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Abstract. AuDal.a is a recently introduced programming language that
follows the new data autonomous paradigm. In this paradigm, small
pieces of data execute functions autonomously. Considering the paradigm
and the design choices of AuDala, it is interesting to determine the ex-
pressiveness of the language and to create verification methods for it. In
this paper, we take our first steps to such a verification method by imple-
menting Turing machines in AuDaLa and proving that implementation
correct. This also proves that AuDalLa is Turing complete.
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1 Introduction

Nowadays, performance gains are increasingly obtained through parallelism. The
focus is often on how to get the hardware to process the program efficiently and
languages are often designed around that, focusing on threads and processes.
Recently, AuDala [9] was introduced, which completely abstracts away from
threads. In AuDaLa, data is autonomous, meaning that the data executes its
own functions. It follows the new data autonomous paradigm [9], which abstracts
away from active processor and memory management for parallel programming
and instead focuses on the innate parallelism of data. This paradigm encourages
parallelism by making running code in parallel the default setting, instead of
requiring functions to be explicitly called in parallel. The paradigm also pro-
motes separation of concerns and a bottom-up design process. A compiler for
AuDalLa [15] enables execution of AuDaLa on GPUs.

AuDalLa is built to be simple and focusses fully on parallel data elements.
This design principle relates AuDala to domain specific languages, which are
often less expressive than general purpose languages. It is therefore relevant
to establish the expressiveness of AuDala, as AuDaLa is built as a general
purpose language. Additionally, establishing the expressiveness of AuDaLa also
indicates how expressive the data-autonomous paradigm is. AuDal.a has a fully
defined semantics, unlike many other languages, which we can use to answer this
question.

Turing completeness is a well known property in computer science, which
applies to a language or system that can simulate Turing machines. As a Turing
machine can compute all effectively computable functions following the Church-
Turing thesis 5], a Turing complete language or system can do the same. Two
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approaches to showing Turing completeness are implementing a Turing machine
in the target language [4,/16] and implementing p-recursive functions [6}[12].

To prove AuDal.a’s expressiveness, we prove AuDal.a Turing complete. We
do this by implementing a Turing machine in AuDaLa (Section . We then
give the intuition of the proof that this implementation is correct (Section .
Constructing this implementation to exhibit correct behaviour is intricate due to
AuDaLa’s view on the behaviour of data elements and proofs (specifically those
in Appendix involve detailed reasoning about the semantics and the inference
rules defined in it and lay the foundation for proving AuDaLa programs correct.

Related Work. AuDal.a is a data-autonomous language and related to other
data-focussed languages, like standard data-parallel languages (CUDA [10] and
OpenCL [3]), languages which apply local parallel operations on data structures
(Halide [18], RELACS [19]) and actor-based languages (Ly [20], A-NETL [1]).

Though the expressivity of actor languages has been studied before |2| and
there is research into suitable Turing machine-like models for concurrency |14}
17,/21], there does not seem to be a large focus on proving Turing completeness
of parallel languages. We estimate that this is because many of these languages
extend other languages, e.g., CUDA and OpenCL are built upon C++. For these
languages, Turing completeness is inherited from their base language. Further-
more, parallel domain specific languages such as Halide 18| are simple by design,
only focussing on their domain. Languages may also not be Turing complete on
purpose [8l[11], for example to make automated verification decidable.

The proof for the Turing completeness of Circal |7] follows the same line of
our proof. Other parallel systems that have been proven Turing complete include
water systems [12] and asynchronous non-camouflage cellular automata [22].

2 The Turing Machine Implementation

2.1 Basic Concepts

We define a Turing machine following the definition of Hopcroft et al. [13]. Let
D = {L, R} be the set of the two directions left and right. A Turing machine T is
a 7-tuple T = (Q, qo, F, I, X, B, 0), with a finite set of control states @, an initial
state qg € @, a set of accepting states F' C @), a set of tape symbols I', a finite
set of input symbols X' C I'; a blank symbol B € I'\ X' (the initial symbol of all
cells not initialized) and a partial transition function § : (Q\ F)xI" - QxI'xD.

Every Turing machine T operates on an infinite tape divided into cells. Ini-
tially, this tape contains an input string S = sq . .. s, with symbols from X', but
is otherwise blank. The cell the Turing machine operates on is called the head.
We represent the tape as a function ¢ : Z — I', where cell ¢ contains symbol
t(i) € I'. In this function, cell 0 is the head, cells ¢ s.t. i < 0 are the cells left
from the head and cells i s.t. ¢ > 0 are the cells right from the head. We restrict
ourselves to deterministic Turing machines. We also assume the input string is
not empty, without loss of generality.



AuDalLa is Turing Complete 3

We define a configuration to be a tuple (g,t), with ¢ the current state of the
Turing machine and ¢ the current tape function. Given input string S = sq . . . sy,
the initial configuration of a Turing machine T is (qo,ts), with g as defined for
T, and tg(i) = s; for 0 < i < n and tg(i) = B otherwise.

During the execution, a Turing machine T" performs transitions, defined as:

Definition 1 (Turing machine transition). Let T = (Q, qo, F, I, X, B,0) be
a Turing machine and let (q,t) be a configuration such that §(q,t(0)) = (¢, s', D),
with D € D. Then (q,t) — (¢',t'), where t' is defined as

#(i) = {S' V=1 Dol and (i) = {3/ fi==1 up g

t(i — 1) otherwise t(i+ 1) otherwise
We say a Turing machine T' accepts a string S iff, starting from (qo,ts) and
taking transitions while possible, T" halts in a configuration (g, t) s.t. ¢ € F.

2.2 The Implementation of a Turing Machine in AuDaLa

In this section, we describe the implementation of a Turing machine in AuDalLa.
Let T = (Q,X,I,0,q0,B,F) be a Turing machine and S an input string. We
implement T' and initialize the tape to S in AuDaLa. W.l.o.g., we assume that
@ C Z with ¢o = 0 and that I" C Z with B = 0.

An AuDaLa program contains three parts: the definitions of the data types
and their parameters are expressed as structs, functions to be executed in parallel
are given to these data types as steps, and these steps are ordered into the
execution of a method by a schedule separate from the data system. Steps cannot
include loops, which are instead managed by the schedule.

We model a cell of T’s tape by a struct TapeCell, with a left cell (parameter
left), a right cell (right) and a cell symbol (symbol). The control of T is modeled
by a struct Control, which saves a tape head (variable head), a state ¢ € Q
(state) and whether ¢ € F' (accepting). See Listing

struct TapeCell (left: TapeCell, right: TapeCell, symbol: Int){} //def. of TapeCell
struct Control (head: TapeCell, state: Int, accepting: Bool) {

transition {see Lislingand 1.3} definition of the step "transition"
init {see Listing } definition of the step "init"
init < Fix(transition) schedule: run "init" once and then iterate "transition"

Listing 1.1: The AuDaLa program structure

The step transition in the Control struct models the transition function ¢. For
every pair (q,8) € Q X I' s.t. §(q,s) = (¢, s', D) with D € D, transition contains
a clause as shown in Listing [1.2| (assuming D = R). This clause updates the
state and symbol, and saves whether the new state is accepting. It also moves
the head and creates a new TapeCell if there is no next element, which we check
in line 5. For this, as s can be null, we need to explicitly check whether head is
a null-element. Note that B = 0, and that if D = L the code only minimally
changes.
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if (state == q && head.symbol == s) then {
head.symbol := s'; / /update the head symbol
state := ¢'; / /update the state
1| accepting 1= (q/ € F); //the new state is accepting or rejecting
5| if (head != null && head.right == null) then {
6 head.right := TapeCell(head, null, 0); //call constructor to create a new TapeCell
|y

s| head := head.right; //move right

Listing 1.2: A clause for d(q, s) = (¢, s, R).

transition {

2| if (state == q1 && head.symbol == s1) then{ /+clause 1%/ }

else if (state == g2 && head.symbol == s2) then { /+clause 2x/ }

else if (state == q3 && head.symbol == s3) then { /«clause 3%/ }
etc.

Listing 1.3: The transition step. The shown pairs all have an output in 9.

The clauses for the transitions are combined using an if-else if structure
(syntactic sugar for a combination of ifs and variables), so only one clause is
executed each time transition is executed. See Listing[I.3] In the step init in the
Control struct, we create a TapeCell for every symbol s € S from left to right,
which are linked together to create the tape. We also create a Control-instance.
Listing [T.4] shows this for an example tape S = s, s1, $2.

In the semantics of AuDala [9], the initial state of any program contains
only the special null-element of each struct. All parameters of the null-element
are fixed to a null-value. They can create other elements but cannot write to
their own parameters. Therefore, the call of init in the schedule causes the null-
element of Control to initialize the tape. It also initializes a single non-null
element of Control. The schedule will then have that element of Control run the
transition step until the program stabilizes. Listing [T.1] shows the final structure
of the program.

3 Turing Completeness

In this section, we show why AuDala is Turing Complete. We establish an equiv-
alence between the configurations of a Turing machine and the configurations
that can be extracted from the semantics of the corresponding AuDaLa program.
We use the fact that the steps executed by the implementation are deterministic,
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init {
TapeCell cell) := TapeCell(null, null, s¢); // initialize the tape
TapeCell celll := TapeCell(null, null, s1);
TapeCell cell2 := TapeCell(null, null, s2);
celll.left := cellO; connect the tape
cell0.right := celll;
cell2.left := celll;
celll.right := cell2;
Control(cell0, 0, (go € F)); //initialize the control

Listing 1.4: Initializing input string S.

as there is at most one non-null Control structure that executes the steps. We
omit the full proof of Lemmas and @ which can be found in Appendix Eﬂ

Henceforth, let Pprg be the implementation of a Turing machine T" and an
input string S = s ...s, as specified in Section 2.2] In AuDaLa’s semantics, a
struct instance is a data element instantiated from a struct during runtime. For
the proof we consider a specific kind of AuDal.a state, the idle state, which has
the property that none of its the struct instances are in the process of executing
a step. In AuDal.a, the next step to be executed from an idle state is determined
by the schedule. With this we define implementation configurations:

Definition 2 (Implementation Configuration). Let p be an idle state of
Prg containing a single non-null instance ¢ of Control. Then we define the
implementation configuration of p as a tuple (gp,tp) s.t. qp is the value of the
state parameter of c and t, : Z — 7 defined as:

c.head.symbol ifi=20
tp(i) = { c.head.left™ .symbol  if i <0,
c.head.right’ .symbol if i > 0

where the dot notation x.p indicates the value of parameter p in x and, fori > 1,
x.p' is inductively defined as x.p.p'~t (with x.p° = x).

Note that an implementation configuration is also a Turing machine config-
uration. Next we define determinism for AuDalLa, as well as data races.

Definition 3 (Determinism). Let s be a step in an AuDaLa program. Then s
is deterministic iff for all states that can execute s, there exists exactly one state
that is reached by executing s.

Definition 4 (Data Race). Let s be a step of Prs. Let p be an idle state.
Then s contains a data race starting in p iff p can execute s (according to its
schedule) and during this exzecution, there exist a parameter x which is accessed

L If the paper is accepted, a version including appendices will be put on ArXiv
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by two distinct struct instances a and b, with one of these accesses writing to
x. We call a data race between writes a write-write data race, and a data race
between a read a read-write data race.

We use this to prove the following lemma:

Lemma 1 (AuDaLa Determinism). An AuDaLa step s is deterministic if it
cannot be executed by an idle state p in the execution of Prs s.t. s contains a
data race starting in p.

Proof. If s contains no data races but is not deterministic, then some parameter
x can have multiple possible values after executing s from some idle state p.
As the operational semantics of AuDalLa do not allow interleaving by a single
struct instance (as defined in the semantics of AuDala [9]),  must have been
accessed by multiple struct instances during execution. The semantics also do
not allow randomness, which means that all non-determinism in AuDal.a results
from data races. These struct instances must then be in a data race. This is a
contradiction. O

In practice, when a step is deterministic we can ignore interleaving of struct
instances during the execution of the step.

Lemma 2. The execution of init in Prg is deterministic.

Proof. To prove this we need to prove that the execution of init contains no
data races (Lemma . The step init is only executed once, at the start of the
program, by the null-instance of Control (as no other instances exist). As only
one instance exists, there cannot be a data race between two struct instances. [

Lemma 3 (Executing init in the initial state). Let py be the idle state at
the start of executing Prs and let the input string S = sg...s,. Erecuting the
step init on pg results in a state py with a single non-null Control instance such
that (qo,ts) is the implementation configuration of p;.

Proof. The proof consists of sequentially walking through the statements of init
when executed from the initial state (which is idle) of Prg as defined in the
semantics of AuDal.a, processing the statements using those semantics. O

Lemma 4. Letp be an idle state reachable in Prg with a single non-null Control
instance. Any execution of transition executed from p is deterministic.

Proof. As per Lemma [l we prove that the execution contains no data races. Let
¢ be an arbitrary clause in the transition step (Listing . If transition has a
data race during the execution of ¢, this data race must occur between the one
non-null instance and the null-instance of Control. Let the non-null instance
be zo and let x; be the null-instance of Control. Then the parameter which is
accessed must be shared by both. This can only be head.symbol, as xg will not
get through the if-statement and the other parameters are relative to x¢ and x;.
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However, as xg.head = null, this means head.symbol cannot be written to, as
parameters of null-instances cannot be written to in AuDalLa. This contradicts
that it can be in a data race. O

Lemma 5. FEvery transition step executed in Prg is deterministic.

Proof. By induction. As a base case, the first execution of transition happens
from p; as defined in Lemma [3} which has only one non-null Control instance.

Then consider the execution of transition from an idle state p’ with one non-
null Control instance, resulting in idle state p. Due to Lemma [ we know that
the execution of transition is deterministic, so we can consider the sequential
execution of transition. As transition is made up of multiple mutually exclusive
clauses, considering only a single clause suffices. As in none of the statements a
Control instance is created, as seen in Listing [I.2] it follows that p will also have
only a single non-null Control instance. O

Lemma 6 (Effect of a transition execution). Let p be an idle state of
Prs from which transition can be executed and let (q,t) be the implementation
configuration of p. Assume that (g,t) is also a configuration of T. Then the
result of a transition in T is a configuration (¢',t") iff the result of executing
the transition step from p in Prg is an idle state p' such that (¢',t') is its
implementation configuration.

Proof. We know from Lemma [5| that p has one non-null Control instance. The
proof consists of walking through the statements of transition starting at p. O

By induction, using Lemma[3]as base case and Lemmalf|as step, any idle state
of Prg after executing init corresponds directly to a state (g, t) of T, including
terminating and accepting states. We conclude:

Theorem 1. AuDalLa is Turing complete.

4 Conclusion

In this paper, we have proven AuDala Turing complete by implementing a
sequential Turing machine. In future work, we hope to extend the principles
here to a full system to prove AuDal.a programs correct. We may also extend
the proofs to the weak memory model variant of the AuDaLa semantics [15].
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A  Proofs

In this appendix, we first present some auxiliary lemmas in Section after
which we present the in detail proofs to support Lemmas [3|and [f] in Section [A72]
The auxiliary lemmas in Section[A ] use the AuDaLa semantics to prove that
update statements actually perform updates, constructor statements actually
construct new data elements and so forth. We recommend reading it only to
those familiar with the semantics of AuDaLa. Section [A2] does not use any
concepts other than those introduced in the paper and references to lemmas from
Section [A71] and should not prove a challenge for those who read this paper.

A.1 Auxiliary AuDaLa lemmas

The lemmas presented here are generally useful for any program to be proven
correct. They make use of the AuDal.a semantics, so familiarity with these se-
mantics 9] is assumed.

For the rest of this section, let P be an AuDaLa program without read-write
data races. Let P = (Sc, 0, sx) be a state of P, and let £, € L be a label and
p a struct instance s.t. p = o(€,) = (sLp, [E]; Vp, Xp, Ep)- In the first lemma, we
prove the result of resolving references in AuDala:

Lemma 7 (AuDaLa reference resolution). Let E be a variable expression
of the form “A.a” in AuDaLa, where A has the syntazx “ay .- -- .a,” with variable
identifiers a, a1, a9, as, ..., ay. Let the state P' = (Se, o', sx') be a state resulting
from the last transition to resolve A, s.t. a(€y) = (sLy,7p; Xp:&p)- Then x;, =

Xp; £, where
' {ep ifn=0

p.ai.--- .a, otherwise,

Proof. First, E is either a variable that has to be read from, or a variable that
has to be written to. In both cases, [A] = push(this);rd(ay);...;rd(a,). We
prove by induction on n that for any n, the value on the stack resulting from the
resolution of A is a single label. As induction hypothesis we take that after the
reads up till and including rd(a;), with x, ; being the stack after those reads,
Xp,j = Xp;¥j, where ¢; is the only possible label that can be read from the reads
so far.
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n=0: If n = 0, [A] = push(this), which is resolved using the derivation rule
ComPushThis and results in xj, = x;; £ Therefore, the base case holds.

n = i: By the induction hypothesis, we know that after the ¢ — 1th read, xp -1 =
Xp;D-a1. -+ .a;—1. Then due to the form of E and by the well-typedness of the
syntax of P, we know that p.aj.--- .a;_1.a; € L. As there are no read-write
data races, we know that there is only a single possible label p.a;.--- .a;_1.a;.
Then it follows by the transition ComRd that the read of p.ay.--- .a;_1.a;
removes p.ai.--- .a;_1 from the stack and adds p.ai.--- .a; to it. Therefore,
Xp,i = Xp;P-a1.--- .a; and the step holds.

As the induction holds, the lemma holds. O
We then prove the effect of executing an expression:

Lemma 8 (AuDaLa expression execution). Let E be an AuDaLa expres-
sion. Let the state P’ = (Sc,0’,sx’) be a state resulting from the transition of
the last command of [E], with p" = o'(£,) = (sLp, vy Xp»&p)- Then there exists
a value v s.t. X;; = Xp; V. Moreover:

1. If E = “this”, v =1{,.

2. If E = “aull”, and T is the type as determined by the context of £, v =
default Val(T)

3. If E = lit, where lit € LT, with semantic value val(lit), then v = val(lit).

4. If E=xy.-- xp.x, withxy,...,x, € ID, thenv=121. -+ .xp.x.

5. If E= “sL ( Ey,...,E, )7 for a struct type sL with parameters
pary,...,par,, thenv € L s.t. o(v) = L and o'(v) = (sL,e,¢,&). Moreover,
§ = ESL[PC”H — [[El]]a ey pary, [[Enﬂ]

6. If E=“1 E'7, then v =—[FE'].

IfE=“C E" )7 thenv=[E'].

8. If E = “Fy o Ey”, for syntactic operator o with semantic equivalent o, then
v = [[El]] e} [[EQ]]

9. If E creates a new struct instance, sx' = false!*!.

=

Proof. We prove the lemma by implicit structural induction, with our induction
hypothesis being that the lemma holds for any subexpression encountered in
cases 5-8, and with as base cases the cases 1-4. Due to our assumption that P
has no read-write data races, we can assume that there is only one possible value
read from any variable. We then prove the cases separately:

1. If £ = “this”, then according to the interpretation function, this is inter-
preted as the command push(this), which is then resolved using the deriva-
tion rule ComPushThis, executed by p. The result of this derivation rule
is that p pushes £, on it’s stack, so this base case holds and v = ,,.

2. If E = “null”, and T is the type as determined by the context of F, then
according to the interpretation function, this is interpreted as the command
push(()defaultVal(T')). This is then resolved using the derivation rule Com-
Push executed by p, which pushes defaultVal(T) on the stack. Therefore,
this base case holds and v = default Val(T).
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3. If E = lit, where lit € LT, with semantic value val(lit), then according to the
interpretation function, this is interpreted as the command push(val(lit)).
This is resolved using the derivation rule ComPush executed by p, which
pushes wval(lit) to the stack. Therefore, this base case holds and v = wal(lit).

4. f F=zy. - .xp.x, with x1,...,x, € V, then according to the interpreta-
tion function, this is interpreted as the commands
push(this);rd(z1);...;rd(z,);rd(z). Then, let P; be the state after resolv-
ing push(this);rd(z;);...;rd(z,) with struct environment o1 s.t. o1(¢,)
has stack xi. From Lemma |Z| we know that x; = x;¢p.21.--- .z, and that
lpxy. - @y € L. Then, by ComRd, we know that v = {,.2;. - .z,.2.
Therefore, this base case holds.

5. fE=%“sL ( Ey,...,E, )7 forastruct type sL with parameters pary, ..., par,,
then from the interpretation function, we know that E is interpreted as
[E1];-.-; [En]; cons(sL). By the structural induction hypothesis, we know
that [E1];...; [Ey] results in the sequence of values vy;...; v, at the end of
the stack of p. Then by the derivation rule ComCons, we know that there
exists a label £ s.t. o(¢) = L and o' (¢) = (sL,e,¢,&), where £ = &%) [par, —
v1,. .., par, — v,]. Also by ComCons, we know that v = ¢. Therefore, this
case holds

6. If E =“! E’, then by the interpretation function, this gets interpreted as
[E']; not. Then by the structural induction hypothesis, we know that [E’]
results in a value v’ at the end of the stack of s. Then by derivation rule
ComNot, we know that v = —’, so this case holds.

7. If E=%( E’ )7, then as the concrete syntax gets converted into an abstract
syntax tree, [E] = [E'], as [E’] pushes a value v’ to the stack as per the
structural induction hypothesis, it follows that [E] also pushes v’ to the
stack, so v = v’. Therefore, this case holds.

8. If E=“FE; o Ey”, for syntactic operator o with semantic equivalent o, this
is interpreted by the interpretation function as [F1]; [E2]; op(o). Then by
the structural induction hypothesis, we know that [E4]; [E:] results in the
values vy; vy on the stack of p. Then by derivation rule ComOp, we know
that v = vy o vy. Therefore, this case holds.

9. If F creates a new struct instance, then either £ = “sL ( Ey,...,E, )”
or a subexpression of F creates a new struct instance. In the second case,
sy’ = false!*X| by the structural induction hypothesis. In the first case, due
to the execution of ComCons during the resolution of E, sx’ = false!*X!.

As the structural induction and all cases within it hold, the lemma holds. O

We can use this lemma to prove the effects of statement executions. Firstly,
for constructor statements, note the following:

Corollary 1 (AuDaLa constructor execution). A constructor statement
has the same effects as a constructor expression, as defined in case 5 of Lemmal§,
and also resets the stability stack as defined in case 9 of Lemmal[§

We then prove the update statement execution effects:
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Lemma 9 (AuDaLa update execution). Let Z be an AuDaLa statement of
the form “A.a := E”, where A has the syntazx “ay .- .a;” with a, a1, a2, as, ...,
an € ID and E is an expression. Let label £, be uniquely defined as

0 p.a1.a2.a43. -+ G ifn >0
o Ly ifn=0"

Let the state P’ = (Sc,0’,sx’) be the state resulting from the transition of the
last command of [Z]. Let v be the value pushed to the stack as a result of re-
solving [E] (as per Lemma[§). Let 0({a) = (sLa,Ya) Xaréa) and let o' ({y) =
(8Las Yos X §a) -

Then, if Lo # Lo, &.(a) =v and if {u(a) v Aa € Parg,,, sx' = false!*X!

Proof. We know that [Z] = [E];[a1;- - ;as]l; wr(a) by the definition of the
interpretation function. From Lemma [§| we know that through [E], v is put on
the stack first. Then, by Lemma [7] we know that the result of [ai;--- ;a.] is
that £, is pushed on the stack. Then if ¢, # Ly, we know through the derivation
rule ComWr that &,(a) = v. If {,(a) # v Aa € Par,y,_, we know that the value
of a before ComWr can either still be £, (a) or it can have been written to by
another struct instance p’, also using a ComWr transition. In the first case, it
follows from ComWr that sy’ = false'*X!. In the second case, if the other struct
instance writes v to a, sx’ = false!*X! due to the ComWr transition done by p/,
and if not, then sy’ = false!*X! due to the ComWr transition of p. In any case,
sy’ = false!*™X!. O

The above lemma also suffices for assignment statements:

Corollary 2 (Assignment statements). Lemma@ also holds for statements
of the form “T' a := E”, withT € T and “a := E”.

Proof. As [“T a := E”] = [“a := E”], the effects of executing “T" a := E”

are the same as executing “a := E” (with n = 0). The stability stack will
not be updated, as a cannot be a parameter according to our static syntax
requirements. O

Lastly, we prove the effects of executing an if-then statement:

Lemma 10 (If-then Statements). Let Z be a statement of the form “if E
then { S }”, where S is a list of statements and E is an expression.

Let the state P’ = (Sc,0’, sx') be the state resulting from the transition of the
last command of [Z], and let o'(£,) = sLy, 7y, Xy, &) - Let v be the value pushed
to the stack as a result of resolving [E] (as per Lemma|).

Then either v = true and v, = [S];vp or v = false and v, = 7.

Proof. We know that [Z] = [E];if([S]) by the definition of the interpretation
function. By our assumption of well-typedness, we know that the value v to
which [E] resolves is a boolean value, and therefore the value at the end of the
stack after resolving [E] will be either true or false. Then if v = true, we know
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by the derivation rule ComIfT that v, = [S];7,, and if v = false, we know by
the derivation rule ComlIfF that v, = ,. O

We have now proven the effects of every type of statement. For if-statements
and constructor statements, the result of the statement are permanent during the
execution of a step ). Assignment statements can only work with local variables,
of which the values are irrelevant at the end of Q. We do however need to prove
what we can guarantee about updated parameters after the execution of an
update:

Lemma 11 (AuDaLa update results). Let Q be a step in P and let Z be
an update statement s.t. p executing Z updates a parameter p’.x with type T of
some struct instance p’' to a value b during Q (along Lemma @) Let a be the
original value of p'.x. Let P be a state during QQ after the execution of Z by p
and before the execution of the statement after Z by p. Then all of the following
holds:

a. If p’ is a null-instance, p'.x = a = default Val(T).
b. If p' is not a null-instance:
. If p'.x is not involved in a write-write data race, p'.x = b.
1. If p'.x is involved in a write-write data race, let N be the set of all values
written to p'.x during T by all data elements involved in the write-write
data race. Then p'.x € N.

Additionally, we know that if a # b, the stability stack is reset.

Proof. If p’ is a null-instance, then by the rule ComWrSkip and by the initial-
ization of null-instances, we know that p’.x = a = null after the execution of Z
by p. If p’ is not a null-instance, and p’.x is not involved in a write-write data
race, p’.z is not involved in any data race, as P does not have read-write data
races. Then as no other element other than p can have written to p’.x during or
after the execution of Z by p and b is deterministic during the execution of Z
(as there are no read-write data races), p’.z = b. If p’ is not a null-instance and
p’.x is in a write-write data race, as AuDaLa does not allow for nondeterminism
in a single data element, this data race must be between different data elements.
As these can execute their update statements in any order, any value in N can
be the last value written to p’.x before p executes the statement after Z, so
p.w e N. O

This extends to step executions:

Corollary 3 (AuDaLa parameters after a step). Let Q be a step in P
and let P be a state resulting from an execution of Q). Let Z be the last update
statement in Q) of some parameter p'.x with type T of some struct instance p’
by p, which updates p’.x to a value b. Let the value of p'.x before the execution
of Q be a. Then in P:

a. If p’ is a null-instance, p'.x = a = default Val(T).
b. If p’ is not a null-instance:
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i. If p'.x is not involved in a write-write data race, p'.x = b.

1. If p'.x is involved in a write-write data Tace, let N be the set of all values
written to p'.x during Q by all data elements involved in the write-write
data race. Then p'.x € N.

Additionally, we know that if p’.x has had its value changed during the execution
of Q, the stability stack has been reset during the execution of Q.

A.2 Turing Complete Lemmas Proofs

In this section, we will prove Lemma [3] and [f] in more detail, using the auxiliary
lemmas of the previous section. Recall Lemma [3}

Lemma 3 (Executing init in the initial state). Let po be the idle state at
the start of executing Prg and let the input string S = sqg...s,. Fzecuting the
step init on py results in a state py with a single non-null Control instance such
that (qo,ts) is the implementation configuration of p;.

Proof. First, note that the idle state at the start of executing Prg is the initial
state of Prg. The initial state for Prg, as defined in the AuDala semantics,
contains the schedule of Prg, the null-instances of all structs, and a stability
stack. The stability stack has no bearing on this proof, and will be disregarded.

We need to show that p; has implementation configuration (qo,ts). To show
that, we first prove that p; contains only one non-null struct instance of Control
and that its state parameter is set to ¢qp. To prove this, we can assume the init-
code is executed without nondeterministic behaviour, due to Lemma [2} Only
the null-instance of Control executes init (as it is the only instance to exist
in pg). The step code makes only a single Control-instance, and as the code is
deterministic and the null-instance executes it, we know that this means only
one Control-instance is present in p;, following Lemma [T} which we will call c.
Also following Lemma [T} we know that the state parameter of ¢ is set to g
(represented by integer 0).

We then prove that the function made according to Definition [2]in p; from
the TapeCells is tg. To do this, we first prove that in p;, there exists a TapeCell
for all symbols s; € S, and no others, s.t. every TapeCell s; is be connected
to s;—1 and s;41 (if they exist) through parameters left and right respectively.
Then we prove that the head parameter of ¢ will be set to the TapeCell of sg.

The first follows from the template in Listing which we can follow se-
quentially due to Lemma [2] According to Lemma [2] the first part makes one
TapeCell instance for every s; € S, and according to Corollary [IT]and Lemma [2]
these are then connected to the correct left and right neighbours. It follows from
the listing and Lemma [I] that head parameter of ¢ will be set to the TapeCell
for sg.

Then the lemma holds: the implementation configuration of p; is (go,ts). O

Now recall Lemma
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Lemma 6 (Effect of a transition execution). Let p be an idle state of
Prg from which transition can be executed and let (q,t) be the implementation
configuration of p. Assume that (g,t) is also a configuration of T. Then the
result of a transition in T is a configuration (¢',t") iff the result of executing
the transition step from p in Prg is an idle state p' such that (¢',t') is its
implementation configuration.

Proof. Let p and (q,t) be as defined in the lemma. Then by definition of Prg,
there exists a single transition in p for Prg iff §(g,t) is defined. Additionally, &
is a function, so it is always uniquely defined for (g, t).

Let 6(q,t) = (¢', ', D). W.lo.g., let D = R (the proof of D = L is analogous).
Then as a transition in 7" is deterministic, by Definition [I] the resulting state of
taking a transition from (g, t) is the state (¢/,¢'), with

(i) = {s' ifi=—1

t(i+1) otherwise

Taking the transition in p for Prg is also deterministic (Lemma [5]), and
therefore we can walk through the statements of the clause to determine its effect.
By definition of Prg, this clause is based on the template shown in Listing
Let ¢ be the single Control instance of p, and let h be the TapeCell instance
which is referenced in the head parameter of ¢. Due to Lemma [I1] the result of
the transition is that the state of ¢ is updated to ¢’, the symbol of h is updated
to s’, the accepting parameter of ¢ is updated to whether ¢ € F and that the
head parameter of ¢ shifts one TapeCell to the right (making a new TapeCell if
required, by Lemma [10| and Lemma .

Creating a function of the TapeCells as in Definition[2]then results in function
t” st t"(—1) = s and (i) = (i +1) for all i # —1, which is equal to ¢'. Then,
by Deﬁnition the implementation configuration of the resulting state is (¢, ¢').
Therefore the lemma holds. O
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