
Verifying System-Wide Properties of Industrial
Component-Based Software

Thomas Neele, Marijn Rol, and Jan Friso Groote

Eindhoven University of Technology, The Netherlands
{T.S.Neele,J.F.Groote}@tue.nl

Abstract. Analytical Software Design (ASD) enables model-based de-
velopment of component software systems. Until now, functional verifica-
tion of ASD systems is only possible on a per-component basis. There is
no functional verification engine for ASD itself, so this verification relies
on a translation of individual components to mCRL2, a process-algebraic
model checker. We show how to extend the ASD-mCRL2 translation to
support multiple components in order to enable checking of system wide
functional properties. With our extended translation, we perform a case-
study on a newly developed industrial system consisting of 26 communi-
cating components. The results indicate that it is feasible to model check
functional properties on this scale.

1 Introduction

Modern high-tech industry relies more and more on software to implement super-
visory control logic. With the large number of software components in a typical
machine, the software can become very complex. The industry not only wants
software that meets high quality standards to assure safety and reliability, but
the reduction of the costs and time of development also plays an important role.
This is assured by model based software design accompanied with formal analysis
where software problems are eradicated as soon as possible in the development
process. Comparative research shows that it is possible to reduce the number of
bugs by a factor 10 and the development time by a factor 3 [14].

Analytical Software Design (ASD) [3,4] is one of the model based engi-
neering tools being used in industrial environments. Using ASD, software engi-
neers develop models which can be checked for various properties such as dead-
lock/livelock freedom and interface compliance with a single press of a button.
From the models, ASD generates executable code, e.g. Java or C++, that can
be run in a production environment.

In contrast to many other tools that apply model checking techniques, ASD
does not suffer severely from the state-space explosion problem. This is achieved
through the application of compositional verification techniques: each compo-
nent in a system is checked individually by comparing its implementation and
interface using failure divergence refinement (FDR) [17]. A pleasant property
of FDR is that deadlock/livelock freedom of each component guarantees dead-
lock/livelock freedom of the complete system. The ASD approach has been used

to develop systems with over 200 components [12] (more than 300 models if in-
terface and design models are counted separately), where total verification takes
around 20 minutes.

It is also possible to check a broader range of properties on single compo-
nents through a translation to mCRL2 [5,11]. The process algebraic description
language mCRL2 comes with a toolset for simulating, visualising, manipulating
and model checking behavioural specifications. We call the functional properties
that span a single component local properties.

There are however many global properties, also called ‘end-to-end’ properties,
that are not covered by only checking local properties. Typical examples are:

– If the software control is instructed to manufacture a product, then the
appropriate associated low level instructions are always issued.

– If one of the actuators reports an error, the control system always reports
the error to the higher software layers.

– If the control software reports that the machine is off, it will never instruct
any of its controlled actuators to move.

In this paper we report on how we verify such global properties on newly
developed industrial control software. For this purpose we extend the existing
mCRL2 translation to support multiple components. Firstly, communication has
to be restricted to take place between the right components. Furthermore, im-
portant functionality that was implemented in C++, instead of ASD, needs to
be translated manually to mCRL2. Finally, we must add several mechanisms to
preserve the single-threaded execution as defined by the semantics, i.e., we must
ensure that only one component is active at a time.

We evaluate the approach by translating an ASD system that is newly devel-
oped and which consists of 26 components (together containing 5054 so called
rule cases). On the resulting mCRL2 model, we check a complete set of end-
to-end properties. Because the state-space of the system only consisted of 178
million states, we were able to establish whether each requirement was satisfied.

Our expectation was that we would encounter many hardships in the verifi-
cation, especially because the state spaces would be excessively large. But the
contrary turned out to be true. The state space remained well within accept-
able limits for the available computer equipment. The reason for this appears
to lie in the run-to-completion semantics employed in ASD, together with the
strict use of interfaces. These coincide with design rules for systems to avoid
the state space explosion [10]. There were a number of minor issues that had to
be overcome, such as speeding up writing intermediate results to disk. It also
turned out that applying a branching bisimulation reduction to the intermediate
state space before applying model checking was much more time efficient than
following the ordinary workflow.

Our conclusion is that it is very well possible to verify actual industrial-size
software while it is under development. But for success, it needs to be written in
an appropriate domain specific language whose semantics avoids a state space
explosion.

2

Overview Section 2 introduces the basic concepts on which this paper is built.
We explain our approach to multi-component translation in Section 3. The case
study is introduced in Section 4 together with the properties we verify and
Section 5 contains the results of the experiments we conducted. In Section 6, we
give an overview of some related work. Finally, Section 7 presents a conclusion.

2 Background information

This section provides a short introduction to ASD, mCRL2 and the modal µ-
calculus, which form the bases of our approach.

2.1 Analytical Software Design

Analytical Software Design (ASD) [4], developed by Verum, enables the devel-
opment of software based on communicating components. The components are
designed and verified using the ASD:Suite. Furthermore, the ASD:Suite can gen-
erate the executable code that can be used in a production environment. In ASD,
there are two types of components:

– Standard ASD component. A standard component consists of an interface
and a design model. The interface model specifies the externally visible be-
haviour of a component. It provides a more abstract view on the behaviour of
a component. The design model specifies the inner working of a component,
including how it interacts with lower level components. The design model
always refines the interface model under failure-divergence refinement [17].

– Foreign component. A foreign component consists of only an interface model.
It typically models the behaviour of a hardware component or another system
that is implemented outside of ASD, e.g., in C++.

component
boundary A

design model A

interface model A

design model B

interface model B interface model C

Fig. 1. An example system composed of
two standard components, A and B, and
a foreign component C.

If a component A relies on another
component B for certain tasks, then
we say A is a client of B and B is a
server of A. Intuitively, an interface
model serves as a contract on the be-
haviour of the corresponding design
model. The interface model specifies
exactly in which order a client can
send calls to a server and which re-
sponses it can expect. Most of the de-
cision logic of a component is con-
tained in the design model. In ASD,
the components must be structured as
a tree, i.e., a component cannot have more than one client. See Figure 1.

Within ASD, we distinguish four types of communication: call events, reply
events, notification events and modelling events. A call event happens when a
client wants to request certain information or a certain action from one of its

3

servers. While the server is handling that call event, it may choose to send one
or more notification events to its client. These notifications are stored in the
notification queue of the client until control is given back to the client. The
notification queue will be explained in detail later. When the server is finished
with a call event, it will always send a reply event to the client. When a reply
contains data, we call it a valued reply, otherwise it is called a void reply.

A modelling event typically represents low level input, such as an interrupt,
which can be guaranteed to come, or which can incidentally take place. It can
only be performed by a foreign component. Similar to notification events, they
are sent from a server to a client. However, whereas notification events always
happen as the result of a call event, modelling events only happen spontaneously.

All ASD models are described using a formalism similar to extended finite
state machines, which are state machines augmented with data. Software engi-
neers develop these state-machines in the ASD:Suite in a format called Sequence-
based Specification (SBS). A model can contain state variables, which store in-
formation about the state of the component. State variables can be Booleans or
any other finite enumeration type. Transitions can be guarded with expressions
over the state variables, and state variables can be updated after every transi-
tion. A guarded transition can only be taken when the guard evaluates to true
given the current values of the state variables. A row in an SBS is called a rule
case. We give a formal definition of a design model, which we will use later to
highlight the most important aspects of the translation to mCRL2.

Definition 1. A design model is a tuple DM = (S, V, T, (ŝ, v̂)), where

– S is a set of states;
– V is a set of state variables v1:D1, . . . , vn:Dn, and their types Di are finite

enumeration types;
– T is a set of transitions, defined as

T ⊆S × Φ(V)× Call × (Event∗ × (Reply ∪ {∅})×A(V)∗ × S ∪ {Illegal})
∪S × Φ(V)× (Reply ∪Notif)× (Event∗ ×A(V)∗ × S ∪ {Illegal})

A transition has a source state and a guard, and can originate either from
a call event, from a notification that is stored in the queue or from a valued
reply. If the transition is not illegal, it results in zero or more calls and/or
notifications, a reply (when necessary), assignments to the state variables
and a state update.

– ŝ ∈ S and v̂ ∈ D1 × · · · ×Dn define the initial state and the initial value of
the state variables, respectively.

Here, Call and Notif are the set of all call events and notifications respectively,
Event = Call ∪Notif is the set of all event, Φ(V) is the set of all possible guards
over V , Reply is the set of all valued replies, ∅ is a void reply and A(V) is the
set of all possible assignments over V .

To simplify the reasoning, in the theory that is presented here, we assume that
none of the events carry data values. In ASD, the data that is carried by events

4

can only be forwarded and not inspected, so the assumption in the definition
is not restrictive. In the case study of Section 4, we do consider all of ASD’s
features including communication of data.

Example 1. We consider a component A that can be activated and deactivated
and also paused and resumed. Component A is a client of component B, which
always needs to be deactivated before component A can become inactive. A
sequence-based specification of the design model of component A is given in
Figure 2: it shows the four rule cases of state Active and one rule case of the
state Inactive. When one of the actions Pause or Resume is performed, an empty
reply (VoidReply) is returned and the variable Enabled is updated (rule cases 4
and 5). Component A can only be deactivated when it is not Enabled (rule cases
1 and 2). Upon deactivation, it first sends a message to component B, and only
then deactivates itself by going to the state Inactive. Activation from the state
Inactive happens in a similar way. We assume the actions not shown for one of
the states are blocked in that state, i.e., they cannot happen. ut

There are two possible semantics for ASD: the multi-threaded execution model
and the single-threaded execution model [12]. In this paper, we only consider the
latter. In the single-threaded execution model events cannot happen in parallel,
but only in sequence. Therefore, these semantics should define clearly in which
order events are processed. According to the documentation of ASD, the fol-
lowing actions take place in order when a component receives an event from a
client:
– All actions from the SBS rule case are processed in order.
– State variables are updated.
– The transition to the target state is taken.
– The notifications in the queue are processed. No events other than those

caused by these notifications may occur before the queue has been emptied.
– A void or valued reply takes place to give control back to the client.

These rules are also referred to as run-to-completion semantics, meaning that
a component completes all of its tasks before relinquishing control to another
component. Note that since events and notifications can arrive in different orders,
there are still many potential runs in an ASD model.

Fig. 2. Example of an SBS for the design model of a component called A.

5

Wrapper Components. The tree structure of ASD is quite restrictive in prac-
tice, since it does not allow a component to have more than one client. That
makes it impossible to implement bidirectional communication channels that
have two clients, or database-like components that have many clients. One can
work around this issue by manually implementing foreign components, as we
explain below.

wrapper
component

design model A

interface model A

design model B

interface model B

wrapper interface 1 wrapper interface 2

manually implemented router

interface model C

design model C

Fig. 3. The structure of a wrapper compo-
nent.

In the case study that we con-
sider, wrapper components are used
to implement symmetric communica-
tion channels, see Figure 3. In this
case, there are three components A, B
and C. The components A and B are
both a client of C, albeit through two
separate interfaces. The router – writ-
ten manually in C++ – implements
both these interfaces. Since ASD is
not aware of the connection between
both interfaces, this structure does
not violate ASD’s single-client con-
straint.

The router forwards all requests from components A and B to C, and also
sends responses from C back to the correct client. For all requests component C
receives from component A, it sends a notification to B, and vice versa. In this
way, the wrapper component C serves as a bidirectional communication channel.

2.2 mCRL2

The language mCRL2 is a process-algebraic language [11] which can be analysed
using the accompanying toolset [5]. The main aim of mCRL2 is model checking
of parallel processes. Additionally, mCRL2 can generate, reduce, compare and
visualise state-spaces.

The mCRL2 modelling language is very flexible and despite a limited set of
language primitives, very expressive. Therefore, it is very well suited as a target
language for automatic translations. Several basic operators that we deal with
in this paper are sequential composition (operator ·), choice (operator +), sum
(operator

∑
, which generalises choice) and conditional (operator → �).

Example 2. To illustrate some of the concepts behind mCRL2, we consider the
following specification.

act tick , reset , press;
proc Clock(n:Nat) = tick .Clock(n+1) + reset .Clock(0);

Button = press.reset .Button;
init allow({tick , reset , press},

comm({reset|reset→ reset},
Clock(0) ||Button));

6

In this system, we have two processes, a Clock and a Button. The clock can
perform an action tick, after which it increases the time (stored in parameter
n). When the button is pressed, it subsequently communicates with the clock
via the action reset, and the clock resets its counter. Communication is enforced
through the combination of the allow and comm operators, which in this case
express that both reset actions must happen synchronously. For a more complete
overview of the mCRL2 language, see [11]. ut

2.3 Modal µ-calculus

To express formal properties, the mCRL2 toolset relies on the modal µ-calculus
[13] with data, which is suitable to express virtually any conceivable behavioural
property. It is far more expressive than LTL/CTL, but it is equally efficient when
it comes to establishing those properties [6]. Here, we provide the core grammar
of the µ-calculus, i.e., without the use of data:

φ ::= false | true | ¬φ | φ ∨ φ | φ ∧ φ | φ⇒ φ | 〈a〉φ | [a]φ | µX. φ | νX. φ | X

Here a is an action, X is a fixpoint variable representing a set of states and µX. φ
and νX. φ are the least and greatest fixpoints over X respectively. Formulae in
the µ-calculus are interpreted over labelled transition systems. The semantics
is roughly as follows. The Boolean operators have their usual semantics. The
diamond modality 〈a〉φ is true if and only if an a-step is possible after which φ
holds. The box modality [a]φ expresses that after every possible a-step, φ must
hold. The least fixpoint µX. φ is true for the smallest set of states X such that
φ holds for all states in X. Note that X can occur in φ. Dually, νX. φ is true for
the largest set X that satisfies φ. The least fixpoint operator expresses that a
property must be valid within a finite number of iterations, whereas the greatest
fixpoint also allows for infinitely repeating behaviour.

The mCRL2 toolset also allows specifying modalities with sets of actions
via so-called action formulas: true represents the set of all actions and false
represents the empty set of actions. Supported operators are union, intersection
and inverse (a is the set of all actions other than a). Furthermore, sequences
of actions can be specified with regular formulas, which give the possibility to
concatenate sequences (with the . operator), take their union (operator +) or
iterate over them (operator ∗). The action formula a∗ represents zero or more
occurrences of the sequence a, and true∗ represents any sequence of actions. For
example, [a.b]false means that a sequence a b is not possible (since if it is possible,
false must hold in the resulting state) and 〈a∗.b〉true means that a sequence
consisting of zero or more a’s followed by a b is possible. Action formulas and
regular formulas can always be expressed using the fixed point operators, but
they are generally more convenient to specify concrete behavioural properties.

In this work, we do not consider µ-calculus formulae with data. In mCRL2,
data variables can be bound in quantifiers, i.e., ∃ or ∀, or as parameter of a
fixpoint variable. They are used in conditions, and as parameters of actions and
fixpoint variables. See [11] for a complete overview of the modal µ-calculus.

7

3 Approach

The existing translation from ASD to mCRL2 is only capable of translating the
models within one component boundary at a time [12]. This translation yields
two mCRL2 specifications: one containing the topmost interface model and one
containing the design model and the interface models below it. On the latter
specification, we can check local properties that concern only that component.

We define a new translation that yields a single mCRL2 specification that
represents the behaviour of the complete system. The new translation takes as
input all the design models and also the interface models of foreign components.
Before we introduce the challenges introduced by the new translation in detail,
we first introduce the basic single-component translation.

3.1 Translating single components

Due to the expressivity of mCRL2, ASD components can be mapped almost
directly to mCRL2. First, for every state of the component, a recursive process
is created. This process carries one parameter for each state variable of the
ASD model. For each rule case, this process has one action summand, which
contains the condition, actions, variable updates and target state deduced from
the rule case. Furthermore, the mCRL2 specification contains a Queue process
that represents the behaviour of the notification queue. A complete definition of
the translation can be found in [12].

Definition 2. Given a design model DMA = (S, V, T, (ŝ, v̂)), the mCRL2 pro-
cess that corresponds to its initial state is defined according to the function
Tr:

Tr(S, (v1:D1, . . . , vn:Dn), T, (ŝ, v̂)) = Pŝ(v̂,⊥)

where for each state s ∈ S, the corresponding recursive process in mCRL2 is
defined as Ps(v1:D1, . . . , vn:Dn, rv:Reply) =

∑
t∈T Tr(t), with

Tr(s, ϕ, er, (es1, . . . , e
s
m), r, (a1, . . . , ak), s′) =

ϕ→ er · Trs(es1) · · · · · Trs(esm)·
(qEmpty · sendReply(r) · Ps′(a1, . . . , ak)+

qNonEmpty · Ps′(a1, . . . , ak, rv = r))

Tr(s, ϕ, er, (es1, . . . , e
s
m), (a1, . . . , ak), s′) =

ϕ→ Trr(er) · Trs(es1) · · · · · Trs(esm)·
(qEmpty · ((rv 6≈ ⊥)→ sendReply(rv) � skip) · Ps′(a1, . . . , ak, rv = ⊥)+

qNonEmpty · Ps′(a1, . . . , ak))

Tr(s, ϕ, er, Illegal) = ϕ→ Trr(er) · illegal · δ

Trs(e) =

outwardNotif (e) if e ∈ Notif

e · recReply(∅) if e is a void call event

e if e is a valued call event

8

Trr(e) =

e if e ∈ Call

readNotif (e) if e ∈ Notif

recReply(e) if e ∈ Reply

In the definitions above, rv is a process parameter that stores the reply value
that needs to be returned after the queue is emptied. A special value, ⊥, indicates
that no reply is due to be sent. Whereas all call events are translated into com-
municating actions, notifications and replies are translated into arguments of the
actions outwardNotif and readNotif , and sendReply and recReply respectively.
Checking whether the queue is empty or not happens through the communicat-
ing actions qEmpty and qNonEmpty . Lastly, skip is the empty process and δ is
the deadlock process.

Example 3. Recall component A from Example 1. We give the translation of the
rule cases 1, 2 and 4 according to Definition 2:

AActive(enabled :Bool , rv:Reply) =

(enabled ≈ false)→ A deactivate called · invoke B Deactivate · recReply(∅) ·
outwardNotif (A Deactivated) ·
(qEmpty · sendReply(∅) ·AInactive() + qNonEmpty ·AInactive(rv = ∅)) +

(enabled ≈ true)→ A deactivate called · illegal · δ+

A Pause called · (qEmpty · sendReply(∅) ·AActive(enabled = false)+

qNonEmpty ·AActive(enabled = false, rv = ∅)) + . . .

For the state Active, we have a process definition AActive , which carries the state
variable enabled. The different types of events each have a prefix or suffix to
distinguish them: received call events have the suffix called and sent call events
have the prefix invoke. After an illegal event, the process deadlocks (operator
δ). ut

3.2 Communication

In the existing single-component translation, a void reply is represented with the
action sendReply(∅). Since the scope of this translation is very limited – it only
translates one design model and several interface models from one component
boundary (cf. Figure 1) – synchronization on this action can only take place in
one way: between the design model and one of the interface models. However,
in the multi-component setting, we have to explicitly enforce synchronization
to happen between the proper components. Therefore, every occurrence of an
action sendReply does not only have an argument for the type of the reply, but
also two arguments to indicate the source and destination of the reply. In this
way, only those components will synchronize on that action. The same approach
is applied to notifications.

9

3.3 Manual translations

The automatic translation to mCRL2 cannot handle wrapper components, since
their router is implemented in C++ instead of ASD. The behaviour of a wrapper
component as a symmetric communication channel is essential to the behaviour
of the complete system. Therefore, it is desirable that the wrapper components
are also present in the translation of the complete system. We manually trans-
lated the router to mCRL2, because this is far more efficient than performing
an automatic translation from C++.

There is another component, called AsyncCall, of which the behaviour is
manually translated from C++ to mCRL2. The component AsyncCall can be
requested by any component to send a response at some later time. This is a
workaround such that ASD components can awaken themselves to finish residual
duties. Internally, these requests are stored in a queue in AsyncCall. The queue
can only contain one request per component and components also have the option
to cancel their request.

We remark that the wrapper components are partially generic and the Asyc-
Call component is completely generic. Therefore, they do not need to be imple-
mented from scratch when verifying several systems. Ideally, the mCRL2 speci-
fication of the wrapper components can be generated by the same program that
generates their C++ implementation.

3.4 Queues

As defined in the semantics of ASD, every component contains its own queue
to store notifications. This implies that the complete mCRL2 specification will
have a queue for every design model in the system. To ensure that the run-to-
completion semantics is preserved, we add a lock to every queue. A queue is
unlocked exactly when the corresponding component is active processing a call
from a client or a modelling event. In this way a client can only process the
content of a queue when it is active.

3.5 Framework

Not only the ASD components themselves, but also the outside world, which we
will refer to as the framework, should behave according to certain constraints.
For example, the framework cannot send out another call or modelling event
when the system did not yet finish the previous task. To encode this, we add the
following features to our translation:

– A new action emptyQ that can only be executed when all queues are empty;
all queues synchronise on this action.

– An additional process Thread controls the sending of calls to the uppermost
components and sending of modelling events by the foreign components. At
the moment it sends a call or modelling event, it checks whether the queues
are empty. It can only send another message after the previous one completed
processing.

10

4 Case study

We perform a case study to investigate the feasibility of our approach and to
determine its applicability to industrial-size systems. The case study is based
on a real-life ASD system found in the model stack of our industrial partner.
Components and events have been renamed for confidentiality reasons. Figure 4
shows the high-level structure of the system. The system consists of two loosely-
coupled subsystems, called A and B. A and B have to cooperate to execute an
action together, which we will call Exec. The clients of A and B independently
decide whether they are ready to do so. Moreover, after a client has requested
for Exec to be performed, it can repeal its decision by sending a Cancel message.

Fig. 4. The structure of the case study system. The
dashed lines indicates bidirectional communication
through wrapper components.

Both sides synchronize using
wrapper components located
on the cancel layer and the
control layer. The cancel layer
consists of the components re-
sponsible for cancelling the
execution of Exec and the
control layer is responsible for
performing Exec. The can-
cel and control layers, includ-
ing their direct server com-
ponents, consist of 14 com-
ponents. The complete sys-
tem consists of 26 compo-
nents, which contain 5054 rule
cases in total.

In the initial state, the clients of A and B can decide whether they want
to perform Exec or cancel it. When both clients request to do Exec without
sending a Cancel at some point, then this action is performed. If at least one
client requests a cancellation before they both request Exec, then the action
Cancel is performed. If a client asks for Exec to be cancelled after Exec has
started, then it will not be cancelled. Both clients will receive a notification
when an Exec or a Cancel has been completed. After a client requests Exec,
it will immediately start preparing for Exec to happen. When Exec or Cancel
has finished, the system should return to the initial state. We call the process
between the first message and the performing of Exec or Cancel a round.

4.1 Subsystems

In our analysis, we consider four different variants of this system, to get a rough
idea of the scalability. Firstly, we have the layers subsystem, which consists of
the cancel layer, the control layer, the components directly below them and
the wrapper components in between. We consider two variants of the layers
subsystem: the regular implementation and an implementation where no Cancel
request can be performed. Secondly, we have two variants of the complete system:

11

Table 1. Properties of the layers system written in modal µ-calculus

Property Formula

0 Initial state (〈A Request Exec〉true ∧ 〈A Request Cancel〉true∧
〈B Request Exec〉true ∧ 〈B Request Cancel〉true)

1 Cannot do Exec without
two requests

[true∗](Initial state ⇒ [(A Request Exec
∗

+ B Request Exec
∗
).Exec]false)

2 Cannot request execution
after a cancel request

[true∗.A Request Cancel .(outwardNotification(Cancelled))
∗
.A Request Exec]false

3 Must perform execution
after two execute requests

[true∗](Initial state ⇒ [A Request Exec.(A Request Cancel

+ B Request Cancel)
∗
.B Request Exec]µX.([Exec]X ∧ 〈true〉true))

4 Raise cancel notification
after two cancel requests

[true∗.A Request Cancel .(outwardNotification(Cancelled))
∗
.B Request Cancel]

µX.([outwardNotification(Cancelled)]X ∧ 〈true〉true)

5 After a cancel request,
Cancel is performed

[true∗](Initial state ⇒ [A Request Cancel + B Request Cancel]

µX.([A Cancel]X ∧ 〈true〉true))

6 Cannot make multiple
Exec requests in a round

[true∗.A Request Exec.(outwardNotification(Exec finished))
∗
.A Request Exec]false

7 No synchronization error
during an execution

[true∗](Initial state ⇒ [A Request Exec.(B Request Exec)
∗
.B Request Exec

.(A Request Exec + B Request Exec)
∗
.Sync Error(A)]false)

8 Synchronization error af-
ter requesting an execute
too soon

[true∗]((〈A Request Exec〉true ∧ 〈B Get Results〉true) ⇒
[(B Get Results)∗.A Request Exec]µX.([Sync Error(A)]X ∧ 〈true〉true))

one that does not allow errors to occur and one that does allow errors. We will call
the former good-weather behaviour (GWB) and the latter bad-weather behaviour
(BWB). The bad-weather behaviour system is rather rudimental, which means
that clients can raise errors which are subsequently dealt with by the system to
cause the least disturbance in the normal process operation.

4.2 Properties

After consulting the domain experts, we identified several system-wide properties
that the system under study should adhere to. For the layers subsystem, we
have eight properties, which are listed in Table 1. Furthermore, we have three
properties that involve the complete system; they are listed in Table 2. Note that
some properties are symmetric for both clients; in that case we only listed one
of the two µ-calculus formulae. Many properties are concerned with behaviour
from the moment that neither client has sent a message yet until the moment
that Exec or Cancel is performed. Since we are dealing with a system that runs
continuously, we should not only check what happens from the initial state, but in
every round. Therefore, we formulated a property in the µ-calculus that expresses
whether the system is at the start of a round (property ‘Initial state’ in Tables 1
and 2). This formula is used within other properties to check behaviour in all
rounds. Most action names in these properties should be self-explanatory. The
actions outwardReply and outwardNotification respectively represent a reply and
a notification sent to one of the two clients. The inserting of a notification into
the queue of a certain component is represented by the action raiseNotification.

12

Table 2. Properties of the full system written in modal µ-calculus

Property Formula

0 Initial state (〈A Request Exec.(Protocol Error(A))
∗
.outwardReply(VoidReply)〉true∧

〈A Request Cancel .(Protocol Error(A))
∗
.outwardReply(VoidReply)〉true∧

〈B Request Exec.(Protocol Error(B))
∗
.outwardReply(VoidReply)〉true∧

〈B Request Cancel .(Protocol Error(B))
∗
.outwardReply(VoidReply)〉true)

1 Must perform ex-
ecution after two
execute requests

[true∗](Initial state ⇒ [A Request Exec.(A Request Cancel + B Request Cancel)
∗
.

B Request Exec]µX.([Exec]X ∧ 〈true〉true))

2 Prepare steps are
done before per-
form steps

[true∗](Initial state ⇒ [A Request Exec.(A Request Cancel + B Request Cancel)
∗
.

B Request Exec.(raiseNotification(A Prepare Step Done))
∗
.Exec]false)

3 Perform steps are
done before rais-
ing an execution
notification

[true∗](Initial state ⇒ [A Request Exec.(A Request Cancel + B Request Cancel)
∗
.

B Request Exec.(raiseNotification(A Perform Step Done))
∗

.outwardNotification(Exec finished)]false)

In these properties, we use several common patterns. First, it is very common
to write a property of the shape [true∗]ϕ, meaning that after any sequence of
actions, ϕ has to hold. Building on that, the property [true∗.a]false expresses that
action a cannot occur anywhere and the property [true∗.a.b̄∗.c]false expresses
that after every action a, an action b must happen before the action c happens.

A more complex, but important, pattern is µX.([ā]X ∧ 〈true〉true), which
means that action a unavoidably happens within a finite amount of steps. The
intuition is as follows: as long as we do something other than a (subformula [ā]),
we recurse through variable X. That may only happen finitely often, due to the
least fixpoint (µX). Therefore, we must at some point end up in a state where
actions other than a are not possible. This state cannot be a deadlock, since that
is explicitly forbidden by 〈true〉true. Hence, we end up in a state where only a
actions can be done, and at least one a is possible. This is the same as saying
that ultimately, a must be done.

5 Results

In our experiments, we applied the workflow of Figure 5 to check each of the prop-
erties. First, the mCRL2 specification is normalised into a linear process (LPS),
from which we generate the state space in the shape of a labelled transition system
(LTS). This LTS is subsequently minimised under divergence-preserving branch-
ing bisimulation using the Groote-Jansen-Keiren-Wijs algorithm [9]. Combined
with a µ-calculus formula, we construct a Boolean equation system (BES), which
can be solved to obtain an answer to the model checking question. A benefit of
using this particular workflow is that the state space does not need to be gener-
ated repeatedly for every property we want to check.

To run the experiments, we used a machine with multiple Xeon E5520 proces-
sors (56 cores in total), clocked at 2.27GHz and 935GB of memory. The mCRL2

13

mCRL2 LPS LTS

µ-calculus formula
BES 4/7

linearisation

state-space
generation

minimisation

solving

Fig. 5. The workflow used for model checking.

version we installed has Git commit hash 73241e378e1. The mCRL2 analysis
tools are all single threaded.

Table 3 gives an overview of the time required for state-space generation and
the size of each of the state spaces. The time reported does not include the time
required for bisimulation reduction, which is about 45 minutes for the BWB
system. The full system under bad-weather behaviour is almost on the limit of
what can be generated in a reasonable amount of time with 178.6 million states.
At the same time, bisimulation reduction is very effective, and manages to bring
the number of states back to 12.4 million.

Fig. 6. Visual representation of the min-
imised state space of the layers subsystem.

Figure 6 shows a visualisation of
the minimised state space of the lay-
ers subsystem. The initial state is
at the top and every disk represents
a (non-deterministic) choice. Initially,
the system contains little branching
behaviour (the red, yellow and green
parts at the top). Only deeper in the
state space, there is more choice to
perform different actions (blue and
purple parts at the bottom). The low
amount of branching can be ascribed
to the run-to-completion semantics of
ASD.

Table 4 records for each of the four variants of the system the average time
required to check one of the properties. All properties hold, except when checked

1 Sources are available at https://github.com/mCRL2org/mCRL2

Table 3. Time required for state-space generation and number of states and tran-
sitions for the systems before and after divergence-preserving branching bisimulation
minimisation.

After bisim. red.

System time (s) mem #states #transitions #states #transitions %red

Layers no Cancel 7 28MB 9,107 9,472 7,085 7,422 22.2
Layers subsystem 46 63MB 109,608 114,310 55,361 58,338 49.5
Complete system GWB 14,713 1.7GB 17,179,798 19,098,495 3,787,974 4,298,103 75.0
Complete system BWB 154,397 14GB 178,603,107 196,784,882 12,451,325 14,879,416 93.0

14

Table 4. Average time spent to verify a single property on each of the four
(sub)systems.

time (s)

Layers no cancel Layers System Full System GWB Full System BWB

lts2pbes 2.06 9.82 2,317 14,126
pbessolve 0.44 3.74 890 4,150
Total 2.50 13.56 3,207 18,276

on the bad-weather behaviour system, since that has not been fully implemented.
The time required for the full system is significant: almost one hour for the good
weather version and close to five hours per property for the bad weather system.

While running these large experiments, we observed that a lot of time and
memory is spent on storing and loading intermediate files from disk. For a typical
property of the BWB system, lts2pbes spends more than three quarters of
the time on storing the PBES on disk. This problem could be by-passed by
implementing an integrated tool that combines the functionality of lts2pbes

and pbessolve. The amount of memory required to verify a property of the
BWB system is roughly 180GB; this peak is also reached while writing the
output in lts2pbes.

6 Related work

The successor of ASD is Dezyne2, also developed by Verum. Similar to the
ASD-mCRL2 translation, there is also a translation from Dezyne to mCRL2 [2].
This translation is also limited to single components, so it does not support
verification of end-to-end properties.

mCRL2 has also been used in other studies to analyse systems with a very
large state space. For example, in [1], the train control system ERTMS Hybrid
Level 3 is analysed with mCRL2. They apply the same workflow as we do:
minimise the transition system with bisimulation before checking any property.
The largest state space they verified contains close to 34 million states.

Remenska et al. [15] also work with an automated translation. They convert
the behaviour captured in UML2.0 sequence diagrams to mCRL2 specifications.
Their technique is applied on DIRAC, the computing grid framework of CERN’s
LHCb experiment. Although the state-space is too large to generate completely,
they do find a counter-example to the desired property with depth-first search.

The idea of generating code from formal models that have been checked with
model checking is also applied in [7]. The authors present a tool called DLC, Dis-
tributed LNT Compiler, which can produce C code from an LNT specification.
The generated code is suited for running om multiple machines concurrently, syn-
chronization between the machines is achieved with a rendezvous protocol. LNT
specifications can be analysed with the existing tools from the CADP toolset [8].

2 See https://www.verum.com/, accessed 13-05-2019

15

https://www.verum.com/

7 Conclusion

We showed how to translate a component system implemented in ASD to mCRL2.
This enables checking of end-to-end properties on ASD, which is important for
mission-critical software. Furthermore, we demonstrated with a case-study that
this approach is applicable to an actual industrial system. For the two variants of
the layers subsystem, the time and space required to run the model checker is suf-
ficiently small to enable interactive verification during development. This is due
to the semantics of ASD that avoids a major state-space explosion. The results
exceeded our own expectations and give us hope that model checking of com-
plete systems can be applied more often in industrial settings. Based on these
results, we aim to develop an environment in which all industrial controllers,
newly developed in ASD, can be completely verified during their development
process.

One of the challenges that needs to be tackled before wider adoption of this
approach is possible, is the complexity of modal µ-calculus. Currently, specify-
ing properties with µ-calculus requires expertise, and it is not uncommon for
formulas to contain mistakes. A possible solution is to supply developers with
natural-language templates in which they enter the correct action names. The
corresponding formula will then be generated from the template [16].

References

1. Bartholomeus, M., Luttik, B., Willemse, T.A.C.: Modelling and Analysing ERTMS
Hybrid Level 3 with the mCRL2 Toolset. In: FMICS 2018. LNCS, vol. 11119, pp.
98–114 (2018). https://doi.org/10.1007/978-3-642-15898-8

2. van Beusekom, R., Groote, J.F., Hoogendijk, P., Howe, R., Wesselink, W.,
Wieringa, R., Willemse, T.A.C.: Formalising the Dezyne Modelling Language in
mCRL2. In: FMICS/AVoCS 2017. LNCS, vol. 10471, pp. 217–233. Springer (2017).
https://doi.org/10.1007/978-3-319-67113-0 14

3. Broadfoot, G.H.: ASD Case Notes: Costs and Benefits of Applying Formal Methods
to Industrial Control Software. In: FM 2005. LNCS, vol. 3582, pp. 548–551 (2005).
https://doi.org/10.1007/11526841 39

4. Broadfoot, G.H., Hopcroft, P.J.: Analytical software design. Tech. rep., Verum
Consultants B.V. (2003)

5. Bunte, O., Groote, J.F., Keiren, J.J., Laveaux, M., Neele, T., de Vink, E.P., Wes-
selink, W., Wijs, A., Willemse, T.A.: The mCRL2 Toolset for Analysing Concurrent
Systems: Improvements in Expressivity and Usability. In: TACAS 2019. LNCS, vol.
11428, pp. 21–39 (2019). https://doi.org/10.1007/978-3-030-17465-1 2

6. Cranen, S., Groote, J.F., Reniers, M.A.: A linear translation from CTL* to the
first-order modal µ-calculus. Theor. Comput. Sci. 412(28), 3129–3139 (2011).
https://doi.org/10.1016/j.tcs.2011.02.034

7. Evrard, H., Lang, F.: Automatic distributed code generation from formal
models of asynchronous processes interacting by multiway rendezvous. Jour-
nal of Logical and Algebraic Methods in Programming 88, 121–153 (2017).
https://doi.org/10.1016/j.jlamp.2016.09.002

16

https://doi.org/10.1007/978-3-642-15898-8
https://doi.org/10.1007/978-3-319-67113-0_14
https://doi.org/10.1007/11526841_39
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1016/j.tcs.2011.02.034
https://doi.org/10.1016/j.jlamp.2016.09.002

8. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. STTT 15(2), 89–107 (2013).
https://doi.org/10.1007/978-3-540-73368-3 18

9. Groote, J.F., Jansen, D.N., Keiren, J.J.A., Wijs, A.J.: An O(m log n) Algorithm
for Computing Stuttering Equivalence and Branching Bisimulation. ACM Trans.
on Comput. Logic 18(2) (2017). https://doi.org/10.1007/978-3-662-49674-9 40

10. Groote, J.F., Kouters, T.W.D.M., Osaiweran, A.: Specification guidelines to avoid
the state space explosion problem. Softw. Test., Verif. Reliab. 25(1), 4–33 (2015).
https://doi.org/10.1002/stvr.1536

11. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press (2014)

12. Jonk, R.: The semantics of ALIAS defined in mCRL2. Master’s thesis, Eindhoven
University of Technology (2016)

13. Kozen, D.: Results on the propositional µ-calculus. Theoretical Computer Science
27(3), 333–354 (1982). https://doi.org/10.1007/BFb0012782

14. Osaiweran, A., Schuts, M., Hooman, J., Groote, J.F., van Rijnsoever, B.J.: Evalu-
ating the effect of a lightweight formal technique in industry. STTT 18(1), 93–108
(2016). https://doi.org/10.1007/s10009-015-0374-1

15. Remenska, D., Templon, J., Willemse, T.A.C., Homburg, P., Verstoep, K., Casajus,
A., Bal, H.: From UML to process algebra and back: An automated approach to
model-checking software design artifacts of concurrent systems. In: NFM 2013.
LNCS, vol. 7871, pp. 244–260 (2013). https://doi.org/10.1007/978-3-642-38088-
4 17

16. Remenska, D., Willemse, T.A.C., Templon, J., Verstoep, K., Bal, H.E.: Property
specification made easy: Harnessing the power of model checking in UML designs.
In: FORTE 2014. LNCS, vol. 8461, pp. 17–32 (2014). https://doi.org/10.1007/978-
3-662-43613-4 2

17. Roscoe, A.W.: On the expressive power of CSP refinement. Formal Aspects of
Computing 17(2), 93–112 (2005). https://doi.org/10.1007/s00165-005-0065-x

17

https://doi.org/10.1007/978-3-540-73368-3_18
https://doi.org/10.1007/978-3-662-49674-9_40
https://doi.org/10.1002/stvr.1536
https://doi.org/10.1007/BFb0012782
https://doi.org/10.1007/s10009-015-0374-1
https://doi.org/10.1007/978-3-642-38088-4_17
https://doi.org/10.1007/978-3-642-38088-4_17
https://doi.org/10.1007/978-3-662-43613-4_2
https://doi.org/10.1007/978-3-662-43613-4_2
https://doi.org/10.1007/s00165-005-0065-x

	Verifying System-Wide Properties of Industrial Component-Based Software

