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Abstract. Complex abstract data types are often used to facilitate cre-
ating concise models of the behavior of realistic systems. However, static
analysis techniques that aim to optimize such models often consider vari-
ables of complex types as a single indivisible unit. The use of complex
data types thus negatively affects the optimizations that can be per-
formed. In this paper we revisit and extend a technique by Groote and
Lisser that can be used to replace a single, complex variable by multi-
ple variables of simpler data types, improving the effectiveness of other
static analyzes. We describe the technique in the context of the process
algebraic specification language mCRL2, and establish its correctness.
We demonstrate using an implementation in the mCRL2 toolset that it
sometimes reduces the size of the underlying state spaces, and it typically
reduces the verification times when using symbolic model checking.

1 Introduction

The mCRL2 language [7] is a process algebraic specification language with an
associated toolset to model, validate and verify complex systems [3]. Models in
mCRL2 typically consist of a number of (communicating) parallel processes that
are parameterized with data. As preprocessing for further analysis, mCRL2 spec-
ifications are transformed into linear process equations (LPEs). In this step, par-
allelism and communication are removed from the process definition. Therefore,
an LPE consists of a single (recursive) process definition, parameterized with
data, and a number of condition-action-effect rules referred to as summands.

The mCRL2 toolset, among other features, offers several manipulation tools
for LPEs (e.g. constant elimination and unused parameter elimination, see [6]).
The transformations applied by these tools mainly operate on process parameters
and aim to reduce the complexity of the LPE under consideration. They can
result in a reduction (under bisimilarity) of the underlying state space.

To facilitate the modeling of realistic processes, mCRL2 supports complex
algebraic data types. However, since the LPE transformations do not consider
the structure within the data type of a process parameter, using complex data
types reduces the effectiveness of these transformations. Thus, in order to benefit
from their full potential, we need to simplify these complex data structures.

To address this, Groote and Lisser [6] originally introduced a technique for
flattening the structure of process parameters and implemented this under the
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name structelm in µCRL [1] (the precursor of mCRL2). The idea behind this
approach is to replace a given parameter p by multiple parameters p1, . . . , pn that
together encode the data type of p, effectively exposing its internal structure.
This enables the application of the aforementioned LPE simplification techniques
to p1, . . . , pn, which would otherwise not be possible [6]. This same technique
was implemented in the mCRL2 tool lpsparunfold.

In this paper, we revisit the transformation behind lpsparunfold and iden-
tify several constructions that occur often in LPEs, but are not dealt with ad-
equately, limiting the practical applicability of lpsparunfold. We extend this
technique to enable further simplifications and preserve bisimilarity of the LPE.
Our contributions are:

– we identify an alternative way of placing the functions that reconstruct the
original parameter p from its unfolded constituents p1, . . . , pn,

– we allow the technique to preserve global variables in such a way that they
can be effectively used by other static analysis techniques,

– we simplify complex state update expressions by locally eliminating functions
that are defined using pattern matching, and

– we experimentally demonstrate that our extensions are effective at enabling
other LPE transformations and speeding up the model checker.

In particular, our experiments show that our extensions enable larger reductions
of the underlying state space, directly benefiting explicit-state model checking.
For symbolic reachability we observe that, even if no state space reduction is
possible, the flattening achieved by lpsparunfold reduces the execution time.

Related work. Our work is most closely related to various analysis and trans-
formation techniques for LPEs that have been developed over the years. The
aforementioned elimination techniques from [6] are a prime example. A more
advanced algorithm is liveness analysis [16], which reconstructs a control flow
graph from a given LPE and uses knowledge of relevant data parameters to
reduce the size of the underlying state space.

Similar ideas have been developed for Parameterized Boolean Equation Sys-
tems (PBES) [8]. For example, redundant and constant parameter elimination
for PBES is presented in [13], liveness analysis in [10]; a generalization of con-
stant elimination occurs in [12].

The implementation of symbolic reachability used in our experiments is based
on the techniques from [2, 11], and uses the decision diagrams from Sylvan [17].

Overview. Section 2 introduces an example that is used throughout the paper.
Next, preliminaries are provided in Section 3. Parameter unfolding from [6] is
presented in Section 4. Our extensions to [6] are presented in Section 5. Finally,
we validate our ideas with experiments in Section 6 and conclude in Section 7.

2 Motivating Example

As a running example we use an mCRL2 specification of a simple system, shown
in Figure 1, inspired by the mCRL2 models generated from OIL specifications [4].
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sort Sys = struct uninit | sys(get state : State, get ip : N);
State = struct p on | p off ;

map set state : Sys × State → Sys;
set ip : Sys × N → Sys;

var s : Sys; p1, p2 : State;n,m : N;
eqn set state(uninit , p1) = uninit ;

set state(sys(p1, n), p2) = sys(p2, n);
set ip(uninit ,m) = uninit ;
set ip(sys(p1, n),m) = sys(p1,m);

act on, off , initialize;
glob dc1 , dc2 : N;
proc P (s : Sys) =

(s ≈ uninit) → initialize · P (sys(p off , dc1 ))
+
∑

n : N(s ̸≈ uninit ∧ get state(s) ≈ p off )
→ on · P (set state(set ip(s, n), p on))

+(s ̸≈ uninit ∧ get state(s) ≈ p on) → off · P (set state(set ip(s, dc2 ), p off ));
init P (uninit);

Fig. 1. Linear process specification of a simple system

The system starts out uninitialized (init P (uninit)). If the system is initialized ,
it can be in one of two states, off or on, and can be toggled between them.
Moreover, an IP address, abstracted as natural number, is assigned to the system.

The LPE is given after the proc keyword. The definition of the process
consists of (possibly recursive) summands, that, essentially, describe a set of
condition-action-effect rules. When uninitialized , it can be initialized to off ,
where the IP address is irrelevant. This is modeled using a global variable dc1
(dc stands for don’t-care). When the system is off , it can be switched on, and
the IP address is set to an arbitrary value using the sum operator

∑
n : N. If the

system is on, the system can be switched off . Again the IP address is immaterial.
The LPE is defined in the context of the data specification, which consists

of several parts. First, sort specifies two sorts. Structured sort Sys has two con-
structors, uninit : Sys and sys : State × N → Sys. For this, standard operations
such as equality (≈) and inequality ( ̸≈) are predefined, e.g., that sys(p, n) ̸≈
uninit for all p : State, n : N. Also, the projection functions get state : Sys →
State and get ip : Sys → N are defined such that, get state(sys(p, n)) = p and
get ip(sys(p, n)) = n. The State argument indicates the status of the system
which can be set to p on or p off , e.g., given s : Sys, function set state(s, p on)
sets the state of s to p on. Similarly, set ip(s, 1 ) sets the IP address of s to 1.

Note that the labeled transition system underlying this process has an infinite
state space due to the use of natural numbers for IP addresses. However, this
parameter does not affect the behavior of the system: the behavior of the system
when it is on, i.e., it is in a state sys(p on, n), is bisimilar for all values of n. Yet,
static analysis tools such as parameter elimination and constant elimination are
not able to simplify the LPE because the real structure of the process is hidden
in process parameter s.
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3 Preliminaries

The mCRL2 language is a modeling language based on process algebra with
data [7]. In general, the language allows the specification of communicating,
parallel processes. However, the first step in any automated analysis using the
mCRL2 toolset [3] is to linearize the specification. In this process, parallel com-
position operators are eliminated, and replaced by sequential composition and
choice, effectively making the allowed interleavings explicit. This results in a
standardized format for processes, the linear process equations (LPEs). The tech-
nique we study in this paper operates on such LPEs. In the remainder of this
section we first introduce the data, and subsequently the LPEs.

3.1 Data

The language for data types in mCRL2 is based on an algebraic specification.
We here give a brief overview. For details, we refer to the treatment in [7]. A
signature is a triple Σ = (S, CS ,MS) where S is a set of sorts, CS and MS
are disjoint sets of function symbols over S, called constructors, and mappings,
respectively. Such function symbols are of the form f : D1 × · · · ×Dn → D such
that Di, D ∈ S for 1 ≤ i ≤ n. If n = 0, we say f is a constant. We generally
assume that the signature contains Booleans and standard numeric types along
with their constructors and operations. With a slight abuse of notation we use
their semantic sets B, N, . . . and operations such as ∧ and + also for the syntactic
counterparts. For any sort D, we assume sort List(D) is defined, with construc-
tors [] for the empty list, and ▷ for the constructor that adds an element in
front of a list. Sorts constructed using →, such as D1 × · · · ×Dn → D are called
function sorts. If D = D1 × · · · ×Dn → D′ we write range(D) for its range D′.

Constructors are used to inductively define the elements of a sort. We write
CS(D) = {f : D′ ∈ CS | range(D′) = D} for the constructors of sort D. We as-
sume a bijection ιD between CS(D) and 0..|CS(D)|−1 ordering the constructors,
and write ι if D is clear from the context. We say that D is a constructor sort if,
and only if, CS(D) ̸= ∅. A constructor sort D is syntactically non-empty if there
is a constructor f : D1×· · ·×Dn → D such that if Di is a constructor sort, then
Di is syntactically non-empty, for 1 ≤ i ≤ n. We require all constructor sorts to
be non-empty, and for f : D ∈ CS , range(D) must not be a function sort.

Expressions in the data language are referred to as data expressions or terms
over a set XS of S-sorted variables. They are syntactically described by the
following grammar:

t ::= x | f | t(t, . . . , t)

where x ∈ XS are variables, f ∈ CS ∪MS are function symbols, and t(t, . . . , t)
describes the application of a term to its arguments. We write e[x := e′] for the
syntactic substitution of x with e′ in e. The mCRL2 language additionally sup-
ports quantification and lambda expressions. Our technique straightforwardly
extends to this setting, so we omit those constructs for the sake of simplicity.
With every sort D, we associate a default expression, defD.
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Equality of terms is defined using a data specification D = (Σ,E), where Σ
is a signature and E is a set of conditional equations of the form ⟨X , c→ t = u⟩,
where X ⊆ XS , and c, t, u are terms over X . We typically write ⟨X , t = u⟩, when
c = true and c→ t = u or t = u, if X is clear from the context.

The semantics of data types is described using model class semantics [7].
Sorts are mapped into their semantic counterpart using applicative structures. A
set {MD | D ∈ S} is an applicative structure if, and only if,MB = {true, false},
and if D = D1×· · ·×Dn → D′, thenMD contains all (semantic) functions from
MD1

×· · ·×MDn
→MD′ . Function J−K maps every function symbol in the data

specification into its semantic counterpart, that is, for all f ∈ CS ∪MS of sort
D, JfK ∈MD. This is generalized to arbitrary terms as follows:

JxKσ = σ(x) if x ∈ XS

JfKσ = JfK if f ∈ CS ∪MS

Jt(t1, . . . , tn)Kσ = JtKσ(Jt1Kσ, . . . , JtnKσ)

where σ : XS →
⋃

D∈S MD is a valuation that ensures that σ(x) ∈ MD for
all x : D. We write σ[v/d] for the valuation that assigns v to d and otherwise
behaves as σ. The model M of a data specification is an applicative structure
together with an interpretation function, that in addition ensures that for equa-
tions ⟨X , c → t = u⟩ ∈ E and valuations σ, if JcKσ = true then JtKσ = JuKσ;
JtrueKσ = true, JfalseKσ = false, for all valuations σ; and if D is a constructor
sort, then every v ∈ MD is a constructor element. Element v ∈ MD is a con-
structor element if a constructor function f ∈ CS of sort D1 × · · · × Dn → D
exists such that v = JfK(v1, . . . , vn) where vi is either a constructor element of
sort Di, or sort Di is not a constructor sort. We write t ≡ t′ for terms t and t′

if for all models, JtKσ = Jt′Kσ for all valuations σ.

3.2 Linear Processes

A Linear Process Equation (LPE) defines the name of a recursive process, whose
definition is a set of summands that are, essentially, condition-action-effect rules
that may refer to local variables. An LPE is typically defined in the context of
a data specification D, that specifies algebraic data types, and a set of global
variables Xg. The combination of an LPE with a data specification and its global
variables is a Linear Process Specification (LPS).

Definition 1. A linear process specification (LPS) L is a tuple (D,Xg, P, e⃗)
where D is a data specification describing the data types used in the LPS, Xg is
a set of global variables, P is a linear process equation (LPE), and e⃗ is a vector

of expressions of sort D⃗ that may refer to variables in Xg. We typically say that
P (e⃗) is the initial process. LPE P is described as follows:

P (d⃗ : D⃗) =
∑
i∈I

∑
e⃗i : E⃗i

ci → ai(fi) · P (gi) +
∑
j∈J

∑
e⃗j : E⃗j

cj → aδj(fj)
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where d⃗ is a vector of process parameters whose types are D⃗. I and J are
disjoint, finite index sets, such that for i ∈ I and j ∈ J we have that ci and cj
are boolean expressions, ai and aδj are actions, fi and fj are terms that form
the action parameters, and gi is the next state, providing the vector of terms
assigned to the parameters of process P in the recursive call to P . Terms ci, fi,
gi (cj, fj) range over d⃗, Xg, and e⃗i (e⃗j).

In their full generality, LPEs can use timestamps on the actions. These times-
tamps are treated by our transformation in the same way as action parameters.
For the sake of simplicity, we restrict ourselves to untimed LPEs in this paper.
For the same reason, we will henceforth only consider recursive summands.

Transformations of LPEs are correct if they are behavior preserving. For this,
we use a generalization of strong bisimulation to linear processes [6]. Two LPEs
P and P ′ with initial values e and e′, respectively, are strongly bisimilar if and
only if the labeled transition systems induced by P (e) and P ′(e′) are strongly
bisimilar. In this case, we write P (e) - P ′(e′).

4 Parameter Unfolding

Parameter unfolding was introduced by Groote and Lisser under the name
structelm [6], and has later been implemented in the mCRL2 toolset in a tool
called lpsparunfold. The idea behind parameter unfolding is that a term from a
constructor sort whose head symbol is a constructor can be replaced by separate
terms for the name of the constructor and each of the arguments. For instance,
in our running example, the single process parameter s is then replaced by
three process parameters: e : USys , s1 : State and s2 : N, where e represents the
constructor at the head of s, and s1 and s2 are the arguments of the first con-
structor. The term sys(p off , dc1 ) in the first summand of our running example
can be replaced by the terms csys , p off , and dc1 ; the Sys constructor uninit in
the initialization is replaced by the value cuninit . As uninit does not have any
parameter, the new parameters s1 and s2 can be set to a default value.

Unfolding of process parameters happens in two steps. First, the data speci-
fication is extended with a new sort to represent constructors, and mappings to
move between the sort that is unfolded, and newly introduced parameters. Next,
the parameters in the linear process are unfolded.

4.1 Extending the Data Specification

Our improvements to Groote and Lisser’s technique concern the unfolding of the
parameters in the linear process. The extension of the data specification is, in
essence, left unchanged, and its formal definition can be found in [6]. We therefore
only introduce the unfolding of the data type using our running example.

When unfolding a sortD, a new data specification is constructed that extends
D with a new sort UD, to represent the constructors of D, constructors for this
new sort, as well as case functions, determinizers and projection functions and
the associated equations.
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Example 1. Recall the data specification from Figure 1. We unfold sort Sys.
Note that CS(Sys) = {sys : State × N → Sys, uninit : Sys}, that is it has two
constructors, sys and uninit . The data specification of the running example is
extended with the following.

sort USys ;
cons csys , cuninit : USys ;
map CSys : USys × Sys × Sys → Sys

detSys : Sys → USys ;
π1
sys : Sys → State;

π2
sys : Sys → N;

var x, x1, x2 : Sys; e : USys ;
y1 : State; y2 : N;

eqn CSys(cuninit , x1, x2) = x1;
CSys(csys , x1, x2) = x2;
CSys(e, x, x) = x;
detSys(uninit) = cuninit ;
detSys(sys(y1, y2)) = csys ;
π1
sys(uninit) = p on;

π2
sys(uninit) = 0;

π1
sys(sys(y1, y2)) = y1;

π2
sys(sys(y1, y2)) = y2;

The explanation of the additions is as follows. We add constructor sort
USys , with constructors csys , cuninit , i.e., we introduce one new constructor in
sort USys for every constructor in the unfolded sort. Case function CSys is
used in the unfolding of processes to reconstruct an expression of sort Sys
from the unfolded parts, e.g., CSys(csys , uninit , sys(p on, 3)) = sys(p on, 3).
The case Csys(e, x, x) = x is used to facilitate simplifications in the imple-
mentation even when the arguments do not yet have a concrete value. We add
determinizer functions detSys that are used to recognize the head symbol of
an expression of sort Sys, and map it onto the corresponding constructor in
USys , e.g., detSys(sys(p on, 3)) = csys . Projection functions π1

sys and π2
sys are

added to extract the arguments of an expression with head symbol sys, e.g.,
π2
sys(sys(p on, 3)) = 3; if this projection function is applied to uninit it returns

a default value. Since constructor uninit has no arguments, there are no projec-
tion functions πuninit .

To be effective in practice, the projection and determinizer functions need to
distribute over if-then-else and the case functions. Therefore, also the following
distribution laws are added.

var x1, x2 : Sys; e : USys ; b : B
eqn π1

sys(CSys(e, x1, x2)) = CSys(e, π
1
sys(x1), π

1
sys(x2));

π1
sys(if (b, x1, x2)) = if (b, π1

sys(x1), π
1
sys(x2));

π2
sys(CSys(e, x1, x2)) = CSys(e, π

2
sys(x1), π

2
sys(x2));

π2
sys(if (b, x1, x2)) = if (b, π2

sys(x1), π
2
sys(x2));

detSys(CSys(e, x1, x2)) = CSys(e, detSys(x1), detSys(x2));
detSys(if (b, x1, x2)) = if (b, detSys(x1), detSys(x2));

4.2 Unfolding Process Parameters in an LPE

We next describe how to unfold a process parameter d in an LPE, and how to
split expressions e that were assigned to d into expressions that can be assigned
to the new process parameters. As our extensions modify these definitions, we
present them in more detail. For the sake of simplicity, we describe the unfolding
in the setting of an LPE with a single process parameter. For processes with
multiple process parameters, this generalizes in the obvious way.
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Definition 2. Let d : D be a variable of constructor sort D, with CS(D) =
{f0, . . . , fn}. Let D be such that for all constructors f : D1 × · · · × Dn → D ∈
CS(D), and terms t1, . . . , tn, t

′
1, . . . , t

′
n, if f(t1, . . . , tn) ≡ f(t′1, . . . , t

′
n) then ti ≡ t′i

for all i.
We first define how process parameters are manipulated.

– First, if we unfold parameter d, new parameters need to be introduced to store
the arguments for each of the constructors of sort d. For fi : D

1
i ×· · ·×Dni

i →
D ∈ CS(D), this is the vector params(d, fi) = d1i : D

1
i , . . . , . . . d

ni
i : Dni

i . Note
that if fi is a constant, params(d, fi) is the empty vector.

– To define the parameters unfolding d we need one variable that represents the
constructor, and parameters for the arguments of each of the constructors.

params(d) = ed : UD, params(d, f1), . . . , params(d, fn)

Note ed : UD determines the constructor of sort D, with UD the corresponding
constructor sort.

– If d is replaced by params(d), any use of d needs to be reconstructed using an
equivalent expression in terms of the new parameters. We abbreviate this by
reconstruct(d).

reconstruct(d) = C(ed, f0(params(d, f0)), . . . , fn(params(d, fn)))

If originally e was assigned to d, after d has been replaced by params(d), expres-
sion e also needs to be split into expressions that can be assigned to these new
parameters. We define the following. Let e be an expression of type D. Then

unfold(e) = detD(e), π1
f0(e), . . . , π

m0

f0
(e), . . . , π1

fn(e), . . . , π
mn

fn
(e)

where mi denotes the index of the last argument of constructor fi.

The unfolding of process parameters described in [6] is as follows. In the rest
of this paper, we will refer to this as using default case placement.

Definition 3 (Unfolding of process parameters [6]). Let L = (D,Xg, P, e)
be an LPS, where P is the following LPE.

P (d : D) =
∑
i∈I

∑
e⃗i : E⃗i

ci → ai(fi) · P (gi)

The result of unfolding process parameter d : D in L, denoted parunfold(d)(L) is
the LPS (D′,Xg, P

′, unfold(e)), where D′ is data specification D in which sort D
is unfolded, and LPE P ′ is as follows:

P ′(params(d)) =
∑
i∈I

∑
e⃗i : E⃗i

ci[d := reconstruct(d)]

→ ai(fi[d := reconstruct(d)]) · P ′(unfold(gi[d := reconstruct(d)]))
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So, essentially, unfolding parameter d replaces d by the vector params(d). In
the right hand side of the equation, every occurrence of d is replaced syntacti-
cally by reconstruct(d), i.e., an application of the corresponding case function.
Finally, in the recursive calls to P , the expression that after the previous step has
become gi[d := reconstruct(d)], is unfolded using unfold(gi[d := reconstruct(d)]).
Similarly, using unfold(e), the initial process is unfolded.

Example 2. Recall our motivating example, for which we have described the un-
folding of sort Sys in the data specification in Example 1. If we unfold parameter
s, we get the LPE and initialization shown below.

proc P (e : USys , s1 : State, s2 : N)
= C(e, uninit , sys(s1 , s2 ) ≈ uninit)

→ initialize·
P (detSys(sys(p off , dc1 )), π1

sys(sys(p off , dc1 )), π2
sys(sys(p off , dc1 )))

+
∑

n : N(!(C(e, uninit , sys(s1 , s2 )) ≈ uninit)∧
get state(C(e, uninit , sys(s1 , s2 ))) ≈ p off )
→ on · P (detSys(set state(set ip(C(e, uninit , sys(s1 , s2 )), n), p on)),

π1
sys(set state(set ip(C(e, uninit , sys(s1 , s2 )), n), p on)),

π2
sys(set state(set ip(C(e, uninit , sys(s1 , s2 )), n), p on)))

+(!(C(e, uninit , sys(s1 , s2 )) ≈ uninit)∧
get state(C(e, uninit , sys(s1 , s2 ))) ≈ p on)
→ off · P (detSys(set state(set ip(C(e, uninit , sys(s1 , s2 )), dc2 ), p off )),

π1
sys(set state(set ip(C(e, uninit , sys(s1 , s2 )), dc2 ), p off )),

π2
sys(set state(set ip(C(e, uninit , sys(s1 , s2 )), dc2 ), p off )));

init P (detSys(uninit), π
1
sys(uninit), π

2
sys(uninit));

It has three parameters. Parameter e keeps track of the constructor of the ex-
pression in s, e.g., initially s is uninit , so the corresponding value in e is cuninit .
Parameters s1 and s2 are used to track the arguments of the constructor sys.
If e is csys , then sys(s1, s2) is equivalent to s (the orginal parameter that is
unfolded). As uninit does not have arguments, no parameters need to be intro-
duced for its arguments. The original expression s is then reconstructed in the
process by replacing s with C(e, uninit , sys(s1 , s2 )). The functions detSys , π

1
sys

and π2
sys are used to move from an expression of sort Sys to expressions of sort

USys , State and N.
Using the equations for detSys , π

1
sys and π

2
sys for rewriting, this can be simpli-

fied slightly. The recursion of the first summand then becomes P (csys , p off , dc1 )
and the initialization becomes initP (cuninit , p on, 0), as per the default values
of πi

sys(uninit). The resulting LPE cannot be simplified further. Since parame-
ters s1 and s2 appear in the conditions of each of the summands, existing static
analysis tools for constant elimination and parameter elimination are not able
to remove any of the parameters from this process.

Correctness of the unfolding is established by the following theorem.

Theorem 1 ([6]). Let L = (D,Xg, P, e) and parunfold(d)(L) = (D′,Xg, P
′,

unfold(e)) be the LPSs as in Definition 3. Then P (e) - P ′(unfold(e)).
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5 Improving Parameter Unfolding

In this section we present three improvements to parameter unfolding: we alter
the way case functions are placed in the processes, we explicitly take global
variables into account during the transformation, and we show how pattern
matching rules in the data specification can be used to simplify the data in the
resulting process expressions.

5.1 Alternative Case Placement

In our standard definition of unfolding, each occurrence of d is replaced by
reconstruct(d), and thus case functions are placed at an innermost level. This
can limit simplification by rewriting; e.g., expression C(e, uninit , sys(s1 , s2 )) ≈
uninit in the condition of the first summand in Example 2 cannot be simplified.

In many cases, placing the case function at an outermost level aids rewrit-
ing and subsequent analysis of the LPE. Formally, every condition ci now be-
comes C(ed, ci[d := f0(params(d, f0))], . . . , ci[d := fn(params(d, fn))]). However,
this may lead to an exponential blow-up in the size of the conditions if multi-
ple parameter unfoldings are performed successively. Therefore, we propose an
intermediate approach that places case functions at the level where subexpres-
sions are no longer Boolean. We call this alternative case placement. Intuitively,
starting from the outermost placement, we distribute the case function over the
standard Boolean operators.

Definition 4. Given a data expression c and a variable d, the alternative case
placement is the expression acp(c, d), where acp is the recursive function:

acp(b, d) = C(e, b[d := f1(params(d, f1))], . . . , b[d := fn(params(d, fn))])
acp(¬φ, d) = ¬acp(φ, d)
acp(φ ∧ ψ, d) = acp(φ, d) ∧ acp(ψ, d)
acp(φ ∨ ψ, d) = acp(φ, d) ∨ acp(ψ, d)
acp(φ⇒ ψ, d) = acp(φ, d) ⇒ acp(ψ, d)

Here, φ and ψ are arbitrary terms and b is a data expression that does not have
¬,∧,∨,⇒ as its top-level operator.

Note that in the first case of the definition of acp, acp(b, d) is equivalent to
b if d does not occur in b, by the rule C(e, x, x) = x. Under alternative case
placement, the unfolded LPE of Definition 3 becomes:

P ′(params(d)) =
∑
i∈I

∑
e⃗i : E⃗i

acp(ci, d) → ai(acp(fi, d)) · P ′(acp(unfold(gi), d))

Correctness follows immediately from the observation that acp(b, d) ≡ b[d :=
reconstruct(d)] (by case analysis on e). We next discuss the benefits of alternative
case placement on our running example.
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Example 3. Recall our motivating example, for which we have described the
unfolding of sort Sys in Examples 1 and 2. We show the result of the unfolding
using the alternative case placement. As all summands are changed in a similar
way, we focus on the last summand of the LPE:

(!C(e, uninit ≈ uninit , sys(s1 , s2 ) ≈ uninit)∧
C(e, get state(uninit) ≈ p on, get state(sys(s1 , s2 )) ≈ p on))
→ off · P (C(e, detSys(set state(set ip(uninit , dc2 ), p off )),

detSys(set state(set ip(sys(s1 , s2 ), dc2 ), p off ))),
C(e, π1

sys(set state(set ip(uninit , dc2 ), p off )),
π1
sys(set state(set ip(sys(s1 , s2 ), dc2 ), p off ))),

C(e, π2
sys(set state(set ip(uninit , dc2 ), p off )),
π2
sys(set state(set ip(sys(s1 , s2 ), dc2 ), p off ))))

Compared to the LPE using default case placement, observe that the case
functions now appear at a higher level. For instance, the second conjunct of
the condition was changed from get state(C(e, uninit , sys(s1 , s2 ))) ≈ p on) to
C(e, get state(uninit) ≈ p on, get state(sys(s1 , s2 )) ≈ p on)). In the original,
the case function cannot be simplified further, as the first argument e is a vari-
able, and it cannot be matched to any of the rewrite rules; also, there are no
rules that allow distributing equality over the case function. When applying al-
ternative case placement, the equality appears within the scope of the arguments
of the case function, and the (implicit) equations for ≈ can be used to simplify
the individual arguments.

Similar changes can be seen in the arguments of the recursive processes. Using
the equations for ≈, detSys , π

1
sys , π

2
sys , set ip and set state, the last summand

is simplified to:

(!C(e, true, false) ∧ C(e, get state(uninit) ≈ p on, s1 ≈ p on))
→ off · P (C(e, cuninit , csys), C(e, p on, p off ), C(e, 0, dc2 ))

We thus obtained more concise expressions than those in Example 2. In partic-
ular, this summand no longer contains any reference to unfolded parameter s2.
The same applies to the other two summands, hence parameter s2 can be elimi-
nated. As a result, the sum over n in the second summand can be eliminated as
well, and the final LPE we obtain is:

proc P (e : USys , s1 : State)
= C(e, true, false)

→ initialize · P (csys , p off )
+(!C(e, true, false) ∧ C(e, get state(uninit) ≈ p off , s1 ≈ p off ))

→ on · P (C(e, cuninit , csys), p on)
+(!C(e, true, false) ∧ C(e, get state(uninit) ≈ p on, s1 ≈ p on))

→ off · P (C(e, cuninit , csys), C(e, p on, p off ))
init P (cuninit , p on);

Note that the original state space before the unfolding is infinite while after
unfolding with alternative case placement the state space has only three states.
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5.2 Global Variables

Other static analysis techniques use global variables to more effectively sim-
plify the process. For instance, when constant elimination observes that the only
change to a parameter is assigning a global variable to that parameter, the global
variable can be replaced by a constant. This is safe since all values for global
variables lead to bisimilar processes.

When unfolding a process parameter, the value assigned to it in the initial-
ization or recursion may be a global variable dc ∈ Xg. Applying the unfold-
ings described so far results in unfold(dc), which contains expressions such as
detD(dc) and πj

fi
(dc) that cannot be rewritten further. Other static analysis

techniques cannot directly use such expressions, leaving the resulting LPE more
complicated than it needs to be, resulting in longer verification times.

We illustrate the issue using an example that is based on the representation
of the board in the specifications of games such as tic-tac-toe.

Example 4. Process P is initialized with a singleton list [o] of sort List(Piece)
representing the board. It also has parameters p, keeping track of the player
whose turn it is, and done to indicate that the game ends. As long as done is
false, and l contains a piece of player p whose turn it is, p is updated to the next
player. If l contains a piece of the other player, a τ transition is taken, the values
of l and p are set to global variables, and done is set to true. If done is true, the
process deadlocks. This resembles what happens in models of board games such
as tic-tac-toe when the game ends.

sort Piece = struct x | o;
map other : Piece → Piece;
eqn other(x) = o; other(o) = x;
act is : Piece;
glob dc1 : List(Piece); dc2 : Piece;
proc P (l : List(Piece), p : Piece, done : Bool)

= (¬done ∧ l ≈ [other(p)]) → τ.P (dc1, dc2, true)
+(¬done ∧ l ≈ [p]) → is(p).P ([p], other(p), done);

init P ([o], o, false);

Unfolding parameter l yields the following LPE.

proc P (e : UPiece , lp : Piece, ll : List(Piece), p : Piece, done : Bool)
= ¬done ∧ CList(Piece)(e, [], lp ▷ ll) ≈ [other(p)]
→ τ.P (detList(Piece)(dc1), π

1
▷(dc1), π

2
▷(dc1), dc2, true)

+(¬done ∧ CList(Piece)(e, [], lp ▷ ll) ≈ [p])
→ is(p).P (detList(Piece)([p]), π

1
▷([p]), π

2
▷([p]), other(p));

init P (detList(Piece)([o]), π
1
▷([o]), π

2
▷([o]), o, false);

The recursion in the first summand cannot be simplified further, and constant-
and redundant parameter elimination cannot remove any parameters.

Since the behavior of a process is not affected by (the value of) a global vari-
able, the individual arguments of the expression assigned to that global variable
also do not affect the behavior of the process. Therefore, instead of applying pro-
jection functions to a global variable, fresh global variables can be introduced
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for each of the new process parameters when unfolding a global variable. We
extend the definition of unfold from Definition 2 as follows.

Definition 5. Let e be an expression of constructor sort D. Then

unfoldg(e) =

{
dce, dc

1
f0 , . . . , dc

m0

f0
, . . . , dc1fn , . . . , dc

mn

fn
if e ∈ Xg

unfold(e) otherwise

where dce, dc
1
f0 , . . . , dc

m0

f0
, . . . dc1fn , . . . , dc

mn

fn
are fresh global variables, and mi

denotes the index of the last argument of constructor fi.

The unfolded LPE taking global variables is obtained by using unfoldg instead
of unfold in Definition 3.1 We apply this improved definition to the specification
in Example 4.

Example 5. Recall the specification from Example 4. When using unfoldg instead
of unfold, the recursion in the first summand becomes P (dce, dclp , dcll , dc2 , true).

This allows further simplification using constant elimination and parameter
elimination and simplification using rewriting to the LPE below.

proc P (lp : Piece, p : Piece, done : Bool)
= (¬done ∧ lp ≈ p) → is(p).P (p, other(p), done)
+(¬done ∧ lp ≈ other(p)) → τ.P (dclp , dc2 , true);

init P (o, o, false);

In particular, all case functions, determinizers and projection functions are fully
removed. The transformation now essentially replaced the (fixed-length) list in
the original process by its individual elements.

5.3 Simplifications for Pattern Matching Rules

In the recursion P (unfold(gi[d := reconstruct(d)])), we regularly obtain expres-
sions of the shape detD(h(a1, . . . , an)) or πl

fk
(h(a1, . . . , an)) for some function

symbol h that is not a constructor. Both of these cannot be rewritten any further,
often due to the fact that there is insufficient information to apply the pattern
matching in the equations for h. Therefore, we propose a method to perform one
unfolding of the function h, allowing us to achieve the necessary simplifications.
Let us first consider an example.

Example 6. Suppose we have a function plusone, which is defined using pattern
matching, that increments every element of a list. Our linear process P updates
the elements of its argument l : List(N) using this function as follows:

map plusone : List(N) → List(N);
var x : N; xs : List(N);
eqn plusone([]) = [];

plusone(x ▷ xs) = (x+ 1) ▷ plusone(xs);
proc P (l : List(N)) = a · P (plusone(l));
init P ([7]);

1 The definition using alternative case placement can be modified to take global vari-
ables into account in the same way.
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If we unfold l (default case placement), we obtain as first argument update in
the summand the expression detList(N)(plusone(CList(N)(e, [], s1 ▷ s2))), which
cannot be rewritten any further.

Intuitively, since detList(N) considers only its argument’s constructor, and
plusone does not modify the constructor, detList(N)(l) = detList(N)(plusone(l))
for all l. However, due to the pattern matching nature of plusone, we can only
eliminate the application of detList(N) by means of term rewriting if l is of the
shape [] or x▷xs. Thus, the tools are not able to deduce that the update in the
example above is in fact equal to e, and that the summand does not modify e.
To facilitate further static analysis in the above example, it would be helpful to
have a general technique for further simplification in such situations.

Our approach is to compute a single non-pattern-matching rewrite rule for
each mapping that is equivalent to its original pattern-matching-based definition.
The pattern matching logic will instead be encoded in a tree of case functions.
We will apply the new singly-defined rule in selected places in order to eliminate
determinizer and projection functions by means of ordinary rewriting. At its
core, our transformation is based on the following observation, which follows by
case analysis on the top-level constructor in ai.

Lemma 1. Let h : D1 × . . . Dn → D be a mapping and a1, . . . , an arbitrary
expressions. Then we have for any σ and any 1 ≤ i ≤ n:

Jh(a1, . . . , an)Kσ = JCDi(detDi(ai),

h(a1, . . . , ai−1, f1(π
1
f1(ai), . . . , π

n1

f1
(ai)), ai+1, . . . , an), . . . ,

h(a1, . . . , ai−1, f|CS(D)|(π
1
f|CS (D)|

(ai), . . . , π
n|CS (D)|
f|CS (D)|

(ai)), ai+1, . . . , an))Kσ

We repeatedly apply this equality until each application of h can be rewritten,
leading to nested case function applications. Furthermore, we add the rewrite
rule CD(e, cf1 , . . . , cf|CS (D)|) = e to aid simplification. Using the distribution

laws, the surrounding determinizer/projection functions can often be eliminated.

Example 7. We revisit the expression detList(N)(plusone(CList(N)(e, [], s1 ▷ s2)))
obtained from unfolding in Example 6. Applying Lemma 1 on plusone, we obtain
the following expression that can be rewritten to just e.

detList(N)(CList(N)(detList(N)(CList(N)(e, [], s1 ▷ s2)),

plusone([]),

plusone(π1
List(N)(CList(N)(e, [], s1 ▷ s2)) ▷ π

2
List(N)(CList(N)(e, [], s1 ▷ s2)))))

6 Experiments

The original parameter unfolding technique from [6] has been available in the tool
lpsparunfold in the mCRL2 toolset [3] for over a decade. We have extended
the C++ implementation with the ideas described. The tool allows selecting
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Table 1. Experimental results for symbolic reachability, reporting size of the underly-
ing labeled transition system, and the mean total time of each of the tool executions
out of 10 runs.

Models Sizes (# states) Times (s)

standard original new.def new.alt standard original new.def new.alt

cylinder 1 593 209 30.2 16.8 16.9 17.4

fourinarow3-4 12 305 63.9 59.2 1.5 1.5

fourinarow3-5 t-o 171 243 t-o 1 437.6 10.5 10.5

fourinarow4-3 6 214 15.3 32.3 1.0 1.0

fourinarow4-4 t-o 187 928 t-o 1 790.0 10.6 10.4

fourinarow4-5 t-o 5 464 759 t-o t-o 350.5 350.1

fourinarow5-3 44 131 832.8 400.7 3.4 3.3

fourinarow5-4 t-o 2 788 682 t-o t-o 166.0 164.9

fourinarow5-5 t-o t-o t-o t-o t-o

onoff t-o 3 t-o t-o t-o 0.1

sla7 7 918 2.0 2.5 2.6 2.4

sla10 238 931 31.9 19.1 18.8 15.6

sla13 t-o 6 693 054 t-o 432.7 418.3 324.2

swp2-2 14 064 1.2 1.2 1.2 1.2

swp2-4 140 352 2.4 2.5 2.4 2.4

swp2-6 598 320 3.2 3.5 3.1 3.2

swp2-8 1 731 840 4.1 4.8 3.9 4.0

swp4-2 2 589 056 5.9 9.8 7.4 7.3

swp4-4 292 878 336 132.4 173.6 110.4 111.7

swp4-6 5 729 304 960 3 072.5 1 146.3 716.9 725.5

swp4-8 t-o 50 128 191 488 t-o t-o 2 968.2 3 010.4

swp8-2 t-o t-o t-o t-o t-o

tictactoe3-3 5 479 14.1 9.6 1.5 1.5

wms 155 034 776 17.0 17.0 16.8 16.2

which parameters to unfold, and the number of times that parameter should be
unfolded using command-line options. Multiple parameters can be unfolded in a
single run; this is achieved by iterating the unfolding of a single parameter.

To evaluate the effect of our improvements on further analysis of LPEs and
the generation of the underlying state space using symbolic reachability, we
compare the following workflows:

– standard: standard static analysis workflow: instantiate finite summations,
eliminate constant and redundant parameters and superfluous summation
variables [6] (tools lpssuminst, lpsconstelm, lpsparelm and lpssumelm).
Finally, perform symbolic reachability (lpsreach). No parameter unfolding.

– original: before standard, perform the original parameter unfolding.
– new.def: before standard, perform parameter unfolding with our extension

for global variables and pattern matching rules with default case placement.
– new.alt: same as new.def but use alternative case placement.

The workflows are executed on various models translated to mCRL2, in-
cluding our running example (onoff). Models of two-player games, often used to
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teach formal methods: four-in-a-row, with varying numbers of rows and columns
and tic-tac-toe on a standard 3x3 board, in which the board is encoded using
fixed length lists of lists. First, the board is unfolded, and then each of the rows
resulting from this first unfolding. Models of a sliding window protocol [5], that
forms the basis of the TCP protocol used for reliable in-order delivery of packets,
as it occurs in [7], with window size n and m messages (swp-n-m) for different
values of n and m. The send and receive windows are unfolded. Moreover, we
include models based on industrial applications: a UML state machine diagram
of an industrial pneumatic cylinder (cylinder) [15]; the protocol negotiating a
service level agreement (sla) between two parties communicating via message
passing along reliable channels encoded using fixed length lists [9]; and a model
of the Workload Management System (wms) of the DIRAC Community Grid
Solution for the LHCb experiment at CERN [14]. Note that the use of complex
data structures for industrial case studies is wide-spread, allowing the creation
of concise and elegant models.

All experiments were run 10 times, on a machine with 4 Intel 6136 CPUs and
3TB of RAM, running Ubuntu 20.04. A reproduction package is available from
https://github.com/astramaglia/lpsparunfold-experiments. The results
are presented in Table 1. We used a time-out of 1 hour (3600 seconds), and a
memory limit of 64GB. We report the size of the explored state space (in number
of states, or ‘t-o’ in case of a time-out) and the mean total running time of ten
runs in seconds. For most of the experiments, the standard deviation is below
10% of the mean.2 If workflows result in the same state space for a model, we
report the size only once in the table.

The experiments show that our improvements typically reduce the total run-
ning time of the verification. In particular, our extension for global variables
reduces the running time for four-in-a-row and tic-tac-toe. The simplifications
for pattern matching rules show a reduction in the running time for the slid-
ing window protocol (swp). Alternative case placement reduces the infinite state
space of our running example (onoff) to only three states; for the service-level-
agreement protocol (sla) it reduces the total running time.

Even when the size of the state space is not changed, our improvements often
reduce the running time of symbolic reachability. This is due to the simplification
of data in the processes, and the reduction of dependencies between process
parameters. Although in theory alternative case placement could lead to an
exponential blow-up of the expressions in the LPE, this is not observed in our
experiments.

7 Conclusion

In this paper we described and revisited the static analysis technique for flatten-
ing the structure of process parameters in LPEs, in the context of mCRL2. The

2 The SDs for the only cases where it exceeds 10% of the mean are: fourinarow4-3
standard 1.7, sla7 new.def: 0.3, tictactoe3-3 standard: 2.0, wms standard: 2.5,
original: 2.2, new.def: 1.9
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extensions improve the effectiveness of parameter unfolding in two ways. First,
it improves the effectiveness of other static analysis tools. Our experiments show
that this can result in large reductions of the underlying state space, directly
improving explicit-state model checking. Second, for symbolic model checking,
and symbolic reachability in particular, our improvements reduce the execution
times even if the size of the state space is not reduced.

We believe the effect of lpsparunfold should be investigated in relation to
other static analysis techniques such as dead variable analysis. Together these
have the potential to speed up the model checking of industrial systems, e.g.,
described by OIL models [4] and Cordis models [15] using mCRL2. Furthermore,
the effect of lpsparunfold could be investigated in the context of PBESs.

Acknowledgements Michel Reniers and Frank Stappers previously described
Groote and Lisser’s original definition of parameter unfolding in an unpublished
note. Some of our notation is inspired by their note.

References

1. Blom, S., Fokkink, W., Groote, J.F., van Langevelde, I., Lisser, B., van de Pol,
J.: µCRL: A toolset for analysing algebraic specifications. In: Berry, G., Comon,
H., Finkel, A. (eds.) Computer Aided Verification. pp. 250–254. Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-
540-44585-4 23

2. Blom, S., van de Pol, J.: Symbolic Reachability for Process Algebras with Recur-
sive Data Types. In: ICTAC 2008. LNCS, vol. 5160, pp. 81–95. Springer (2008).
https://doi.org/10.1007/978-3-540-85762-4 6

3. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.,
Wesselink, J.W., Wijs, A., Willemse, T.A.C.: The mCRL2 toolset for analysing
concurrent systems - improvements in expressivity and usability. In: Vojnar, T.,
Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer (2019).
https://doi.org/10.1007/978-3-030-17465-1 2

4. Bunte, O., van Gool, L.C.M., Willemse, T.A.C.: Formal verification of OIL com-
ponent specifications using mCRL2. In: ter Beek, M.H., Ničković, D. (eds.) Formal
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