
An Autonomous Data Language

Tom T.P. Franken[0000−0002−1168−5450], Thomas Neele[0000−0001−6117−9129], and

Jan Friso Groote[0000−0003−2196−6587]

Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. Nowadays, the main advances in computational power are
due to parallelism. However, most parallel languages have been designed
with a focus on processors and threads. This makes dealing with data
and memory in programs hard, which distances the implementation from
its original algorithm. We propose a new paradigm for parallel program-
ming, the data-autonomous paradigm, where computation is performed
by autonomous data elements. Programs in this paradigm are focused on
making the data collaborate in a highly parallel fashion. We furthermore
present AuDaLa, the first data autonomous programming language, and
include an operational semantics. Programming in AuDaLa is very nat-
ural, as illustrated by examples, albeit in a style very different from
sequential and contemporary parallel programming.

1 Introduction

As increasing the speed of sequential processing becomes more difficult [28], ex-
ploiting parallelism has become one of the main means of obtaining further per-
formance improvements in computing. Thus, languages and frameworks aimed at
parallel programming play an increasingly important role in computation. Many
existing parallel languages use a task-parallel or a data-parallel paradigm [14].

Task-parallelism mostly focuses on the computation carried out by individual
threads, scheduling tasks to threads depending on which threads are idle. In
data-parallelism, threads execute the same function but are distributed over the
data, thus performing a parallel computation on the collection of all data.

In a shared memory setting, programs in both paradigms require careful
design of memory layout, memory access and movement of data to facilitate the
threads used by the program. Examples of this are the use of barriers and data
access based on thread id’s, as well as access protocols. Not only is extensive
data movement costly and hinders some performance optimizations [20,22], the
memory handling necessary throughout the entire program due to the focus on
threads only widens the gap between algorithms and implementation as noted
by for instance Leiserson et al. [28]. Therefore, to promote memory locality and
more algorithmic code, a new data-focused paradigm is in order.

In this paper, we propose the new data-autonomous paradigm, where data
elements not only locally store data and references, but also execute their own
computations. Computations are always carried out in parallel by all data el-
ements; this is governed by a schedule. Data elements can cooperate through

2 T.T.P. Franken et al.

task-parallel data-parallel data-autonomous

old new

AuDaLa

POOL [1]
Gamma [18]

Act.Peb. [40]

AL-1 [29]
Ly [38]

Parcel-1 [39]

Chestnut [35]
RELACS [34]

PPC [30]
Halide [33]

OP2 [31]

CUDA [19]
OpenCL [13]

Parcel-2 [11]

MPI [15]

Legion [7]
Graphgrind [36]

DDG [37]

Fig. 1: Approximate placement of related work on an axis from process-focused
(left) to data-focused (right) paradigms.

stored references. The paradigm completely abstracts away from processors and
memory and is fully focused on data, compared to task- and data-parallelism
(see Figure 1).

This provides several benefits. First, it results in a separation of concerns:
code concerning data structures, algorithms and orchestration is properly sepa-
rated. Furthermore, parallelism is encouraged by always running computations
concurrently on groups of data elements. Finally, the paradigm promotes a
bottom-up design process, from data structure to computations to schedule.

Contributions. As a first step towards developing the data-autonomous paradigm,
we present AuDaLa (Autonomous Data Language), the first data-autonomous
programming language. In AuDaLa, structs, steps and a schedule are responsible
for data, computation and orchestration, respectively. We illustrate our thought
process behind AuDaLa by means of a motivating example. We introduce Au-
DaLa programs for a few standard problems. Compared to programs taken from
literature, our AuDaLa programs require less memory management and clearly
separate data flow and orchestration.

In this work, we focus on providing a solid theoretical foundation of AuDaLa.
Thus, we completely formalise AuDaLa’s behaviour in an operational semantics,
enabled by its compact syntax. Though we have a prototype compiler of AuDaLa
to CUDA, discussing it is out of the scope of this paper.

Overview. We first present a motivating example and show the concepts of
AuDaLa in Section 2. We then give the syntax of AuDaLa in Section 3 and a
semantics in Section 4. We discuss more examples in Section 5. Lastly, we review
related work in Section 6 and conclude in Section 7.

2 Concepts And Motivating Example

In this section, we first discuss the concepts of AuDaLa, and subsequently we
design a program for the prefix sum problem in AuDaLa as a motivating example.

AuDaLa has three main components: structs, steps and a schedule. The re-
lation between these components is shown in Figure 2. Structs are data type

An Autonomous Data Language 3

Fig. 2: The three main components of an AuDaLa program.

definitions from which data elements are instantiated during runtime. They con-
tain the name of the data type and the parameters available to data elements
of that type. See Listing 1.3 for an example of a struct definition. When start-
ing an AuDaLa program, every struct gets a special null -instance, a data ele-
ment representing the undefined instance of that struct. The parameters of this
null -instance cannot be changed, but they otherwise function like normal data
elements. A null -instance can be used for initialisation (since it already exists
when launching the program) or as special value, for example to indicate the
end of a list.

Each struct contains zero or more steps, which represent operations a data
element instantiated from that struct can do. A step contains simple, algorithmic
code, consisting of conditions and assignments, without loops. This makes steps
easy to reason about. Within a step, it is possible to access the parameters of
the surrounding struct and also to follow references stored in those parameters.
Since these access patterns are known at compile-time, we can increase memory
locality by grouping struct instances in a suitable manner.

The schedule prescribes an execution order on the steps. It contains step
references and fixpoint operators (Fix). The occurrences of step references and
fixpoint operators are separated by synchronization barriers (‘<’). Execution
only proceeds past a barrier when all computations that precede the barrier have
concluded. Whenever a step occurs in the schedule, it is executed in parallel by
all data elements which contain that step, although it is also possible to invoke a
step for data elements of a specific type. AuDaLa programs are thus inherently
parallel.

We do not make assumptions about a global execution order of statements
executed in parallel. In particular, code is not executed by multiple struct in-
stances in lock-step. Furthermore, we allow the occurrence of data races within
one step, see also Section 5. Thus, barriers (and implicit barriers, see below) are
the main method of synchronisation.

Iterative behaviour is achieved through a fixpoint operator, which executes
its body repeatedly until an iteration occurs in which no data is changed. At this
point, a fixpoint is reached and the schedule continues past the fixpoint operator.
Between the iterations of a fixpoint, there is an implicit synchronisation barrier.
For an example schedule, see Listing 1.4.

To give an example of these components in action, we consider the prefix sum
problem: given a sequence of integers x1, . . . , xn, we compute for each position
1 ≤ k ≤ n the sum Σk

i=1xi. We have included OpenCL and CUDA implemen-

4 T.T.P. Franken et al.

tations of the problem that previously occurred in the literature [13, 24], see
Listings 1.1 and 1.2. Here, we omit the initialization to focus on the kernels.
Both kernels require synchronization barriers in their algorithmic code, as well
as an offset variable to check which data needs to be operated on, against which
the thread ids need to be checked multiple times per execution.

1 kernel void koggeStone(const local T ∗in, local T ∗out) {
2 out[tid] = in[tid];
3 barrier();
4 for (unsigned offset = 1; offset < n; offset ∗= 2){
5 T temp;
6 if (tid ≥ offset) temp = out[tid − offset];
7 barrier();
8 if (tid ≥ offset) out[tid] = temp ⊕ out[tid];
9 barrier();

10 }}

Listing 1.1: OpenCL kernel for Prefix Sum (from [13])

1 __global__ void scan(float ∗g_odata, float ∗g_idata, int n){
2 extern __shared__ float temp[];
3 int thid = threadIdx.x;
4 int pout = 0, pin = 1;
5 temp[pout∗n + thid] = (thid > 0) ? g_idata[thid−1] : 0;
6 __syncthreads();
7 for (int offset = 1; offset < n; offset ∗= 2){
8 pout = 1 − pout; // swap double buffer indices
9 pin = 1 − pout;

10 if (thid >= offset)
11 temp[pout∗n+thid] += temp[pin∗n+thid − offset];
12 else
13 temp[pout∗n+thid] = temp[pin∗n+thid]
14 __syncthreads();
15 }
16 g_odata[thid] = temp[pout∗n+thid];
17 }

Listing 1.2: CUDA kernel for Prefix Sum (or Scan) (from [24])

To design a corresponding AuDaLa program, we follow the design structure
suggested in Figure 2. As before, we omit the initialization. In the prefix sum
problem, the input is a sequence of integers. We model an element of this se-
quence with a struct Position containing a value val . We also give every Position
a reference to the preceding Position, contained in parameter prev, as seen in
Listing 1.3. This is needed to compute the prefix sum. The value of prev for
the first position in the list is set to null , referencing the null -Position. This
null -instance has the values 0 for val and null for prev .

1 struct Position(val : Int, prev : Position){ [...] }

Listing 1.3: Partial AuDaLa code for the structs for Prefix Sum

An Autonomous Data Language 5

Fig. 3: Execution of Prefix Sum on a small list. The left side of a list element
holds the parameter val, while the right side holds the parameter auxval. The
parameter prev is shown as unmarked black arrows, while the parameter auxprev
is shown as unmarked grey arrows.

In Listing 1.4 the steps read and write of the Position struct are shown. These
steps are based on the method for computing prefix sum in parallel shown in
Figure 3, which was introduced by Hillis and Steele [27]. Every Position first
reads prev.prev and prev.val from their predecessor in the step read, and after
synchronisation, every position updates their prev to prev.prev and their val to
prev.val in the step write. As the scope of local variables in AuDaLa does not
exceed a step, the use of additional parameters auxprev and auxval in the read
step is required to recover the value in the write step. The steps do not need an
offset variable like the CUDA and OpenCL kernels, as Positions which reached
the beginning of the list have a null -instance as predecessor and can still execute
the steps.

1 struct Position(val : Int, prev : Position, auxval : Int, auxprev : Position){
2 read { /∗step definition∗/
3 auxval := prev.val ;
4 auxprev := prev.prev ;
5 }
6 write { /∗step definition∗/
7 val := val + auxval ;
8 prev := auxprev ;
9 }}

10

11 Fix(read < write) /∗schedule∗/

Listing 1.4: AuDaLa code for Prefix Sum with steps and a schedule

For our program schedule, we want to repeat read and then write until all Po-
sitions have reached the beginning of the list, which results in the schedule as
shown in Listing 1.4. Eventually, all Positions will have null as their predecessor
and no parameters will change further, causing the fixpoint to terminate.

6 T.T.P. Franken et al.

As illustrated by Listing 1.4 and by Figure 2, AuDaLa has a high separation
of concerns: structs model data and their attributes, steps contain the algorith-
mic code and the schedule contains the execution. This approach requires no
synchronization barriers in the user code for the steps, no variables to find the
right indices for memory access and no offset variables to avoid going out of
bounds.

3 Syntax

In this section, we highlight the most important parts of the concrete syntax
of AuDaLa. In the definitions below, non-terminals are indicated with ⟨–⟩ and
symbols with quotes; the empty word is ε. The non-terminal Id describes iden-
tifiers, and the non-terminal Type describes type names, which are either Int,
Nat (natural number), Bool, String or an identifier (the name of a struct).

An AuDaLa Program consists of a list of definitions of structs and a schedule:

⟨Program⟩ ::= ⟨Defs⟩ ⟨Sched⟩
⟨Defs⟩ ::= ⟨Struct⟩ | ⟨Struct⟩ ⟨Defs⟩

A struct definition gives the struct a type name (Id), a list of parameters (Pars)
and a number of steps (Steps):

⟨Struct⟩ ::= ‘struct’ ⟨Id⟩ ‘(’ ⟨Pars⟩ ‘)’ ‘{’ ⟨Steps⟩ ‘}’,
⟨Pars⟩ ::= ⟨Par⟩⟨ParList⟩ | ε
⟨ParList⟩ ::= ‘,’ ⟨Par⟩⟨ParList⟩ | ε
⟨Par⟩ ::= ⟨Id⟩ ‘:’ ⟨Type⟩

Steps are defined with a step name (Id) and a list of statements:

⟨Steps⟩ ::= ⟨Id⟩ ‘{’ ⟨Stats⟩ ‘}’ ⟨Steps⟩ | ε
⟨Stats⟩ ::= ⟨Stat⟩ ⟨Stats⟩ | ε

A statement adheres to the following syntax:

⟨Stat⟩ ::= ‘if’ ⟨Exp⟩ ‘then’ ‘{’ ⟨Stats⟩ ‘}’ if-then statement
| ⟨Type⟩ ⟨Id⟩ ‘:=’ ⟨Exp⟩ ‘;’ variable assignment
| ⟨Var⟩ ‘:=’ ⟨Exp⟩ ‘;’ variable update
| ⟨Id⟩ ‘(’ ⟨Exps⟩ ‘)’ ‘;’ constructor statement

The Id in the variable assignment is a variable name. The constructor statement
spawns a new data element of the type determined by Id, with parameter values
determined by the expressions Exps. The syntax of Exps is similar to that of Pars,
using ExpList and Exp. The syntax for a single expression Exp is as follows:

An Autonomous Data Language 7

⟨Exp⟩ ::= ⟨Exp⟩ ⟨BOp⟩ ⟨Exp⟩ binary operator expression
| ‘(’ ⟨Exp⟩ ‘)’ brackets
| ‘!’ ⟨Exp⟩ negation
| ⟨Id⟩ ‘(’ ⟨Exps⟩ ‘)’ constructor expression
| ⟨Var⟩ variable expression
| ⟨Literal⟩ literal expression
| ‘null’ null expression
| ‘this’ this expression

A variable reference follows the syntax:

⟨Var⟩ ::= ⟨Id⟩ ‘.’⟨Var⟩ | ⟨Id⟩,

where in the first case the Id is the name of a struct. Through the first case, one
can access the parameters of parameters. For example, prev.prev.val would have
been valid AuDaLa in Listing 1.4, and would access the value of the Position
before the previous Position of the current Position.

Lastly, the schedule consists of the variants as given in the following syntax:

⟨Sched⟩ ::= ⟨Id⟩ step execution
| ⟨Id⟩ ‘.’ ⟨Id⟩ typed step execution
| ⟨Sched⟩ ‘<’ ⟨Sched⟩ barrier composition
| ‘Fix’ ‘(’ ⟨Sched⟩ ‘)’ fixpoint calculation

The Id in the step execution is a step name. In the typed step execution, the first
Id is a type name, while the second is a step name. The typed step execution is
used to schedule a step executed by only one specific struct type.

On top of this concrete syntax, we adopt a number of additional requirements
for an AuDaLa program to be well-formed. First of all, we have a number of usual
sanity requirements, including ‘identifiers may not be keywords’, ‘a step name is
declared at most once within each struct definition’, ‘names of local variables do
not overlap with parameter names of the surrounding struct definition’, ‘local
variables are not accessed from outside their surrounding struct definition’, and
‘local variables are not used before they are declared in a step’. Furthermore,
we also assume common rules for well-typedness, so that binary operators are
applied to the right types, the types in assignments and variable declarations
are equal and constructor calls use the right type of arguments.

4 Semantics

In this section, we present the semantics of AuDaLa. Here, we regularly use lists.
List concatenation is denoted with a semicolon, and we identify a singleton list
with its only element. The empty list is denoted ε. Schedules are expressed as a
list, e.g. the schedule A < Fix (B) is expressed as A;Fix (B).

We define updates for functions as follows. Given a function f : A → B and
a ∈ A and b ∈ B, then f [a 7→ b](a) = b and f [a 7→ b](x) = f(x) for all x ̸= a.
We lift this operation to sets of updates: f [{a1 7→ b1, a2 7→ b2, . . . }] = f [a1 7→

8 T.T.P. Franken et al.

b1][a2 7→ b2] Since the order of applying updates is relevant, this is only well-
defined if the left-hand sides a1, a2, . . . are pairwise distinct. If B contains tuples,
that is, B = B1 × . . . × Bn, we can also update a single element of a tuple: if
f(a) = ⟨b1, . . . , bn⟩, then we define f [a, i 7→ b](a) = ⟨b1, . . . , bi−1, b, bi+1, . . . , bn⟩
and f [a, i 7→ b](x) = f(x) for all x ̸= a.

We assume the existence of a parser and typechecker for the concrete syntax.
Henceforth, we work on an abstract syntax tree (AST) produced by running the
parser and typechecker on a program. We thus do not concern ourselves with
operator precedence and parentheses, and we assume that polymorphic elements
such as null and 42 are labelled with the right type for their context, viz., nullT
is the expression null of type T .

We have a number of sets containing AST elements: ID is the set of all identi-
fiers, LT is the set of all literals, SC is the set of all schedules, ST is the set of all
statements, E contains all expressions and O contains all syntactic binary opera-
tors. The set containing all syntactic types is T = {Nat, Int, Bool, String}∪ID .

In our semantics, labels reference concrete instances of structs (as opposed
to struct definitions). We assume some sufficiently large set L containing these
labels. We also have the semantic types N, Z, B and String corresponding to the
natural numbers, the integers, the booleans and the set of all strings, respectively.
All semantic values are collected in V = L ∪ N ∪ Z ∪ B ∪ String . The semantic
value of a literal g ∈ LT is val(g).

In addition, we assume for every struct type sL the existence of a null-label
ℓ0sL ∈ L, so that we can provide a default value for each syntactical type with
the function defaultVal : T → V, defined as:

defaultVal(T) =

0 if T = Nat or T = Int
false if T = Bool
ε if T = String
ℓ0T if T ∈ ID

.

We define the set of all null -labels to be L0, with L0 ⊂ L.
To facilitate conciseness in our operational semantics, we break down state-

ments and expressions into commands: atomic actions in the semantics.

Definition 1 (Commands). A command c is constructed according to the fol-
lowing grammar:

c ::= push(val) | rd(v) | wr(v) | cons(v) | if(C) | not | op(o)

where val ∈ V ∪ {this} is a semantic value or this, a special value, v ∈ ID is
an identifier, C is a list of commands, and o ∈ O is an operator. The set of all
commands is C.

Intuitively, this is the semantic equivalent to the syntactic this-expression.
The precise effect of each command is discussed later in this section when the
inference rules are given. Statements and expressions are compiled into a list of
commands according to the following recursive interpretation function:

An Autonomous Data Language 9

Definition 2 (Interpretation function). Let v, v1, . . . , vn ∈ ID be variables,
a, a1, . . . , am ∈ E expressions, g ∈ LT a literal, sL ∈ ID a struct type, s ∈ ST a
statement, S ∈ ST ∗ a list of statements, T ∈ T a type and op ∈ O an operator
from the syntax. Let the list v1; ...; vn be the list of n variables from v1 to vn.
We define the interpretation function J·K : ST ∗ ∪ E → C∗ transforming a list of
statements into a list of commands:

JgK = push(val(g))

JthisK = push(this)

JnullT K = push(defaultVal(T))

Jv1; . . . ; vnK = push(this); rd(v1); . . . ; rd(vn)

J!aK = JaK;not
Ja1 op a2K = Ja1K; Ja2K;op(op)

Jif a then{S}K = JaK; if(JSK)
JT v := aK = Jv := aK

Jv1; . . . ; vn; v := aK = JaK; Jv1; . . . ; vnK;wr(v)

JsL(a1; . . . ; am)K = Ja1K; . . . ; JamK; cons(sL)
JεK = ε

Js;SK = JsK; JSK

During the runtime of a program, multiple instances of a struct definition
may exist simultaneously. We refer to these as struct instances.

Definition 3 (Struct instance). A struct instance is a tuple ⟨sL, γ, χ, ξ⟩ where:
– sL ∈ ID is the type of the struct,
– γ ∈ C∗ is a list of commands that are to be executed,
– χ ∈ V∗ is a stack that stores values during the evaluation of an expression,
– ξ : ID → V is an environment that stores the values of local variables as well

as parameters.
We define S as the set of all possible struct instances.

A state of a program is the combination of a schedule that remains to be
executed, a collection with all the struct instances that currently exist and a
stack of Boolean values that are required to determine whether a fixpoint has
been reached. Note that every label can refer to at most one distinct struct
instance.

Definition 4 (State). A state is a tuple ⟨Sc, σ, sχ⟩, where:
– Sc ∈ SC is a schedule expressed as a list,
– σ : L → S ∪ {⊥} is a struct environment,
– sχ ∈ B∗ is a stability stack.

The set of all states is defined as SG = SC × (L → S ∪ {⊥})× B∗.

With a notion of states and struct instances, we define null-instances:

Definition 5 (Null-instances). Let St = ⟨Sc, σ, sχ⟩ ∈ SG be a state. Then the
set of null-instances in state St is defined as {σ(ℓ) | σ(ℓ) ̸= ⊥ ∧ ℓ ∈ L0}.

10 T.T.P. Franken et al.

Thus, each struct instance that is labelled with a null -label is a null -instance.
Henceforth, we fix an AuDaLa program P and define SLP ⊆ ID to be the

set of all struct types defined in P. The initial variable environment for a struct
instance of type sL is ξ0sL, defined as ξ0sL(p) = defaultVal(T) for all p ∈ Par sL
where T is the type of p and Par sL refers to the parameters of sL. For other
variables v ∈ ID , ξ0sL(v) is left arbitrary. Recall that ScP is the schedule defined
in P.

The initial state of a graph machine program depends on which program is
going to be executed (the state space does depend on the program, cf. Def. 4):

Definition 6 (Initial state). The initial state of P is P0
P = ⟨ScP , σ0

P , ε⟩,
where σ0

P(ℓ
0
sL) = ⟨sL, ε, ε, ξ0sL⟩ for all sL ∈ SLP and σ0

P(ℓ) = ⊥ for all other
labels.

Intuitively, this definition states that the initial state of a program P consists
of the schedule as found in the program, a struct environment filled with null -
instances for every struct type declared in P and an empty stack.

We proceed by defining the transition relation ⇒ by means of inference rules.
There are rules that define the execution of commands and rules for the execution
of a schedule. We start with the former. Command push(v) pushes value v on
the stack χ, and push(this) pushes the label of the structure instance on χ:

(ComPush)
σ(ℓ) = ⟨sL,push(val); γ, χ, ξ⟩

⟨Sc, σ, sχ⟩ ⇒ ⟨Sc, σ[ℓ 7→ ⟨sL, γ, χ; val , ξ⟩], sχ⟩

(ComPushThis)
σ(ℓ) = ⟨sL,push(this); γ, χ, ξ⟩

⟨Sc, σ, sχ⟩ ⇒ ⟨Sc, σ[ℓ 7→ ⟨sL, γ, χ; ℓ, ξ⟩], sχ⟩
The command rd(v) reads the value of variable v from environment ξ′ of ℓ′ and
places it onto the stack:

(ComRd)

σ(ℓ) = ⟨sL, rd(v); γ, χ; ℓ′, ξ⟩
σ(ℓ′) = ⟨sL′, γ′, χ′, ξ′⟩

⟨Sc, σ, sχ⟩ ⇒ ⟨Sc, σ[ℓ 7→ ⟨sL, γ, χ; ξ′(v), ξ⟩], sχ⟩

For normal struct instances, wr(v) takes a label ℓ′ and a value val from the stack
and writes this to ξ′(v), the environment of the struct instance corresponding to
ℓ′. If v is a parameter and writing val changes its value, then any surrounding
fixpoint in the schedule becomes unstable. In that case, we set the auxiliary
value su (for stability update) to false and clear the stability stack by setting it
to sχ1 ∧ su; . . . ; sχ|sχ| ∧ su. Note that this leaves the stack unchanged if su is
true. Below, in the update “[ℓ′, 4 7→ ξ′[v 7→ val]]”, recall that f [a, i 7→ b] denotes
the update of a function that returns a tuple.

(ComWr)

σ(ℓ) = ⟨sL,wr(v); γ, χ; val ; ℓ′, ξ⟩
σ(ℓ′) = ⟨sL′, γ′, χ′, ξ′⟩
ℓ′ /∈ L0 ∨ v /∈ Par sL′

su = (v /∈ Par sL′ ∨ ξ′(v) = val)

⟨Sc, σ, sχ⟩ ⇒ ⟨Sc, σ[ℓ 7→ ⟨sL, γ, χ, ξ⟩][ℓ′, 4 7→ ξ′[v 7→ val]],
sχ1 ∧ su; . . . ; sχ|sχ| ∧ su⟩

An Autonomous Data Language 11

The next rule skips the write if the target is a parameter of a null -instance,
which ensures that the parameters of a null -instance cannot be changed:

(ComWrNSkip)

σ(ℓ) = ⟨sL,wr(v); γ, χ; val ; ℓ′, ξ⟩
σ(ℓ′) = ⟨sL′, γ′, χ′, ξ′⟩
ℓ′ ∈ L0 ∧ v ∈ Par sL′

⟨Sc, σ, sχ⟩ ⇒ ⟨Sc, σ[ℓ 7→ ⟨sL, γ, χ, ξ⟩], sχ⟩

A not command negates the top value of the stack χ:

(ComNot)
σ(ℓ) = ⟨sL,not; γ, χ; b, ξ⟩

⟨Sc, σ, sχ⟩ ⇒ ⟨Sc, σ[ℓ 7→ ⟨sL, γ, χ;¬b, ξ⟩], sχ⟩

An op(o) command applies the semantic equivalent ◦ ∈ {=, ̸=,≤,≥, <,>, ∗, /,
%,+,−, ^,∧,∨} of the syntactic operator o ∈ O to the two values at the top of
χ, of which the result is put on top of the stack:

(ComOp)
σ(ℓ) = ⟨sL,op(o); γ, χ; a; b, ξ⟩

⟨Sc, σ, sχ⟩ ⇒ ⟨Sc, σ[ℓ 7→ ⟨sL, γ, χ; (a ◦ b), ξ⟩], sχ⟩

Let sL′ be the type of a struct with n parameters. The command cons(sL′)
creates a new struct instance of type sL′ in the struct environment σ with a
fresh label ℓ′, and initializes the parameters to the top n values of the stack:

(ComCons)

σ(ℓ) = ⟨sL, cons(sL′); γ, χ; p1; . . . ; pn, ξ⟩
Par sL′ = par1; ...; parn

σ(ℓ′) = ⊥
⟨Sc, σ, sχ⟩ ⇒ ⟨Sc, σ[{ℓ 7→ ⟨sL, γ, χ; ℓ′, ξ⟩,
ℓ′ 7→ ⟨sL′, ε, ε, ξ0sL′ [{par1 7→ p1, . . . , parn 7→ pn}]⟩}], false |sχ|⟩

The command if(C) with C ∈ C∗ adds commands C to the start of γ if the top
value of the stack is true. If the top value is false, the command does nothing:

(ComIfT)
σ(ℓ) = ⟨sL, if(C); γ, χ; true, ξ⟩

⟨Sc, σ, sχ⟩ ⇒ ⟨Sc, σ[ℓ 7→ ⟨sL, C; γ, χ, ξ⟩], sχ⟩

(ComIfF)
σ(ℓ) = ⟨sL, if(C); γ, χ; false, ξ⟩

⟨Sc, σ, sχ⟩ ⇒ ⟨Sc, σ[ℓ 7→ ⟨sL, γ, χ, ξ⟩], sχ⟩

In the remaining rules, let Done(σ) = ∀ℓ.(σ(ℓ) = ⊥∨∃sL, χ, ξ.σ(ℓ) = ⟨sL, ε, χ, ξ⟩),
and let F1 be a (possibly empty) schedule. The predicate Done(σ) holds when
all commands have been executed in all struct instances in σ.

We can initiate steps globally and locally. The global step initiation converts
all statements in a step to commands for any structure instance that has that
step and adds the commands to γ. Let SF

sL be the statements in a step with
name F in a struct instance with type sL. Note that the schedule is expressed as

12 T.T.P. Franken et al.

a list in the operational semantics, and is therefore separated by ‘;’ as opposed
to ‘<’.

(InitG)
Done(σ)

⟨F ;F1, σ, sχ⟩ ⇒
⟨F1, σ[{ℓ 7→ ⟨sLℓ, JSF

sLℓ
K, ε, ξℓ⟩ | σ(ℓ) = ⟨sLℓ, γℓ, χℓ, ξℓ⟩}], sχ⟩

The local step initiation converts the step to commands and adds those com-
mands to γ only for struct instances of a specified struct x:

(InitL)
Done(σ)

⟨x.F ;F1, σ, sχ⟩ ⇒
⟨F1, σ[{ℓ 7→ ⟨x, JSF

x K, ε, ξℓ⟩ | σ(ℓ) = ⟨x, γℓ, χℓ, ξℓ⟩}], sχ⟩

Fixpoints are initiated when first encountered:

(FixInit)
Done(σ)

⟨Fix (F);F1, σ, sχ⟩ ⇒ ⟨F ; aFix (F);F1, σ, sχ; true⟩

The symbol aFix is a semantic symbol used to denote a fixpoint which has been
initiated. When an initiated fixpoint is encountered again, the stability stack is
used to determine whether the body should be executed again:

(FixIter)
Done(σ)

⟨aFix (F);F1, σ, sχ; false⟩ ⇒ ⟨F ; aFix (F);F1, σ, sχ; true⟩

(FixTerm)
Done(σ)

⟨aFix (F);F1, σ, sχ; true⟩ ⇒ ⟨F1, σ, sχ⟩

With these rules, we give an operational semantics for AuDaLa:

Definition 7 (Operational semantics). The semantics of P is the graph
JPK = ⟨SG ,⇒, P 0

P⟩, where SG is the set of all states (Def. 4), ⇒ is the tran-
sition relation as given above and P 0

P is the initial state of P (Def. 6).

5 Standard Algorithms

In this section, we provide more intuition on how AuDaLa works in practice by
means of two example AuDaLa programs. The first creates a spanning tree and
the second is a sorting program.

5.1 Creating a spanning tree

Given a connected directed graph G = (V,E) and a root node u ∈ V , we can
create a spanning tree of G rooted in u using breadth-first search. In this tree,
for every node v, the path from u to v is a shortest path in G. We do this by
incrementally adding nodes from G with a higher distance to u to the spanning
tree.

An Autonomous Data Language 13

1 struct Node(dist : Int, in: Edge){}
2

3 struct Edge(s: Node, t: Node){
4 linkEdge{
5 if s.dist != −1 && t.dist == −1 then {
6 t.in := this;
7 }}
8 handleEdge {
9 if t.in != null then {

10 if t.in == this then {
11 t.dist := s.dist + 1;
12 }
13 if t.in != this then {
14 s := null;
15 t := null;
16 }}}}
17

18 Fix(linkEdge < handleEdge)

Listing 1.5: AuDaLa code for creating a spanning tree

We first sketch our approach. In the ith BFS iteration, the algorithm adds
all edges (s, t) to the tree such that the distance from u to s is i − 1 and the
distance from u to t is still unknown. If multiple such edges lead to the same t,
the algorithm uses a data race to determine which edge is chosen. As any edge
will suffice, this data race is benign. The distance from u to t is then set to i and
we continue with the next iteration. The program runs with O(|V | + |E|) data
elements in O(d) time, where d is the diameter of the graph.

Contained in Listing 1.5 is an AuDaLa program that implements this ap-
proach. The program defines the struct Node (line 1) with parameters dist, to
store the distance from root node u, and in, a reference to its incoming spanning
tree edge. The struct Edge (line 3) has a source s and a target t.

During initialization, the input should be a directed graph, with a root Node
u with dist 0 and with the dist parameter of the other Nodes set to −1. For
every Node, the parameter in should be null.

Both steps in the program belong to Edge. The first step, linkEdge, first
determines whether an Edge e from Node s to Node t is at the frontier of the
tree in line 5. This is the case when s is in the tree, but t is not. If so, e nominates
itself as the Edge connecting t to the tree, t.in (line 6). This is a data race won
by only one edge for t, the edge which applies the semantic rule ComWr last.
In the second step, handleEdge, if the nomination for t has finished (line 9) and
e has won the nomination (line 10), e will update t’s distance to the root. If e
has lost, it will remove itself from the graph, here coded as setting the source
and target parameters to null in lines 13 to 16.

To create a full spanning tree, this must be executed until all Nodes have a
positive dist and all Edges are either t.in for their target Node t or have null as
their source and target. To this end, the schedule (line 18) contains a fixpoint,

14 T.T.P. Franken et al.

Fig. 4: Execution of Listing 1.5 on a small graph. Every Edge newly considered
in the current step is grey. Considered Edges stay considered, but stable. The
dotted arrows denote the possible new values for t.in of a target node t. Note
that the Edge from c to d wins the data race to the reference d.in.

in which Edges first nominate themselves and then update the distances of new
Nodes. This fixpoint terminates, as Edges in the spanning tree will continuously
update their targets with the same information and Edges which lost their nom-
ination will not get past the first conditions of the two steps, causing the data
elements to stabilize after all Nodes have received a distance from u. Initializa-
tion steps should be placed at the start of the shown schedule. An execution of
the program on a small graph is shown in Figure 4, where the edges and nodes
of the graph are modelled by their respective structs.

5.2 Sorting

1 struct ListElem(val : Int, next : ListElem, newNext : ListElem, comp: ListElem){
2 compareElement {
3 if comp != null then {
4 if (comp.val > val && (comp.val < newNext.val || newNext == null)) then
5 {newNext := comp;}
6 comp := comp.next ;
7 }}
8 reorder {
9 next := newNext ;

10 }}
11

12 Fix(compareElement) < reorder

Listing 1.6: AuDaLa code for sorting

An Autonomous Data Language 15

Fig. 5: Execution of Listing 1.6 on a small list. The parameters next, newNext and
comp are shown as black, grey and dashed unmarked arrows respectively, and the
null -references for newNext and comp are not shown. The nodes corresponding
to ListElems contain the value of parameter val.

A concise example of a AuDaLa program for sorting a linked list of n elements
can be found in Listing 1.6. In it, the elements of the list traverse the list together,
during which each element e is looking for its successor in the sorted list. After
the traversal, the successor element is saved and the link is updated to the saved
element. This reorders the list to the sorted list. The program runs in O(n)
time with n data elements. We can achieve a time complexity of O(log n) by
implementing Cole’s algorithm [16] in AuDaLa, but that is outside the scope for
this paper.

The program defines the struct ListElem, modeling the nodes of the list, with
parameters val, next, a reference to the next ListElem, newNext, a reference to
the ListElem that should come next in the sorted list, and comp, a reference to
the current ListElem newNext is compared to. The initialization needs to make
sure that every element has a distinct value, and that in every element, comp is
set to the first element of the list and newNext is set to null .

To facilitate our strategy we give our ListElem two steps, one to check an
element in the list called compareElement and one to reorder the list at the end
called reorder. With the step compareElement, an element checks whether the
element to which the comp reference leads is a better next element than the
current element saved in newNext (line 4) and updates newNext if that is the
case. Afterwards, the comp reference is updated to the next element in the list
(line 6). With the reorder step, an element replaces their old next reference with
newNext (line 9).

To have the program execute our strategy, we call a fixpoint on compareEle-
ment, such that every element checks all elements in the list. After that is done,
the schedule tells the elements to reorder (line 12).

16 T.T.P. Franken et al.

6 Related Work

Conceptually, our work is related to the Parallel Pointer Machine (PPM) [23],
which models memory as a graph that is traversed by processors. In AuDaLa,
on the other hand, processors are implicit and data is the main focus.

The concept of cooperating data elements is present in the Chemical Abstract
Machine [8], based on the Γ -language [5, 6]. In the data-autonomous paradigm
these components are coordinated by a schedule as opposed to the Chemical
Abstract Machine, where the data elements float around freely. By extension,
AuDaLa is related to the Γ -Calculus Parallel Programming Framework [18].

The data-autonomous paradigm shares the same focus on data as message
passing languages like Active Pebbles [40], ParCel-2 [11] and AL-1 [29], but differs
in using shared variables instead of synchronisation and messages. It also does
not allow the use of data as passive elements, like in the messages of MPI [15].

The specialist-parallel approach [12] models a problem as a network of rela-
tively autonomous nodes which perform one specified task. In comparison, the
data-autonomous paradigm defines their specialists around data instead of tasks
and data elements perform multiple or no tasks depending on their steps.

In AuDaLa, the relations between data elements can be viewed as a graph,
which is also the case for graph based languages, such as DDG [37], a scheduling
language, and GraphGrind [36], a graph partitioning language. The Connection
Machine [26] uses a graph-based hardware architecture for parallel computation.
Similarly, the way data is expressed in Legion [7] and OP2 [31] is similar to
AuDaLa. However, these two languages work top down from a main process
that calls functions on data, which is unlike the data-autonomous paradigm.

Since the data-autonomous paradigm extends data-parallelism (see Figure 1),
AuDaLa shares concepts with other data-parallel languages like CUDA [19, 24]
and OpenCL [13]. It has the most in common with object-oriented approaches to
data-parallelism, like the POOL family of languages [1], languages in which small
elements do parallel computations based on their neighbours, like ReLaCS [34],
PPC [30], Chestnut [35] and the ParCel languages [11,39], and actor languages.

Actor languages, like Ly [38], ParCel-1 [39], PObC++ [32] and A-NETL [4],
treat objects as independent, collaborating actors, in a similar way as how the
data-autonomous paradigm treats data. Often, these languages use the mes-
sage passing model to cooperate, which AuDaLa does not. Of those who do
not, OpenABL [17] uses agents similar to data elements, but gives the agents
to functions instead of functions to agents. Active Object languages [9, 10] do
give their objects functions, which is very closely related to data elements. The
execution of functions in these objects however, is fully asynchronous: objects
can activate other objects by calling methods in them for them to execute. This
is less structured than in AuDaLa, in which the functions to be executed are
defined in the schedule. As a result, AuDaLa does not use futures, unlike most
active object languages.

The use of a schedule in the data-autonomous paradigm relates AuDaLa
to some more functional data-parallel languages as well, like Halide [33], which
uses a schedule as well, and even Futhark [25], in which the manipulation of

An Autonomous Data Language 17

an array has some similarity to calling a step in AuDaLa. The schedule can be
considered as a coordination language [2] for the paradigm and AuDaLa, but is
fully integrated and required for both to function. It also does not need to create
channels between components, like for example Reo [3].

Similar to our motivation, ICE [21], which is a framework for implementing
PRAM algorithms, sets the goal of bridging the gap between algorithms and im-
plementation. However, as ICE is based on a PRAM, it is not data autonomous.

7 Conclusion

In this paper, we presented the data-autonomous paradigm and introduced it
by means of the Autonomous Data Language, by giving examples of standard
algorithms and discussing the syntax and semantics.

In the future, we will extend these foundations in multiple directions. First,
we plan to perform an extensive practical evaluation of AuDaLa. Currently, we
have prototypes of a sequential interpreter and a compiler to CUDA (for parallel
execution on GPUs). Using these, we will investigate methods for efficient paral-
lel execution of AuDaLa programs. Based on these experiences we may further
extend the language and semantics, for example by introducing variants of the
fixpoint operator.

On the theoretical side, one immediate avenue of research is to determine the
expressivity of the language, which we have started to investigate. We also plan
on creating formal analysis methods for AuDaLa programs, including methods
for finding data races in AuDaLa programs and methods for proving functional
correctness. For finding the data-races, we have already laid the groundwork in
the operational semantics. We may also investigate how extensions to the current
semantics impact the design of the envisioned formal analyses.

Acknowledgments We would like to thank the AVVA project members for
their insights and comments and Gijs Leemrijse, Clemens Dubslaff, Erik de Vink
and the reviewers for their feedback.

References

1. America, P., van der Linden, F.: A parallel object-oriented language with inheri-
tance and subtyping. SIGPLAN Not. 25(10), 161–168 (1990). https://doi.org/
10.1145/97946.97966

2. Arbab, F., Ciancarini, P., Hankin, C.: Coordination languages for parallel program-
ming. Parallel Computing 24(7), 989–1004 (1998). https://doi.org/10.1016/
S0167-8191(98)00039-8

3. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004). https://
doi.org/10.1017/S0960129504004153

4. Baba, T., Yoshinaga, T.: A-NETL: a language for massively parallel object-oriented
computing. In: PMMPC Proc. pp. 98–105. IEEE (1995). https://doi.org/10.
1109/PMMPC.1995.504346

https://doi.org/10.1145/97946.97966
https://doi.org/10.1145/97946.97966
https://doi.org/10.1145/97946.97966
https://doi.org/10.1145/97946.97966
https://doi.org/10.1016/S0167-8191(98)00039-8
https://doi.org/10.1016/S0167-8191(98)00039-8
https://doi.org/10.1016/S0167-8191(98)00039-8
https://doi.org/10.1016/S0167-8191(98)00039-8
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1109/PMMPC.1995.504346
https://doi.org/10.1109/PMMPC.1995.504346
https://doi.org/10.1109/PMMPC.1995.504346
https://doi.org/10.1109/PMMPC.1995.504346

18 T.T.P. Franken et al.

5. Banâtre, J.P., Coutant, A., Le Metayer, D.: A parallel machine for multiset trans-
formation and its programming style. Future Generation Computer Systems 4(2),
133–144 (1988). https://doi.org/10.1016/0167-739X(88)90012-X

6. Banâtre, J.P., Le Métayer, D.: The gamma model and its discipline of program-
ming. Science of Computer Programming 15(1), 55–77 (1990). https://doi.org/
10.1016/0167-6423(90)90044-E

7. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and
independence with logical regions. In: SC ’12. pp. 1–11 (2012). https://doi.org/
10.1109/SC.2012.71

8. Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96(1),
217–248 (Apr 1992). https://doi.org/10.1016/0304-3975(92)90185-I

9. de Boer, F., et al.: A Survey of Active Object Languages. ACM Comput. Surv.
50(5), 76:1–76:39 (2017). https://doi.org/10.1145/3122848

10. de Boer, F.S., Clarke, D., Johnsen, E.B.: A Complete Guide to the Future. In:
Programming Languages and Systems. pp. 316–330. Springer (2007). https://
doi.org/10.1007/978-3-540-71316-6_22

11. Cagnard, P.J.: The ParCeL-2 Programming Language. In: Euro-Par 2000. pp. 767–
770. LNCS, Springer (2000). https://doi.org/10.1007/3-540-44520-X_106

12. Carriero, N., Gelernter, D.: How to write parallel programs: a guide to the per-
plexed. ACM Comput. Surv. 21(3), 323–357 (1989). https://doi.org/10.1145/
72551.72553

13. Chong, N., Donaldson, A.F., Ketema, J.: A sound and complete abstraction
for reasoning about parallel prefix sums. SIGPLAN Not. 49(1), 397–409 (2014).
https://doi.org/10.1145/2578855.2535882

14. Ciccozzi, F., et al.: A Comprehensive Exploration of Languages for Parallel Com-
puting. ACM Comput. Surv. 55(2), 24:1–24:39 (2022). https://doi.org/10.
1145/3485008

15. Clarke, L., Glendinning, I., Hempel, R.: The MPI Message Passing Interface
Standard. In: Programming Environments for Massively Parallel Distributed Sys-
tems. pp. 213–218. Monte Verità, Birkhäuser (1994). https://doi.org/10.1007/
978-3-0348-8534-8_21

16. Cole, R.: Parallel Merge Sort. SIAM J. Comput. 17, 770–785 (1988). https://
doi.org/10.1137/0217049

17. Cosenza, B., et al.: OpenABL: A Domain-Specific Language for Parallel and Dis-
tributed Agent-Based Simulations. In: Euro-Par 2018. pp. 505–518. LNCS, Springer
(2018). https://doi.org/10.1007/978-3-319-96983-1_36

18. Gannouni, S.: A Gamma-calculus GPU-based parallel programming framework.
In: WSWAN Proc. pp. 1–4. IEEE (2015). https://doi.org/10.1109/WSWAN.2015.
7210299

19. Garland, M., et al.: Parallel Computing Experiences with CUDA. IEEE Micro
28(4), 13–27 (2008). https://doi.org/10.1109/MM.2008.57

20. Geist, A., Reed, D.A.: A survey of high-performance computing scaling challenges.
Int. J. High Perform. Comput. Appl. 31(1), 104–113 (2017). https://doi.org/
10.1177/1094342015597083

21. Ghanim, F., Vishkin, U., Barua, R.: Easy PRAM-Based High-Performance Parallel
Programming with ICE. IEEE Trans. Parallel Distrib. Syst. 29(2), 377–390 (2018).
https://doi.org/10.1109/TPDS.2017.2754376

22. Giles, M.B., Reguly, I.: Trends in high-performance computing for engineering
calculations. Phil. Trans. R. Soc. A. 372(2022) (2014). https://doi.org/10.1098/
rsta.2013.0319

https://doi.org/10.1016/0167-739X(88)90012-X
https://doi.org/10.1016/0167-739X(88)90012-X
https://doi.org/10.1016/0167-6423(90)90044-E
https://doi.org/10.1016/0167-6423(90)90044-E
https://doi.org/10.1016/0167-6423(90)90044-E
https://doi.org/10.1016/0167-6423(90)90044-E
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1016/0304-3975(92)90185-I
https://doi.org/10.1016/0304-3975(92)90185-I
https://doi.org/10.1145/3122848
https://doi.org/10.1145/3122848
https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/3-540-44520-X_106
https://doi.org/10.1007/3-540-44520-X_106
https://doi.org/10.1145/72551.72553
https://doi.org/10.1145/72551.72553
https://doi.org/10.1145/72551.72553
https://doi.org/10.1145/72551.72553
https://doi.org/10.1145/2578855.2535882
https://doi.org/10.1145/2578855.2535882
https://doi.org/10.1145/3485008
https://doi.org/10.1145/3485008
https://doi.org/10.1145/3485008
https://doi.org/10.1145/3485008
https://doi.org/10.1007/978-3-0348-8534-8_21
https://doi.org/10.1007/978-3-0348-8534-8_21
https://doi.org/10.1007/978-3-0348-8534-8_21
https://doi.org/10.1007/978-3-0348-8534-8_21
https://doi.org/10.1137/0217049
https://doi.org/10.1137/0217049
https://doi.org/10.1137/0217049
https://doi.org/10.1137/0217049
https://doi.org/10.1007/978-3-319-96983-1_36
https://doi.org/10.1007/978-3-319-96983-1_36
https://doi.org/10.1109/WSWAN.2015.7210299
https://doi.org/10.1109/WSWAN.2015.7210299
https://doi.org/10.1109/WSWAN.2015.7210299
https://doi.org/10.1109/WSWAN.2015.7210299
https://doi.org/10.1109/MM.2008.57
https://doi.org/10.1109/MM.2008.57
https://doi.org/10.1177/1094342015597083
https://doi.org/10.1177/1094342015597083
https://doi.org/10.1177/1094342015597083
https://doi.org/10.1177/1094342015597083
https://doi.org/10.1109/TPDS.2017.2754376
https://doi.org/10.1109/TPDS.2017.2754376
https://doi.org/10.1098/rsta.2013.0319
https://doi.org/10.1098/rsta.2013.0319
https://doi.org/10.1098/rsta.2013.0319
https://doi.org/10.1098/rsta.2013.0319

An Autonomous Data Language 19

23. Goodrich, M.T., Kosaraju, S.R.: Sorting on a parallel pointer machine with ap-
plications to set expression evaluation. J. ACM 43(2), 331–361 (1996). https:
//doi.org/10.1145/226643.226670

24. Harris, M., Sengupta, S., Owens, J.D.: Parallel Prefix Sum (Scan) with CUDA.
GPU gems 3(39), 851–876 (2007)

25. Henriksen, T., et al.: Futhark: purely functional GPU-programming with nested
parallelism and in-place array updates. In: PLDI 2017. pp. 556–571. PLDI 2017,
ACM (2017). https://doi.org/10.1145/3062341.3062354

26. Hillis, W.D.: The connection machine. MIT Press, Cambridge, Mass (1989)
27. Hillis, W.D., Steele, G.L.: Data parallel algorithms. Commun. ACM 29(12), 1170–

1183 (1986). https://doi.org/10.1145/7902.7903
28. Leiserson, C.E., et al.: There’s plenty of room at the Top: What will drive computer

performance after Moore’s law? Science 368(6495), eaam9744 (2020). https://
doi.org/10.1126/science.aam9744

29. Marcoux, A., Maurel, C., Salle, P.: AL 1: a language for distributed applications.
In: FTDCS1990 Workshop Proc. pp. 270–276. IEEE (1988). https://doi.org/10.
1109/FTDCS.1988.26707

30. Maresca, M., Baglietto, P.: A programming model for reconfigurable mesh based
parallel computers. In: PMMPC Workshop Proc. pp. 124–133. IEEE (1993).
https://doi.org/10.1109/PMMP.1993.315547

31. Mudalige, G., Giles, M., Reguly, I., Bertolli, C., Kelly, P.: OP2: An active library
framework for solving unstructured mesh-based applications on multi-core and
many-core architectures. In: InPar 2012. pp. 1–12 (2012). https://doi.org/10.
1109/InPar.2012.6339594

32. Pinho, E.G., de Carvalho, F.H.: An object-oriented parallel programming language
for distributed-memory parallel computing platforms. Science of Computer Pro-
gramming 80, 65–90 (2014). https://doi.org/10.1016/j.scico.2013.03.014

33. Ragan-Kelley, J., et al.: Halide: decoupling algorithms from schedules for high-
performance image processing. Commun. ACM 61, 106–115 (2017). https://doi.
org/10.1145/3150211

34. Raimbault, F., Lavenier, D.: RELACS for systolic programming. In: ASAP Proc.
pp. 132–135. IEEE (1993). https://doi.org/10.1109/ASAP.1993.397128

35. Stromme, A., Carlson, R., Newhall, T.: Chestnut: a GPU programming language
for non-experts. In: PMAM Proc. pp. 156–167. ACM (2012). https://doi.org/
10.1145/2141702.2141720

36. Sun, J., Vandierendonck, H., Nikolopoulos, D.S.: GraphGrind: addressing load
imbalance of graph partitioning. In: ICS Proc. pp. 1–10. ACM (2017). https:
//doi.org/10.1145/3079079.3079097

37. Tran, V., Hluchy, L., Nguyen, G.: Parallel programming with data driven model.
In: EMPDP Proc. pp. 205–211. IEEE (2000). https://doi.org/10.1109/EMPDP.
2000.823413

38. Ungar, D., Adams, S.S.: Harnessing emergence for manycore programming: early
experience integrating ensembles, adverbs, and object-based inheritance. In: OOP-
SLA Proc. pp. 19–26. ACM (2010). https://doi.org/10.1145/1869542.1869546

39. Vialle, S., Cornu, T., Lallement, Y.: ParCeL-1: a parallel programming language
based on autonomous and synchronous actors. SIGPLAN Not. 31(8), 43–51 (1996).
https://doi.org/10.1145/242903.242945

40. Willcock, J.J., Hoefler, T., Edmonds, N.G., Lumsdaine, A.: Active pebbles: parallel
programming for data-driven applications. In: ICS Proc. p. 235. ACM (2011).
https://doi.org/10.1145/1995896.1995934

https://doi.org/10.1145/226643.226670
https://doi.org/10.1145/226643.226670
https://doi.org/10.1145/226643.226670
https://doi.org/10.1145/226643.226670
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/7902.7903
https://doi.org/10.1145/7902.7903
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1109/FTDCS.1988.26707
https://doi.org/10.1109/FTDCS.1988.26707
https://doi.org/10.1109/FTDCS.1988.26707
https://doi.org/10.1109/FTDCS.1988.26707
https://doi.org/10.1109/PMMP.1993.315547
https://doi.org/10.1109/PMMP.1993.315547
https://doi.org/10.1109/InPar.2012.6339594
https://doi.org/10.1109/InPar.2012.6339594
https://doi.org/10.1109/InPar.2012.6339594
https://doi.org/10.1109/InPar.2012.6339594
https://doi.org/10.1016/j.scico.2013.03.014
https://doi.org/10.1016/j.scico.2013.03.014
https://doi.org/10.1145/3150211
https://doi.org/10.1145/3150211
https://doi.org/10.1145/3150211
https://doi.org/10.1145/3150211
https://doi.org/10.1109/ASAP.1993.397128
https://doi.org/10.1109/ASAP.1993.397128
https://doi.org/10.1145/2141702.2141720
https://doi.org/10.1145/2141702.2141720
https://doi.org/10.1145/2141702.2141720
https://doi.org/10.1145/2141702.2141720
https://doi.org/10.1145/3079079.3079097
https://doi.org/10.1145/3079079.3079097
https://doi.org/10.1145/3079079.3079097
https://doi.org/10.1145/3079079.3079097
https://doi.org/10.1109/EMPDP.2000.823413
https://doi.org/10.1109/EMPDP.2000.823413
https://doi.org/10.1109/EMPDP.2000.823413
https://doi.org/10.1109/EMPDP.2000.823413
https://doi.org/10.1145/1869542.1869546
https://doi.org/10.1145/1869542.1869546
https://doi.org/10.1145/242903.242945
https://doi.org/10.1145/242903.242945
https://doi.org/10.1145/1995896.1995934
https://doi.org/10.1145/1995896.1995934

	An Autonomous Data Language

