework, we obtain a learning algorithm for our setting.

– An implementation of our approach as a tool Coal based on the state-of-the-
art automata learning library LearnLib [22], accompanied by a comprehen-
sive set of experiments: for some of the larger systems, our approach requires
up to six orders of magnitude fewer membership queries and up to ten times
fewer equivalence queries than L∗ (applied to the monolithic system).

The rest of this paper is structured as follows. We introduce preliminary
concepts and notation in Section 2. Our learning framework is presented in Sec-
tion 3. Section 4 discusses the details of our implementation and the results of our
experiments. Related work is highlighted in Section 5 and Section 6 concludes.
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2 Preliminaries

Notation and terminology. We use Σ to denote a finite alphabet of action sym-
bols, and Σ∗ to denote the set of finite sequences of symbols in Σ, which we
call traces; we use ϵ to denote the empty trace. Given two traces s1, s2 ∈ Σ∗,
we denote their concatenation by s1 · s2; for two sets S1, S2 ⊆ Σ∗, S1 · S2 de-
notes element-wise concatenation. Given s ∈ Σ∗, we denote by Pref (s) the set
of prefixes of s, and by Suff (s) the set of its suffixes; the notation lifts to sets
S ⊆ Σ∗ as expected. We say that S ⊆ Σ∗ is prefix-closed (resp. suffix-closed)
whenever S = Pref (S) (resp. S = Suff (S)). The projection σ↾Σ′ of σ on an
alphabet Σ′ ⊆ Σ is the sequence of symbols in σ that are also contained in Σ′.
Finally, given a set S, we write |S| for its cardinality.

In this work we represent the state-based behaviour of a system as a labelled
transition system.

Definition 1 (Labelled Transition System). A labelled transition system
(LTS) is a four-tuple L = (S,→, ŝ, Σ), where

– S is a set of states, which we refer to as the state space;
– →⊆ S ×Σ × S is a transition relation, which we write in infix notation as

s a−→ t, for (s, a, t) ∈ →.
– ŝ ∈ S is an initial state; and
– Σ is a finite set of actions, called the alphabet.

We say that L is deterministic whenever for each s ∈ S, a ∈ Σ there is at most
one transition from s labelled by a.

Some actions in Σ may not be allowed from a given state. We say that an action
a is enabled in s, written s a−→, if there is t such that s a−→ t. This notation is also
extended to traces σ ∈ Σ∗, yielding s σ−→ t and s σ−→. The language of L is the
set of traces enabled from the starting state, formally:

L(L) = {σ ∈ Σ∗ | ŝ σ−→} .

From here on, we only consider deterministic LTSs. Note that this does not
reduce the expressivity, in terms of the languages that can be encoded.

Remark 1. Languages of LTSs are always prefix-closed, because every prefix of
an enabled trace is necessarily enabled. Prefix-closed languages are accepted by
a special class of deterministic finite automata (DFA), where all states are final
except for a sink state, from which all transitions are self-loops. Our implemen-
tation (see Section 4) uses these models as underlying representation of LTSs.

We now introduce a notion of parallel composition of LTSs, which must
synchronise on shared actions.

Definition 2. Given n LTSs where Li = (Si,→i, ŝi, Σi) for 1 ≤ i ≤ n, their
parallel composition, notation ∥n

i=1 Li, is an LTS over the alphabet
⋃n

i=1 Σi,
defined as follows:
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– the state space is S1 × S2 × · · · × Sn;
– the transition relation is given by the following rule

si
a−→i ti for all i such that a ∈ Σi

sj = tj for all j such that a /∈ Σj

(s1, . . . , sn)
a−→ (t1, . . . , tn)

– the initial state is (ŝ1, . . . , ŝn).

Intuitively, a certain action a can be performed from (s1, . . . , sn) only if it can be
performed by all component LTSs that have a in their alphabet; all other LTSs
must stay idle. We say that an action a is local if there is exactly one i such that
a ∈ Σi, otherwise it is called synchronising. The parallel composition of LTSs
thus forces individual LTSs to cooperate on synchronising actions; local actions
can be performed independently. We typically refer to the LTSs that make up
a composite LTS as components. Synchronisation of components corresponds to
communication between components in real-world settings.

Example 1. Consider the left two LTSs below with the respective alphabets
{a, c} and {b, c}. Their parallel composition is depicted on the right.

L1 = s0 s1
a

c

L2 = t0 t1 t2
b c

L1 ∥ L2 = s0, t0

s1, t0

s0, t1

s1, t1

s1, t2

a

b

b

a

c

Here a and b are local actions, whereas c is synchronising. Note that, despite L1

being able to perform c from its initial state s0, there is no c transition from
(s0, t0), because c is not initially enabled in L2. First L2 will have to perform b
to reach t1, where c is enabled, which will allow L1 ∥ L2 to perform c. ⊓⊔

We sometimes also apply parallel composition to sets of traces: ∥i Si is equiv-
alent to ∥Ti, where each Ti is a tree-shaped LTS that accepts exactly Si, i.e.,
L(Ti) = Si. In such cases, we will explicitly mention the alphabet each Ti is
assigned. This notation furthermore applies to single traces: ∥i σi = ∥i{σi}.

2.1 L∗ algorithm

We now recall the basic L∗ algorithm. Although the algorithm targets DFAs, we
will present it in terms of deterministic LTSs, which we use in this paper (these
are a sub-class of DFAs, see Remark 1). The algorithm can be seen as a game in
which a learner poses queries to a teacher about a target language L that only
the teacher knows. The goal of the learner is to learn a minimal deterministic
LTS with language L. In practical scenarios, the teacher is an abstraction of the
target system we wish to learn a model of. The learner can ask two types of
queries:
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ϵ b

ϵ 1 0

b 0 0

a 1 1

ab 1 0

ba 0 0

bb 0 0

aa 0 0

aba 1 1

abb 0 0

S

S ·Σ \ S

E

(a)

1 0 1 1

a

b

(b)

Fig. 1: A closed and consistent observation table and the LTS that can be con-
structed from it.

– Membership query: is a trace s in the target language L? The teacher
will return a Yes/No answer.

– Equivalence query: does a given hypothesis LTS H accept L? The teacher
will return Yes/No; a No answer comes with a counter-example, i.e., a trace
in L(H) ∆ L, where ∆ denotes the symmetric difference.

The learner organises the information received in response to queries in an ob-
servation table, which is a triple (S,E, T ), consisting of a finite, prefix-closed set
S ⊆ Σ∗, a finite, suffix-closed set E ⊆ Σ∗, and a function T : (S ∪ S ·Σ) · E →
{0, 1}. The function T can be seen as a table in which rows are labelled by traces
in S ∪ S ·Σ, columns by traces in E, and cells T (s · e) contain 1 if s · e ∈ L and
0 otherwise.

Example 2. Consider the prefix-closed language L over the alphabet Σ = {a, b}
consisting of traces where a and b alternate, starting with a; for instance aba ∈ L
but abb /∈ L. An observation table generated by a run of L∗ targeting this
language is shown in Figure 1a. ⊓⊔

Let rowT : S∪S ·Σ → (E → {0, 1}) denote the function rowT (s)(e) = T (s·e)
mapping each row of T to its content (we omit the subscript T when clear
from the context). The crucial observation is that T approximates the Nerode
congruence [28] for L as follows: s1 and s2 are in the same congruence class only
if row(s1) = row(s2), for s1, s2 ∈ S. Based on this fact, the learner can construct
a hypothesis LTS from the table, in the same way the minimal DFA accepting
a given language is built via its Nerode congruence:3

– the set of states is {row(s) | s ∈ S, row(s)(ϵ) = 1};
3 For the minimal DFA, the set of states is {row(s) | s ∈ S}; here we only take
accepting states as we are building an LTS.



6 T. Neele & M. Sammartino

– the initial state is row(ϵ);

– the transition relation is given by row(s) a−→ row(s · a), for all s ∈ S and
a ∈ Σ.

In order for the transition relation to be well-defined, the table has to satisfy the
following conditions:

– Closedness: for all s ∈ S, a ∈ Σ, there is s′ ∈ S such that rowT (s
′) =

rowT (s · a).
– Consistency: for all s1, s2 ∈ S such that rowt(s1) = rowt(s2), we have

rowT (s1 · a) = rowT (s2 · a), for all a ∈ Σ.

Example 3. The table of Example 2 is closed and consistent. The corresponding
hypothesis LTS, which is also the minimal LTS accepting L, is shown in Fig-
ure 1b. ⊓⊔

The algorithm works in an iterative fashion: starting from the empty table,
where S and E only contain ϵ, the learner extends the table via membership
queries until it is closed and consistent, at which point it builds a hypothesis
and submits it to the teacher in an equivalence query. If a counter-example
is received, it is incorporated in the observation table by adding its prefixes
to S, and the updated table is again checked for closedness and consistency.
The algorithm is guaranteed to eventually produce a hypothesis H such that
L(H) = L, for which an equivalence query will be answered positively, causing
the algorithm to terminate.

3 Learning Synchronous Components Compositionally

In this section, we show how to compositionally learn an unknown system M =
M1 ∥ · · · ∥ Mn consisting of n parallel LTSs. To achieve this, we assume that
we are given: (i) a teacher for M ; and (ii) the respective alphabets Σ1, . . . , Σn

of M1, . . . ,Mn. To achieve this, we propose the architecture in Figure 2. We
have n leaners, which are instances of (an extension of) the L∗ algorithm, one
for each component Mi. The instance L∗i can pose queries for Mi to an adapter,
which converts them to queries on M . The resulting yes/no answer (and possibly
counter-example) is translated back to information about Mi, which is returned
to leaner L∗i . To achieve this, the adapter moreover choreographs the learners to

some extent: before an equivalence query H
?
= M can be sent to the teacher, the

adapter must first receive equivalence queries Hi
?
= Mi from each learner.

We first discuss the implementation of the adapter and show its limitations.
To deal with these limitations, we next propose a couple of extensions to L∗ (Sec-
tion 3.2). Completeness claims are stated in Section 3.3. Several optimisations
are discussed in Section 3.4.
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M =
M1 ∥ · · · ∥ Mn

Teacher

A
d
a
p
t
e
r

w
?
∈ L(M)

H
?
= M

CEX σ

L∗i

...

L∗i

w1
?
∈ L(M

1)

H1
?
= M

1

CEX σ1

wn

?
∈ L(Mn)

Hn

?
= Mn

CEX
σn

Fig. 2: Architecture for learning LTS M consisting of components M1 ∥ · · · ∥ Mn.

L1 =
c

a

c
L2 =

c

b L =

c

a

c

a

b b b

Fig. 3: Running example consisting of two LTSs L1 and L2 and their parallel
composition L. The respective alphabets are {a, c}, {b, c} and {a, b, c}.

3.1 Query Adapter

As sketched above, our adapter answers queries on each of the LTSs Mi, based
on information obtained from queries on M . However, the application of the
parallel operator causes loss of information, as the following example illustrates.
We will use the LTSs below as a running example throughout this section.

Example 4. Consider the LTSs L1, L2 and L = L1 ∥ L2 depicted in Figure 3.
Their alphabets are {a, c}, {b, c} and {a, b, c}, respectively.

Suppose we sent a membership query bc to the teacher and we receive as
answer that bc /∈ L(L). At this point, we do not have sufficient information
to deduce about the respective projections whether bc↾{a,c} = c /∈ L(L1) or
bc↾{b,c} = bc /∈ L(L2) (or both). In this case, only the latter holds. Similarly,
if a composite hypothesis H = H1 ∥ H2 is rejected with a negative counter-
example ccc /∈ L(L), we cannot deduce whether this is because ccc /∈ L(L1) or
ccc /∈ L(L2) (or both). Here, however, the former is true but the latter is not,
i.e., ccc is not a counter-example for H2 at all. ⊓⊔

Generally, given negative information on the composite level (σ /∈ L(M)), it
is hard to infer information for a single component Mi, whereas positive infor-
mation (σ ∈ L(M)) easily translates back to the level of individual components.
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We thus need to relax the guarantees on the answers given by the adapter in
the following way:

1. Not all membership queries can be answered, the adapter may return the
answer ‘unknown’.

2. An equivalence query for component i can be answered with a spurious
counter-example σi ∈ L(Hi) ∩ L(Mi).

The procedures that implement the adapter are stated in Listing 1. For each
1 ≤ i ≤ n, we have one instance of each of the functions Member i and Equiv i,
used by the ith learner to pose its queries. Here, we assume that for each compo-
nent i, a copy of the latest hypothesis Hi is stored, as well as a set Pi which con-
tains traces that are certainly in L(Mi). Membership and equivalence queries on
M will be forwarded to the teacher via the functions Member(σ) and Equiv(H),
respectively.

Membership Queries A membership query σ ∈ L(Mi) can be answered di-
rectly by posing σ ∈ L(M) to the teacher if σ contains only actions local to Mi.
However, in the case where σ contains synchronising actions, cooperation from
other components Mj is required. So, during the runtime of the program, for
each i we collect traces in a set Pi, for which it is certain that Pi ⊆ L(Mi). That
is, Pi contains traces which were returned as positive counter-examples (line 16)
or membership queries (line 5). Recall from Section 2 that we can construct
tree-LTSs to compute ∥j ̸=i Pj , where each Pi has alphabet Σi. By construction,
we have L(∥j ̸=i Pj) ⊆ L(∥j ̸=i Mj), and so we have an under-approximation of
the behaviour of other components, possibly including some synchronising ac-
tions they can perform. If we find in L(∥j ̸=i Pj) a trace σ′ such that σ and σ′

contain the same sequence of synchronising actions (line 2, stored in set Π),
we construct an arbitrary interleaving (respecting synchronising actions) of σ
and σ′ and forward it to the teacher (line 4). Such an interleaving is a trace
σint ∈ L(σ ∥ σ′) of maximal length. Note that a σ′ ∈ Π trivially exists if σ does
not contain synchronising actions. If, on the other hand, no such σ′ exists, we
do not have sufficient information on how other LTSs Mj can cooperate, and we
return ‘unknown’ (line 7).

Example 5. Refer to the running example in Figure 3. Suppose that the current
knowledge about L2 is H2 = {ϵ, b}. When Member1(c) is called, Π = ∅, because
there is no trace σ′ ∈ P2 that is equal to c when restricted to {a, c}, therefore
unknown is returned. Intuitively, since the second learner has not yet discovered
that c or bc (or some other trace containing a c) is in its language, the adapter
is unable to turn the query c on L1 into a query for the composite system. ⊓⊔

Example 6. Suppose now that cac ∈ P1, i.e., we already learned that cac ∈
L(L1). When posing the membership query cbc ∈ L(L2), the adapter finds that
cac and cbc contain the same synchronising actions (viz. cc) and constructs
an interleaving, for example cabc. The teacher answers negatively to the query
cabc ∈ L(L), and thus we learn that cbc /∈ L(L2). ⊓⊔
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Listing 1: Membership and equivalence query procedures for compo-
nent i.
Input: Alphabets Σ1, . . . , Σn of the components
Data: for each i, the latest hypothesis Hi and a set Pi of traces, initially {ϵ}.

1 Function Member i(σ)
2 Π := {σ′ ∈ L(∥j ̸=i Pj) | σ′

↾Σi
= σ↾Σother } where Σother =

⋃
j ̸=i Σj ;

3 if Π ̸= ∅ then
4 answer := Member(σint) for some σ′ ∈ Π and some maximal

σint ∈ L(σ ∥σ′) ; /* construct interleaving */

5 if answer = yes then Pi := Pi ∪ {σ};
6 return answer

7 else return unknown;

8 Function Equiv i(H
′)

9 Hi := H ′;
10 while true do
11 barrier(n) ; /* wait until this point is reached for every i */

12 construct H = ∥i Hi;
13 switch Equiv(H) do
14 case yes do return yes;
15 case (no, σ) do
16 if σ /∈ L(H) then Pi := Pi ∪ {σ↾Σi};
17 if a ∈ Σi, where σ = σ′a, and σ ∈ L(H) ⇔ σ↾Σi ∈ L(Hi) then
18 return (no, σ↾Σi)

Equivalence Queries For equivalence queries, the adapter offers functions
Equiv i. To construct a corresponding query on the composite level, we first need
to gather a hypothesis Hi for each i. Thus, we synchronise all learners in a
barrier (line 11), after which a composite hypothesis can be constructed and
forwarded to the teacher (lines 12, 13). An affirmative answer can be returned
directly, while in the negative case we investigate the returned counter-example
σ. If σ is a positive counter-example, we add its projection to Pi (line 16). By the
assumption that σ is shortest4, H and M agree on all σ′ ∈ Pref (σ)\{σ}. Thus, σ
only concerns Hi if the last action in σ is contained in Σi. Furthermore, we need
to check whether H and Hi agree on σ: it can happen that σ↾Σi

∈ L(Hi) but
σ /∈ L(H) due to other hypotheses not providing the necessary communication
opportunities. If both conditions are satisfied (line 17), we return the projection
of σ on Σi (line 18). Otherwise, we cannot conclude anything about Hi at this
moment and we iterate (line 10). In that case, we effectively wait for other
hypotheses Hj , with j ̸= i, to be updated before trying again. A termination
argument is provided later in this section.

4 This assumption can be satisfied in practice by using a lexicographical ordering on
the conformance test suite the teacher generates to decide equivalence.
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Example 7. Again considering our running example (Figure 3), suppose the two
learners call in parallel the functions Equiv1(H1) and Equiv2(H2). The provided
hypotheses and their parallel composition are as follows:

H1 =
c

a
H2 = b c H1 ∥ H2 =

b

c

a

b

The adapter forwards H = H1 ∥ H2 to the teacher, which returns the counter-
example cc. The last symbol, c, occurs in both alphabets, but cc ∈ L(H) does
not hold and cc↾Σ2

∈ L(H2) does, so only Equiv1(H1) returns (no, cc). The call
to Equiv2(H2) hangs in the while loop of line 10 until Equiv1 is invoked with a
different hypothesis. ⊓⊔

Example 8. Suppose now that the hypotheses and their composition are:

H1 =
c

a c
H2 =

c

b
H1 ∥ H2 =

c

a c
b b

a

When we submit Equiv(H1 ∥ H2), we may receive the negative counter-example
ccc, which is a shortest counter-example. This counter-example does not contain
any information to suggest that it only applies to H1. It is a spurious counter-
example for H2, since that should contain the trace ccc. ⊓⊔

3.2 L∗ extensions

As explained in the previous section, the capabilities of our adapter are limited
compared to an ordinary teacher. We thus extend L∗ to deal with the answer
‘unknown’ to membership queries and to deal with spurious counter-examples.

Answer ‘unknown’. The setting of receiving incomplete information through
membership queries first occurred in [15], and is also discussed in [24]. Here we
briefly recall the ideas of [15]. To deal with partial information from membership
queries, the concept of an observation table is generalised such that the function
T : (S ∪ S · Σ) · E → {0, 1} is a partial function, that is, for some cells we
have no information. Based on T , we now define the function row : S ∪ S ·
Σ → E → {0, 1, ?} to fill the cells of the table: rowT (s)(e) = T (se) if T (se)
is defined and ? otherwise. We refer to ‘?’ as a wildcard ; its actual value is
currently unknown and might be learned at a later time or never at all. To
deal with the uncertain nature of wildcards, we introduce a relation ≈ on rows,
where row(s1) ≈ row(s2) iff for every e ∈ E, row(s1)(e) ̸= row(s2)(e) implies
that row(s1)(e) = ? or row(s2)(e) = ?. Note that ≈ is not an equivalence relation
since it is not transitive. Closedness and consistency are defined as before, but
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now use the new relation ≈. We say an LTS M is consistent with T iff for all
s ∈ Σ∗ such that T (s) is defined, we have T (s) = 1 iff s ∈ L(M).

As discussed earlier, Angluin’s original L∗ algorithm relies on the fact that,
for a closed and consistent table, there is a unique minimal DFA (or, in our case,
LTS) that is consistent with T . However, the occurrence of wildcards in the
observation table may allow multiple minimal LTSs that are consistent with T .
Such a minimal consistent LTS can be obtained with a SAT solver, as described
in [19].

Similar to Angluin’s original algorithm, this extension comes with some cor-
rectness theorems. First of all, it terminates outputting the minimal LTS for the
target language. Furthermore, each hypothesis is consistent with all membership
queries and counter-examples that were provided so far. Lastly, each subsequent
hypothesis has at least as many states as the previous one, but never more than
the minimal LTS for the target language.

Spurious Counter-Examples. We now extend this algorithm with the abil-
ity to deal with spurious counter-examples. Any negative counter-example σ ∈
L(Hi) might be spurious, i.e., it is actually the case that σ ∈ L(Mi). Since L∗

excludes σ from the language of all subsequent hypotheses, we might later get
the same trace σ, but now as a positive counter-example. In that case, the initial
negative judgment from the equivalence teacher was spurious.

One possible way of dealing with spurious counter-examples, is adding to
L∗ the ability to overwrite entries in the observation table in case a spurious
counter-example is corrected. However, this may cause the learner to diverge if
infinitely many spurious counter-examples are returned. Therefore, we instead
choose to add a backtracking mechanism to ensure our search will converge. The
pseudo code is listed in Listing 2; we refer to this as L∗?,b (L∗ with wildcards and
backtracking).

We have a mapping BT that stores backtracking points; BT is initialised to
the empty mapping (line 1). Lines 5-11 ensure the observation table is closed and
consistent in the same way as L∗, but use the relation ≈ on rows instead. Next,
we construct a minimal hypothesis that is consistent with the observations in T
(line 12). This hypothesis is posed as an equivalence query. If the teacher replies
with a counter-example σ for which T (σ) = 0, then σ was a spurious counter-
example, so we backtrack and restore the observation table from just before T (σ)
was introduced (line 15). Otherwise, we store a backtracking point for when σ
later turns out to be spurious (line 17); this is only necessary if σ is a negative
counter-example. Note that not all information is lost when backtracking: the
set Pi stored in the adapter is unaffected, so some positive traces are carried over
after backtracking. Finally, we incorporate σ into the observation table (line 18).
When the teacher accepts our hypothesis, we terminate.

We finish this section with an example that shows how spurious counter-
examples may be resolved.
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Listing 2: Learning with wildcards and backtracking.

1 Set BT to ∅;
2 Initialise S and E to {ϵ};
3 Extend T to S ∪ S ·Σi by calling Member i;
4 repeat
5 while (S,E, T ) is not closed and consistent do
6 if (S,E, T ) is not consistent then
7 Find s1, s2 ∈ S, a ∈ Σi, e ∈ E such that rowT (s1) ≈ rowT (s2) and

T (s1 · a · e) ̸≈ T (s2 · a · e);
8 Add a · e to E and extend T by calling Member i;

9 if (S,E, T ) is not closed then
10 Find s1 ∈ S, a ∈ Σi such that rowT (s1 · a) ̸≈ rowT (s) for all s ∈ S;
11 Add s1 · a to S and extend T by calling Member i;

12 Call Equiv i(H) for some minimal LTS H consistent with T ;
13 if Teacher replies with counter-example σ then
14 if T (σ) = 0 then /* σ corrects an earlier spurious CEX */

15 (S,E, T ) := BT (σ);

16 else if σ ∈ L(H) then /* σ might be spurious */

17 BT (σ) := (S,E, T );

18 Add σ and all its prefixes to S and extend T by calling Member i;

19 until Teacher replies yes to conjecture H;
20 return H ;

Example 9. Refer again to the LTSs of our running example in Figure 3. Consider
the situation after proposing the hypotheses of Example 8 and receiving the
counter-example ccc, which is spurious for the second learner.

In the next iteration, Member2 can answer some membership queries, such
as cbc, necessary to expand the table of the second learner. This is enabled by
the fact that P1 contains cc from the positive counter-example of Example 7
(line 2 of Listing 1). The resulting updated hypotheses are as follows.

H ′
1 =

c

a

c
H ′

2 =
c c

b
b

b

Now the counter-example to composite hypothesis H ′
1 ∥ H ′

2 is cacc. The projec-
tion on Σ2 is ccc, which directly contradicts the counter-example received in the
previous iteration. This spurious counter-example is thus repaired by backtrack-
ing in the second learner. The invocation of Equiv1(H

′
1) by the first learner does

not return this counter-example, since H ′
1 ∥ H ′

2 and H ′
1 do not agree on cacc, so

the check on line 17 of Listing 1 fails.

Finally, in the next iteration, the respective hypotheses coincide with L1 and
L2 and both learners terminate. ⊓⊔
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3.3 Correctness

As a first result, we show that our adapter provides correct information on each
of the components when asking membership queries. This is required to ensure
that information obtained by membership queries does not conflict with counter-
examples. Proofs are omitted for space reasons.

Theorem 1. Answers from Member i are consistent with L(Mi).

Before presenting the main theorem on correctness of our learning frame-
work, we first introduce several auxiliary lemmas. In the following, we assume n
instances of L∗?,b run concurrently and each queries the corresponding functions
Member i and Equiv i, as per our architecture (Figure 2). First, a counter-example
cannot be spurious for all learners; thus at least one learner obtains valid infor-
mation to progress its learning.

Lemma 1. Every counter-example obtained from Equiv(H) is valid for at least
one learner.

The next lemma shows that even if a spurious counter-example occurs, this
does not induce divergence, since it is always repaired by a corresponding positive
counter-example in finite time.

Lemma 2. If Equiv(H) always returns a shortest counter-example, then each
spurious counter-example is repaired by another counter-example within a finite
number of invocations of Equiv(H), the monolithic teacher.

Our main theorem states that a composite system is learned by n copies of
L∗?,b that each call our adapter (see Figure 2).

Theorem 2. Running n instances of L∗?,b terminates, and on termination we
have H1 ∥ · · · ∥ Hn = M1 ∥ · · · ∥ Mn.

Remark 2. We cannot claim the stronger result that Hi = Mi for all i, since dif-
ferent component LTSs can result in the same parallel composition. For example,
consider the below LTSs, both with alphabet {a}:

H1 = H2 = a

Here we have H1 ∥ H2 = H1 ∥ H1. The equivalence oracle thus may also return
yes even when the component LTSs differ slightly.

3.4 Optimisations

There are a number of optimisations that can dramatically improve the practical
performance of our learning framework. We briefly discuss them here.

First, finding whether there is a trace σ′ ∈ Π (line 2 of Listing 1) can quickly
become expensive once the sets Pi grow larger. We thus try to limit the size
of each Pi without impacting the amount of information it provides on the
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synchronisation opportunities offered by component Mi. Therefore, when we
derive that σ ∈ L(Mi), we only store the shortest prefix ρ of σ such that ρ and σ
contain the same synchronising actions. That is, σ = ρ · ρ′ and ρ′ contains only
actions local to Mi. Furthermore, we construct ∥j ̸=i Pj only once after each call
to Equiv i and we cache accesses to ∥j ̸=i Pj , such that it is only traversed once
when performing multiple queries σ1, σ2 for which it holds that σ1

↾Σother
= σ2

↾Σother
.

A possibility that we have not explored is applying partial-order reduction to
eliminate redundant interleavings in ∥j ̸=i Pj .

Since the language of an LTS is prefix-closed, we can – in some cases –
extend the function T that is part of the observation table without performing
membership queries. Concretely, if T (σ) = 0 then we can set T (σ · σ′) = 0 for
any trace σ′. Dually, if T (σ · σ′) = 1 then we set T (σ) = 1.

4 Experiments

We created an experimental implementation of our algorithms in a tool called
Coal (COmpositional Automata Learner) [27], implemented in Java. It relies
on LearnLib [22], a library for automata learning, which allows us to re-use
standard data structures, such as observation tables, and compare our framework
to a state-of-the-art implementation of L∗. To extract a minimal LTS from an
observation table, we first attempt the inexact blue-fringe variant of RPNI [20]
(as implemented in LearnLib). If this does not result in an LTS that is minimal,
we resort to an exact procedure based on a SAT translation; we use the Z3
solver [10].

Our experiments are run on a machine with an Intel Core i3 3.6GHz, with
16GB of RAM, running Ubuntu 20.04. For each experiment, we use a time-out
of 30 minutes.

4.1 Random Systems

We first experiment with a large number of composite systems where each of
the component LTSs is randomly generated. This yields an accurate reflection of
actual behavioural transition systems [16]. Each component LTS has a random
number of states between 5 and 9 (inclusive, uniformly distributed) and a max-
imum number of outgoing edges per state between 2 and 4 (inclusive, uniformly
distributed).

We assign alphabets to the components LTSs in five different ways that
reflect real-world communication structures, see Figure 4. Here, each edge repre-
sents a communication channel that consists of two synchronising actions; each
component LTS furthermore has two local actions. The hyperedge in multiparty
indicates multiparty communication: the two synchronising actions in such a
system are shared by all component LTSs. The graph that represents the bipar-
tite communication structure is always complete, and the components are evenly
distributed between both sides. Random is slightly different: it contains 2(n−1)
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multiparty ring bipartite star random

Fig. 4: Communication structure of the randomly generated systems. Dots rep-
resent components LTSs; edges represent shared synchronising actions.

edges, where n is the number of components, each consisting of one action; we
furthermore ensure the random graph is connected.

For our five communication structures, we create ten instances for each num-
ber of components between 4 and 9; this leads to a total benchmark set of 300
LTSs. Out of these, 47 have more than 10,000 states, including 12 LTSs of more
than 100,000 states. The largest LTS contains 379,034 states. Bipartite often
leads to relatively small LTSs, due to its high number of synchronising actions.
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Fig. 5: Performance of L∗ and compositional learning on random models.

On each LTS, we run the classic L∗ algorithm and Coal, and record the
number of queries posed to the teacher.5 The result is plotted in Figure 5; note
the log scale. Here, marks that lie on the dashed line indicate a time-out or
out-of-memory for one of the two algorithms.

Coal outperforms the monolithic L∗ algorithm in the number of member-
ship queries for all cases (unless it fails). In more than half of the cases, the

5 The number of queries is the standard performance measure for query learning algo-
rithms; runtime is less reliable, as it depends on the specific teacher implementation.
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Table 1: Performance of Coal and L∗ for realistic composite systems.
Coal L∗

model scaling comp states time(s) memQ eqQ spCE time(s) memQ eqQ

CloudOps W = 1, C = 1, N = 3 5 690 1.06 957 24 0 1.85 2,740,128 88
CloudOps W = 1, C = 1, N = 4 6 1,932 1.13 1,004 26 0 16.99 22,252,120 216
CloudOps W = 2, C = 1, N = 3 5 3,858 47.13 8,897 41 3 8.94 12,574,560 99
CloudOps W = 2, C = 1, N = 4 6 10,824 48.20 8,811 36 3 84.02 91,178,900 227

ProdCons K = 5, P = 1, C = 1 3 246 0.51 285 13 3 0.34 160,126 30
ProdCons K = 5, P = 2, C = 1 4 962 0.54 401 13 0 2.35 2,523,625 91
ProdCons K = 5, P = 3, C = 2 6 13,001 1.65 1,239 16 0 65.42 60,186,235 187
ProdCons K = 5, P = 3, C = 3 7 45,302 3.21 2,276 16 0 241.37 222,567,729 193

ProdCons K = 3, P = 2, C = 2 5 2,273 0.61 456 13 0 1.66 2,141,165 43
ProdCons K = 5, P = 2, C = 2 5 3,329 1.29 596 15 1 6.36 6,984,705 93
ProdCons K = 7, P = 2, C = 2 5 4,385 0.97 799 15 0 17.56 15,792,997 135

difference is at least three orders of magnitude; it can even reach six orders of
magnitude. For equivalence queries, the difference is less obvious, but our com-
positional approach scales better for larger systems. This is especially relevant,
because in practice implementations equivalence queries may require a number
of membership queries that is exponential in the size of the system. Multiparty
communication systems benefit most from compositional learning. The num-
ber of spurious counter-examples that occurs for these models is limited: about
one on average. Only twelve models require more than five spurious counter-
examples; the maximum number required is thirteen. This is encouraging, since
even for this varied set of LTSs the amount of duplicate work performed by
Coal is limited.

4.2 Realistic Systems

Next, we investigate the performance of Coal on two realistic systems that
were originally modelled as a Petri net. These Petri nets can be scaled according
to some parameters to yield various instances. The ProdCons system models a
buffer of size K that is accessed by P producers and C consumers; it is described
in [32, Fig. 8]. The CloudOpsManagement net is obtained from the 2019 Model
Checking Contest [2], and describes the operation of C containers and operating
systems and W application runtimes in a cloud environment. Furthermore, we
scale the number N of application runtime components. We generate the LTS
that represents the marking graph of these nets and run L∗ and Coal; the results
are listed in Table 1. For each system, we list the values of scaling parameters,
the number of components and the number of states of the LTS. For Coal and
L∗, we list the runtime and the number of membership and equivalence queries;
for Coal we also list the number of spurious counter-examples (column spCE).

The results are comparable to our random experiments:Coal outperforms L∗

in number of queries, especially for larger systems. For the two larger CloudOps-
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Management instances, the increasing runtime of Coal is due to the fact that
two of the components grow as the parameter W increases. The larger number of
states causes a higher runtime of the SAT procedure for constructing a minimal
LTS.

We remark that in our experiments, the teacher has direct access to the LTS
we aim to learn, leading to cheap membership and equivalence queries. Thus, in
this idealised setting, L∗ incurs barely any runtime penalty for the large number
of queries it requires. Using a realistic teacher implementation would quickly
cause time-outs for L∗, making the results of our experiments less insightful.

5 Related Work

Finding ways of projecting a known concurrent system down into its components
is the subject of several works, e.g., [8,17]. In principle, it would be possible to
learn the system monolithically and use the aforementioned results. However, as
shown in Section 4, this may result in a substantial query blow-up.

Learning approach targeting various concurrent systems exist in the litera-
ture. As an example of the monolithic approach above, the approach of [6] learns
asynchronously-communicating finite state machines via queries in the form of
message sequence charts. The result is a monolithic DFA that is later broken
down into components via an additional synthesis procedure. This approach thus
does not avoid the exponential blow-up in queries. Another difference with our
work is that we consider synchronous communication.

Another monolithic approach is [18], which provides an extension of L∗ to
pomset automata. These automata are acceptors of partially-ordered multisets,
which model concurrent computations. Accordingly, this relies on an oracle capa-
ble of processing pomset-shaped queries; adapting the approach to an ordinary
sequential oracle – as in our setting – may cause a query blow-up.

A severely restricted variant of our setting is considered in [13], which in-
troduces an approach to learn Systems of Procedural Automata. Here, DFAs
representing procedures are learned independently. The constrained interaction
of such DFAs allows for deterministically translating between component-level
and system-level queries, and for univocally determining the target of a counter-
example. Our setting is more general – arbitrary (not just pair-wise) synchroni-
sations are allowed at any time – hence these abilities are lost.

Two works that do not allow synchronisation at all are [23,25]. In [23] indi-
vidual components are learned without any knowledge of the component number
and their individual alphabets, however components cannot synchronise (alpha-
bets are assumed to be disjoint). This is a crucial difference with our approach,
which instead has to deal with unknown query results and spurious counter-
examples precisely due to the presence of synchronising actions. An algorithm
for learning Moore machines with decomposable outputs is propose in [25]. This
algorithm spawns several copies of L∗, one per component. This approach is not
applicable to our setting, as we do not assume decomposable output and allow
dependencies between components.
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Other approaches consider teachers that are unable to reply to membership
queries [1,14,15,24]; they all use SAT-based techniques to construct automata.
The closest works to ours are: [24], considering the problem of compositionally
learning a property of a concurrent system with full knowledge of the compo-
nents; and [1], learning an unknown component of the serial composition of two
automata. In none of these works spurious counter-examples arise.

6 Conclusion

We have shown how to learn component systems with synchronous communica-
tion in a compositional way. Our framework uses an adapter and a number of
concurrent learners. Several extensions to L∗ were necessary to circumvent the
fundamental limitations of the adapter. Experiments with our tool Coal show
that our compositional approach offers much better scalability than a standard
monolithic approach.

In future work, we aim to build on our framework in a couple of ways. First,
we want to apply these ideas to all kinds of extensions of L∗ such as TTT [21]
(for reducing the number of queries) and algorithms for learning extended finite
state machines [7]. Our expectation is that the underlying learning algorithm
can be replaced with little effort. Next, we want to eliminate the assumption
that the alphabets of individual components are known a priori. We envisage
this can be achieved by combining our work and [23].

We also would like to explore the integration of learning and model-checking.
A promising direction is learning-based assume-guarantee reasoning, originally
introduced by Cobleigh et. al. in [9]. This approach assumes that models for
the individual components are available. Using our approach, we may be able
to drop this assumption, and enable a fully black-box compositional verification
approach.

Acknowledgements. We thank the anonymous reviewers for their useful com-
ments, and Tobias Kappé for suggesting several improvements. This research was
partially supported by the EPSRC Standard Grant CLeVer (EP/S028641/1).
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