Logical Methods in Computer Science
Volume 20, Issue 3, 2024, pp. 5:1-5:32 Submitted  Apr. 17, 2023
https://Imcs.episciences.org/ Published  Jul. 10, 2024

OPERATIONS ON FIXPOINT EQUATION SYSTEMS

THOMAS NEELE ©® AND JACO VAN DE POL ®°

¢ Eindhoven University of Technology, The Netherlands
e-mail address: t.s.neele@tue.nl

® Aarhus University, Denmark
e-mail address: jaco@cs.au.dk

ABSTRACT. We study operations on fixpoint equation systems (FES) over arbitrary com-
plete lattices. We investigate under which conditions these operations, such as substituting
variables by their definition, and swapping the ordering of equations, preserve the solution
of a FES. We provide rigorous, computer-checked proofs. Along the way, we list a number
of known and new identities and inequalities on extremal fixpoints in complete lattices.

1. INTRODUCTION

This paper deals with operations on systems of fixpoint equations over an arbitrary complete
lattice. We investigate when these operations preserve the solution of the equations. An
example of a system of equations is the set £ :={X = f(X,Y,2), Y =¢9(X,Y,2), Z =
h(X,Y,Z)}. For most results, it is required that the functions f, g, h are monotonic in the
given lattice. Such systems may well have multiple solutions. In order to specify particular
solutions, we introduce specifications, for example S := [uX,vY, uZ], indicating for each
variable whether we are interested in the minimal (x) or maximal (v) solution. The order of
the variables in these specifications is relevant: the leftmost variable indicates the fixpoint
with the highest priority. A Fizpoint Equation System (FES) [Mad97] is a pair (£, S), where
£ is a set of equations, and S is a specification. Several well known instances are obtained
by instantiating the complete lattice.

Well-known instances of FES. Boolean Equation Systems (BES) arise as FES over
the complete lattice L < T, and were proposed in [And94, AV95] for solving the model
checking and equivalence checking problems on finite labeled transition systems (LTS). BES
received extensive study in [Mad97, MS03, GK04, Mat06]. A generalisation to the domain
R U {—00,00} is real equation systems (RES) [GW23].

An equivalent notion to BES is two-player parity games [EJ91], see [Mad97] for a proof.
Algorithms for solving parity games receive a lot of attention, since this is one of the few
problems which is in NP and in co-NP, but not known to be in P. Recently, it has been
shown that parity games (and thus BES) can be solved in quasi-polynomial time [CJK17].
This result has also been lifted to the general setting of FES on finite lattices [HS21, JMT22].

Key words and phrases: fixpoint equation system, complete lattice.

|E5| LOGICAL METHODS © T.Neele and J. van de Pol
IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(3:5)2024 @ Creative Commons


https://lmcs.episciences.org/
https://orcid.org/0000-0001-6117-9129
https://orcid.org/0000-0003-4305-0625
http://creativecommons.org/about/licenses

5:2 T. NEELE AND J. VAN DE PoL Vol. 20:3

Other types of games can also be seen as an instance of FES, for example energy parity
games [CD12] are FES on the lattice Z — {L, T}, ordered pointwise. A modern parity game
solver is Oink [vD18].

Parameterised Boolean Equation Systems (PBES, also known as first-order, or predicate
BES) arise as FES over the powerset lattice (2P, C), with D some data type, typically
representing the state space of a possibly infinite LTS. In [Mat98, GM99], PBES are pro-
posed to encode the model-checking problem of first-order mu-calculus on infinite LTSs;
they are studied in more detail in [GW05b, GW05a]. An encoding of (branching) bisim-
ulation of infinite LTSs in PBES is proposed in [CPvdPW07]. Various procedures that
operate on PBES have been studied, for example to simplify [Nee22, OW10] or solve
PBES [NWG20, NWWV22, PWW11]. Algorithms for solving some timed fragments of
PBES automatically are studied in [ZC05]. PBES are implemented in the mCRL2 [BGK*19]
and CADP [GLMS13] model checking toolsets. MuArith [KFG20] is similar to PBES, but
the domain D is restricted to integers.

Fixpoint Equation Systems over arbitrary complete lattices (FES) are defined in [Mad97,
TC02]. Some works refer to the same concept as Hierarchical Equation Systems (HES) [Sei96,
KNIU19], Systems of Fizpoint Equations [BKP20] or Nested Fixpoint Equations [JMT22].
In [ZCO05] it is recognized that BES and PBES (and also Modal Equation Systems [CS93],
an equational representation of the modal mu-calculus) are instances of FES. FESs are
mainly useful to provide generic definitions for all these kinds of equation systems. We
claim that the generic semantics of a FES is more elegant than the semantics of PBES, as
given in e.g. [GWO05a]. In particular, equations in FES are defined in a semantic manner
as functions on valuations, rather than on syntactic expressions (possibly with binders).
Another advantage of FES is that one can derive a number of basic theorems for equation
systems over all lattices in one stride, like in Chapter 3 of Mader’s thesis [Mad97].

Abstract dependency graphs [EGLS19] are similar to FES, but variables range over a
Noetherian partial order with a least element, instead of a complete lattice. When assuming
every right-hand side is effectively computable, minimal fixpoints can be computed in an
iterative fashion. Dependency graphs do not contain fixpoint alternations.

Contributions. Our main goal is to study basic operations on FES, related with substituting
variables in the equations by their definition or final solution, or swapping the order of
equations in the specification. Substitution operations form the basis of solving BES by
so-called Gauss-elimination [Mad97]. Also for PBES, Gauss elimination plays a crucial role
in their solution. Reordering the variables in the specification is useful, because it may give
rise to independent subspecifications that can be solved separately. Also, swapping the order
of variables may bring down the number of alternations between p and v, thus lowering the
complexity of certain solution algorithms.

Our results consist of equalities and inequalities between FES, expressing under which
conditions the basic operations preserve the solution of a FES. The main results are
summarized in Table 1 (Section 7). In particular:

(1) Results on substitution for BES and PBES are generalized to FES.

(2) Results on swapping variables are generalized and sorted out, by weakening existing
conditions, and by providing alternative conditions.

(3) We provide rigorous proofs of our results. All proofs in this paper have been proof-
checked mechanically by the Coq theorem prover [Ber08, S*23] (version 8.17) as well as
the PVS theorem prover [OSO08] (version 7.1). Our proofs are available online [NvdP24].



Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:3

Overview. We first provide the basic theory of complete lattices in Section 2 and reprove
all needed facts on fixpoints, in order to present a self-contained account. The formal
definition and semantics of Fixpoint Equation Systems is provided in Section 3. The proofs
(Section 4, 5 and 6) are quite elementary. They are mainly based on induction (to deal with
the recursive definition of FES semantics, Section 3.1) and on identities and inequalities
on fixpoints in complete lattices. In Section 7, we provide examples of applications of our
theory and discuss its relation with the literature. Finally, we highlight several aspects of
our Coq and PVS formalisations in Section 8.

2. FixroINT LAWS IN COMPLETE LATTICES

A partial order on a universe U is a binary relation < C U x U, which is reflexive (Vz.x < x),
anti-symmetric (Vz,y.x < yAy < z = x = y) and transitive (Vz,y,z.z < yAy < z = = < 2),
where in all cases x,y,z € U.

Given partial orders (U, <) and (V, <), we define partial orders (U xV, <) and (U — V, <)
pointwise: (u1,v1) < (ug,v2) iff uy <ugAvy <wg,and f < giff Vo € U.f(x) < g(z). Function
f:U — V is called monotonic, iff Vr,y.x <y = f(x) < f(y).

Given a set X C U, we define its set of lower bounds in U as Ib(X) :={ye U | Vx €
Xy<z} IHyelb(X)and z <y for all z € lb(X), then y is called the greatest lower bound
of X. A complete lattice is a triple (U, <, glb), where < is a partial order, and glb(X) returns
the greatest lower bound of X in U, for all (finite or infinite) X C U.

Given a complete lattice (U, <, glb), define the partial order (U,>), by z >y iff y < .
We define the set of upper bounds of X C U by ub(X) :={y e U | Vx € X.y > z}. Define
lub(X) := glb(ub(X)). Clearly, for all y € ub(X), lub(X) < y. But also lub(X) € ub(X), for
if x € X, then € [b(ub(X), hence x < glb(ub(X). So lub(X) yields the least upper bound of
X, and (U, >,lub) is a complete lattice as well.

Given a complete lattice (U, <, glb), we define the least firpoint (u) and greatest fixpoint
(v) of any function f : U — U (not only for monotonic) as follows:

p(f) glb({z| f(z) < x})
v(f) = lub({z]z < f(x)})
For o € {u, v}, we abbreviate o(Az.f(z)) by oz.f(x). Note that by definition, v in (U, <, glb)
equals p in (U, >, lub), so theorems on (u, <) hold for (v, >) as well “by duality”. Also note
that F' : U — U is monotonic in (U, <) 1f and only if it is monotonic in (U, >). A direct
consequence of the definition of y is the following principle (and its dual):
flz)<z = u(f) <z (p-fizpoint induction)
< f(x) = = <wv(f) (v-fizpoint induction)
We now have the following identities on fixpoint expressions:

Lemma 2.1. Let (U, <,glb) be a complete lattice. Let o € {u,v}, A e U, and let F,G €
U—Uand H K €U xU — U be monotonic functions. Then:

(1) F(o(F)) =0o(F) (computation rule)
(2) cx. A=A (constant rule)
(3) ox. F(G(x)) = F(ox.G(F(x))) (rolling rule)
(4) ox. F(F(x)) = ox. F(x) (square rule)
(5) o is monotonic (fixpoint monotonicity)
(6) ox.H(x,z) = ox.oy. H(x,y) (diagonal rule)



5:4 T. NEELE AND J. VAN DE PoL Vol. 20:3

(7) ox. H(z,z) = ox. H(x, H(x, x)) (unfolding rule)
(8) ox.H(z,z) = ox. H(x,0x. H(x, 7)) (solve rule)
(9) ox.H(z,0y. K(y,z)) = ox. H(x,0y. K(y,02. H(2,y))) (Bekic¢ rule)

Proof. We first prove the theorem for ¢ = . By the observations above, the theorem then
follows for o = v as well (“by duality”).
(1) (a) Let y with F(y) <y be given. Then by fixpoint induction,
w(F) < y. By monotonicity, F(u(F)) < F(y) <wy. Since y is arbitrary, F'(u(F)) is
a lower bound of {z | F(x) < z}. Hence F(u(F)) < glb({z | F(x) < z}) = p(F)
(b) F(u(F)) < u(F) by (a), so by monotonicity,
F(F(u(F))) < F(u(F)). By fixpoint induction, pu(F) < F(u(F)).
Then by anti-symmetry F(u(F)) = u(F).
(2) Follows directly from (1) by taking F' := Az.A (which is monotonic)
(3) Obviously, Az. F(G(x)) and Az. G(F(x)) are monotonic.
(a) By (1), F(G(F(pzx.G(F(x))))) = F(ux.G(F(x))). Hence by fixpoint induction,
) "5 F 6 < Flua G

G(F(Glur. F(G@)) © Glur. F(G())
= (by fixpoint induction)

pr. G(F(z)) < G(px. F(G(x)))
= (by monotonicity)

Fuz. G(F(r))) < F(G(pz. F(G(2)))

)¢
By anti-symmetry, we obtain pz. F(G(x)) = F(ux. G(F
(4) (a) Using (1) twice, F(F(pzx. F(z))) = F(pz. F(x)) =
tion, px. F(F(z)) < pz. F(x).
(b) By (3), we get F(ux.F(F(x))) = px.F(F(x)). Hence by fixpoint induction,
px. F(z) < pz. F(F(x)).
Then by anti-symmetry, pz. F(F(x)) = px. F(x).
(5) Assume f < g. Let y with g(y) <y be given. Then f(y) < g(y) <y, so u(f) <y by
fixpoint induction. Since y is arbitrary, u(f) is a lower bound for {z|g(z) < x}. By
definition p(g) is its greatest lower bound, so u(f) < u(g).

(6) (a)

(1)

px. F(G(z))

()))-
px. F(x). So by fixpoint induc-

W px. H(x,x)

H(pz. H(z, x), po. H(z, x))
= (by fixpoint induction, applied with F' := \z. H(z,x))
py. H(px. H(z,),y) < po. H(z, x)
= (by fixpoint induction)
pa. py. H(z,y) < px. H(z, x)
(b) Let us abbreviate A := px. py. H(z,y). Using (5) one can show that Az. py. H(z,y)
is monotonic. Then:

@) @)
A= py H(Ay) = H(A, py.- H(A,y))
= (by congruence and both equations above)
H(A,A) = H(A py. H(A,y)) = A



Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:5

= (by fixpoint induction)
pxr. H(x,z) < A= pzx. py. H(z,y)

By anti-symmetry, we indeed get: px. H(x,z) = px. py. H(x,y).
(7) Using (4) on \y. H(z,y) yields pz. py. H(z,y) = px. py. H(x, H(z,y)). Applying (6) to
both sides yields px. H(x,z) = pzx. H(x, H(x, )).
(8) We use (6) twice on the function A\(y,z).H(x,y):

px. H(x, )
6
© . pa H(z, y)

1
%ux.H(a:,uy.ux-H(%y))

= px. H(z,px. H(x,x))
(9) Define F(y) := pz. H(x,y) and G(y) := px. K(z,y). Then:

wy. F(G(y) 2 Fuy. G(F(y)))

= (by definition of F, G)

py- pr. H(z, G(y)) = F(py. pz. K(z, F(y)))
= (by 6, applied to left- and right-hand side)

pa. H(z, G(x)) = F(py- K(y, F(y)))
= (by definition of F', G)

pr. H(z, py. K(y,x)) = pr. H(z, py. K(y, pz. H(z,y))) [

A careful analysis shows that all these identities can be derived in an equational style
from the identities 1, 3, 4 and 6. A natural question is whether all true equalities (with u as
second order operation, and variables ranging over monotonic functions) can be derived from
these four identities in an equational manner (thus excluding the fixpoint induction rule).
We don’t know the answer, but we expect that at least the equations pz. F(z) = pz. FP(x)
are needed for all primes p. Results from universal algebra don’t apply directly, due to the
second order nature of the fixpoint operator.

By mixing least and greatest fixpoints, we also obtain a number of inequalities. In
particular, 4 is new, as far as we know. Note the similarity of (4) with Beki¢ Rule, Lemma 2.1.
We will call (4) Beki¢ Inequality.

Lemma 2.2. Let (U, <,glb) be a complete lattice. Let o € {u,v}, A e U, and let F,G €
U—=Uand HK e U x U — U be monotonic functions. Then:
(1) u(F) < v(F)
(2) (a) prx< A
(b) A<vzx.x
(3) px.vy. H(z,y) < vy.pz. H(z,y)
(4) (a) pa. H(z,vy. K(y,2)) < pz. H(z,vy. K(y, px. H(z,y)))
(b) ve. H(z, py. K(y,z)) > va. H(z, py. K(y,ve. H(z,y)))

Proof.

(1) F(v(F)) GLD v(F), so by fixpoint induction, u(F) < v(F).

11
1 =
(2) (a) A < A, hence by fixpoint induction, pz.z < A. Then (b) follows by duality.



5:6 T. NEELE AND J. VAN DE PoL Vol. 20:3

(3) Define F(z) := vy. H(x,y) and G(y) := px. H(z,y). Note that both F' and G are
monotonic, using Lemma 2.1.5. Then:

() PEY Pur)) PEY H (), F(ur)) CEY Hu(F), w(F))

= (by fixpoint induction)
G(u(F)) = pa. H(z, p(F)) < p(F)
= (monotonicity F')
F(G(u(F))) < F(u(F)) *=Y w(F)
= (monotonicity H)
F(G(u(E) = HG(u(F), FG@F)) < HGE), p(F)) "= G(u(F))
= (by fixpoint induction)
W(F) < G(u(F))
= (by fixpoint induction for v)
u(F) <v(G)

(4) (a) Define F(y) := px. H(z,y) and G(z) := vy. K(y,x). Note that both F' and G are
monotonic, using Lemma 2.1.5. Then:

1) px. H(x,vy. K(y,z))
=" px.pz. H(z,vy. K(y,x))
p. F(G(x))
Fluz. G(F(x))
< (using 1, and monotonicity of F')
F(vz.vy. K(y, F(x)))
F(ry. K(y, F(y)))
= px. H(z,vy. K(y, px. H(z,y)))

(.13

.16

Then (b) follows by “duality” (reversing u/v and </>). More precisely, (b) is (a) in
the reversed complete lattice (U, >, lub). ]

Note that (1) and (3) are their own dual.

3. FIXPOINT EQUATION SYSTEMS

In this section we first formally define Fixpoint Equation Systems (FES). We show by
examples how they generalize Boolean and Predicate Equation Systems. Subsection 3.2
introduces the semantics of a FES by defining its solutions. Finally, Subsection 3.3 defines
the variable dependency graph in a FES.



Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:7

3.1. Definition of Fixpoint Equation Systems. Fix a complete lattice (U, <, glb), and a
set of variables X'. Throughout the paper, we assume that equality on variables is decidable.
We define the set of valuations Val .= X — U. For X € X, n € Val, P € U, we denote
by n[X := P] the valuation that returns P on X and n(Y) on Y # X. As any function,
valuations can be ordered pointwise, i.e. 71 < mp iff VX € X.n1(X) < m2(X). Note that
valuation update is monotonic, that is, if P < @, then n[X := P] < n[X := Q]. To indicate
that two valuations agree on a set of variables V C X, we write n; ¥ 1, formally defined as
VX e Vi (X) = m2(X). The complement of V in X is denoted V.

A set of mutually recursive equations is a member of Egs := Val — Val. The set &gs is
also ordered pointwise. £ is monotonic iff it is a monotonic function on Val. Note that this
semantic view on equations escapes the need to introduce (and be limited) to a particular
syntax.

Example 3.1. Take X = {X,Y,Z} and U = B, the Boolean lattice L < T. We write
(a,b,c) € B? as a shorthand for the valuation {X=a, Y =b, Z=c}. The system of equations
{X=YANZ Y=XVZ Z=-X} is represented in our theory as the function

B := MX,Y,2)eB (YANZ XVZ -X) .
It is not monotonic, because as valuations, (L, L, 1) < (T, T, T), but
B(L, L, 1)=(L, L, T)L(T,T,L)=8(T,T,T) .

Note that £gs is isomorphic with X — Val — U. This motivates the following slight
abuse of notation: Given & € &gs, we will often write Ex(n) for £(n)(X). This expression
denotes the definition of X in &£, possibly depending on other variables as represented by the
valuation 7. Similar to valuations, agreement on variables from V C X is denoted & ¥ &,
defined as Vn € Val, X € V.E1(n)(X) = E2(n)(X).

The set of specifications consists of finite lists of signed variables: Spec := ({u, v} x X)*.
Note that a specification selects a subset of variables to be considered, assigns a fixpoint sign
to these variables, and assigns an order to these variables. We use 0 X as a notation for (o, X),
write € for the empty list, and use; for list concatenation. We will identify a singleton list
with its element. For instance, [uX,vY];uZ denotes the specification [(u, X), (v,Y), (i, Z)].
We define dom(S) C X as the set of variables that occur in some pair in S. Decidability of
X € dom(S) follows from finiteness of S and decidability of equality on variables. We define
disjoint(Sy1, S2) iff dom(Sy) N dom(Ss) = 0.

We often require that valuations or equation systems agree on the variables in a
specification. Accordingly, we overload - so that 11 £ 1y (resp. &1 £ &) is defined as
m £ o (resp. & £ &). This also applies when a complement is involved: 71 £ 1y is
m 4mS) .

Finally, a fizpoint equation system (FES) F on (U, X) is simply a pair in Fes := Egs x Spec.
Before we present the semantics of FES, we first consider several instances of FES.

Example 3.2. The Boolean Equation System [Mad97] traditionally written as

uX = YANZ
vY = XVvZ
v, = =X

is represented in our theory as the pair (B, [uX,vY,vZ]), where B is from Example 3.1.
Note that this notation for BES integrates the set of equations and the specification into
one, and these cannot be considered separately.



5:8 T. NEELE AND J. VAN DE PoL Vol. 20:3

Example 3.3. A PBES (parameterized BES [GW05a], or predicate equation system [ZC05])
is a FES over the complete lattice U := (P(D), C) for some data set D, or equivalently
(D — B, <). PBES thus generalise BES: each variable is now a predicate over domain D,
allowing one to create complex expressions over data. For our example, let X = {X,Y} and
D =N x B. Again using the shorthand (X,Y) € (D — B)? for valuations, (B, [uX,vY]) is
a PBES, where

B = AX,Y)e(D— B2
(AmeNbeB. (b—-m>0AY(m, L))A(=b—m <5AY(m,L)),
xmeN,beB. X(m—1,m>4)VY(m+1,1))

The function on the last line, which defines Y, does not contain an occurrence of the
argument b. However, in our theory we are required to include it so that both variables in
X = {X,Y} are predicates over the same D := N x B. In the notation of [GWO05a], the
same PBES is simply written as a pair of predicate definitions with accompanying fixpoint
signs. The argument b of Y may be left out:

pX(m:N,b:B) = (b—>m>0AY(m))A(=b—m<5AY(m))
vY(m:N) = X(m—1m>4)VvVY(m+1)

Similar to BES, the PBES formalism as defined in [GW05a] does not consider the equations
and the specification separately.

Remark 3.4. Our choice of separating the set of equations and the specification makes it
easier to perform induction proofs over the specification (because one retains knowledge of
all equations in the proof scope). However, we have not required that all variables in S are
unique. This is not needed in our formalization, because in Lemma 3.7.3 we will show that if
X € dom(S), then any set of equations £ has the same semantics when combined with S or
with 0 X;S, for any o € {u,v}. Do note that there is a hidden assumption: even if X occurs
multiple times in S, possibly with different signs, there can only be one defining equation
for it, because £ is a function. So when transferring the results to traditional notation, one
should add the (quite natural) requirement that all equations have unique variable names.

Example 3.5. Modal equation systems (MES) [CS93] is a very similar FES instance to
PBES since it also uses the powerset lattice (P(D), C). However, a MES is interpreted on a
labelled transition system (LTS), so that D is equal to the set of states in the LTS. MES
includes, for every action a in the LTS, the modal operators [a]¢ (“@ must hold after every
possible transition labelled with a”) and (a)y (“there exists an a-transition after which
¢ holds”). MES is an equational representation of the modal mu-calculus. Adopting the
notation from the previous examples, an example of a MES is:

vX =Y
wY = [a]X A DY

This MES expresses that on every path in the LTS, action a occurs infinitely often (and b
may happen only finitely often in between).



Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:9

3.2. Semantics of FES and Basic Results. Next, the semantics of a FES, [€,S] : Val —
Val, is defined recursively on S:

[€.eln) = n
[€,0X:S](n) = [E,S](n[X :=a(F)]),
where F': U — U is defined as
F(P) = Ex([E€,S](n[X = P]))

We now state the first results on the semantics of FES. The lemma below states
monotonicity properties for the semantics. They ensure that fixpoints are well-behaved.
Below, recall that we use pointwise ordering, e.g., & < & iff £1(n)(X) < &(n)(X) for all n
and X.

Lemma 3.6. Let £, &1, £ € Egs and S € Spec, then

(1) If € is monotonic, then [€,S] is monotonic.

(2) If & is monotonic and & < &, then [E1,S] < [E2,S].
Proof.

(1) We prove Vn1,m2. m1 < n2 = [€,S](m) < [E,S](n2) by induction on S. The base case:
assume 71 < 12, then [€,e](m) =m < n2 = [€,¢](n2). Induction step: Let n; < 12 be
given, then for any P € U, we have n;[X = P| < n2[X := P]. So

(induction hypothesis)
[€,S](m[X := P]) < [€,S](n2]X := P])
= (& is monotonic)
Ex([€,S](m[X := P))) < Ex([€,S)(n2]X := P]))
= (fixpoint monotonicity, Lemma 2.1.5)
oP.Ex([€,S](m[X = P])) < oP.Ex([E, S](n2[ X := P]))
= (define F;(P) := Ex([E,S](ni[X = P))), for i = 1,2)
mlX = o(F1)] < pafX = o(F2)]
= (induction hypothesis)
[€, S](m[X = o(F1)]) < [€,S](n2[ X := o (F2)])
< (definition)
[€,0X:8](m) < [€,0X;8](n2)
(2) Assume &; is monotonic, and & < & (pointwise). We prove by induction on S that

vn. [€1,S](n) < [€2,S](n). The base case is simple: for all , we have [€1,¢](n) =n =
[€2,€](n). For the induction step, let n be given, then for any P € U:

(induction hypothesis)

(1, SIn[X = P]) < [€2, SInIX = P))
= (monotonicity of £ and & < &, pointwise))

&1 x ([€1, S](n[X = P)) < & x ([€2, S](n[X = P]))
= (fixpoint monotonicity, Lemma 2.1.5)

oP.& x([€1,S](n[X := P])) < oP.& x([€2, S)(n[X := P]))
= (define Fi(P) := & x([&, S](n[X := P])), for i = 1,2)



5:10 T. NEELE AND J. VAN DE PoL Vol. 20:3

n[X = o(F1)] <n[X = o(F)]

= [€1, SI(n[X := o (F1)])
< (monotonicity, part 1 of this lemma)

[€1, SI(nX = o (F2)])
< (induction hypothesis)

[£2, S](n[X := o (F2)])
= (definition)
[[gla UX;S]] (77) < [[527 JX;S]] (77) [
The next lemma states three sanity properties of the semantics: (1) The semantics

only modifies the valuation on elements in the domain; (2) the semantics only depends on
equations mentioned in the domain; (3) the input valuation is only used for variables outside

the domain.
Lemma 3.7. Let £,£1,& € &gs, S € Spec, n € Val and X € X.
(1) If X ¢ dom(S) then [£,S](n)(X) = n(X).
(2) If 51 é 52, then [[51,8]] = [[52,8]]
(3) If m £ 1o, then [, S](m) = [£, S](n2).
Proof.
(1) Induction on S. The base case holds by definition. For the induction step, assume
X ¢ dom(oY;S). Then
[€,0Y:S](n)(X)
= (define F(P) := & ([€,S](n[Y = P)))
[€,S1(nY := o (F)])(X)
= (induction hypothesis, note: X ¢ dom(S))
Y = o(F)](X)
= (X ¢ dom(cY;5),s0 X #Y)
n(X)
(2) Induction on S. The base case holds by definition. For the induction step, let n be given,

and assume & XS &. Note that this implies & £ &, so we can use the induction
hypothesis. For any P € U we have:

(induction hypothesis)
[€1, S](n[X = P) = [€2, S]n[X = P])
= (X € dom(0X;S), so &1, x = & x by assumption)
&1.x ([0, S]([X = P])) = & x ([€2, S][X := P]))
= (define F;(P) := & x([&, S](n[X := PJ)) for i =1,2)
n[X = o(F)] = n[X := o(F)]
= (induction hypothesis)
[€1, SI(n[X = o (F1)]) = [€2, S]([X = o (F2)])
< (definition)



Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:11

[€1,0X;5](n) = [€2,0X;S](n)

(3) Induction on S. The base case is trivial, because both the assumption and the conclusion
reduce to 11 = n2. The induction step is proved as follows (for arbitrary P € U):

(assumption)
m 7%
= (extensionality)
m[X := P] & X := P]
= (induction hypothesis)
[€,S)(m[X := P]) = [€, S](n2[ X := P])
= (define F;(P) := Ex([&,S](ni[X = P))), for i = 1,2)
o(F1) = o (k)
= (extensionality)
m[X = o(F)] £ plX = o(F)]
= (induction hypothesis)
[€,S](m[X = o(F1)]) = [€, 5] (n2[ X := o(F)])
= (definition)
[[&UX;S]](W) = [[g’UX;S]](UQ) D

Next, we can prove that the semantics as defined above indeed solves the equations for
those variables occurring in the specification:

Lemma 3.8. Let £ € Egs be monotonic, S € Spec, n € Val and X € X.
If X € dom(S), then Ex([€,S](n)) = [€,S](n)(X).

Proof. Let £ be monotonic. By induction on S, we will prove that for all X € dom(S) and
for all n, it holds that Ex([€, S](n)) = [€,S](n)(X). The base case trivially holds, because
X ¢ dom(e). For the induction step, assume X € dom(cY;S). We distinguish cases.

If X € dom(S):

[€,0Y;8](n)(X)
= (define F(P) := &y ([€,S](n]Y :=P])) )
[€,S)(nlY := o (F)])(X)
= (induction hypothesis; X € dom(S))
Ex([€,S1(lY := a(F)]))
= (definition)
Ex([€,0Y;8](n)
Otherwise, if X ¢ dom(S) then X =Y. We compute:
[€,0X:S](n)(X)
= (define F(P) := Ex([&,S](n[X := P))))
[€,SI(nlX := o (F)])(X)



5:12 T. NEELE AND J. VAN DE PoL Vol. 20:3

= (Lemma 3.7.1; X ¢ dom(S))

o(F)
= (computation rule, Lemma 2.1.1; F' is monotonic because Ex

is monotonic by assumption, and [£,S] is by Lemma 3.6.1)

F(o(F))
= Ex([€,S](n[X = o(F)]))
= (definition)

Ex([€,0X:8](n)) 0

We have the following left-congruence result:

Lemma 3.9. For &,& € &s, S, 81,82 € Spec, if &1 £ & and [£1,81] = [E2,S2], then
[E1,S;851] = [&2,S:52].

Proof. Induction on S. The base case is trivial. For the induction step, assume [€1,S1] =
[€2,S2] and & 7% &. Then also £ £ &. So, for any P ¢ U:

(induction hypothesis)
[€1,S:81](n[X = P]) = [&2, §;: 8] (n[X := P])
= (define Fj(P) := & x([&i, S;Si](n[X = PJ])); note &1 x = E2.x)
n[X = o(F)] =X = o(F2)]
= (induction hypothesis)
[€1, S:S1](n[X == o(F1)]) = [€2, S;S2] (X = o (F2)])
= (definition)
[€1,0X;8:81](n) = [£2,0X;5:8:](n) L]

Remarkably, right-congruence doesn’t hold in general. Corollary 5.5 will state a sufficient
condition for right-congruence.

3.3. The Dependency Graph between Variables. Since we introduced a semantic
notion of equations, avoiding syntactic expressions, we also need a semantic notion of
dependence between variables. Given Vi, Vs C X, we define that V; is independent of V5
with respect to £, notation indep(E, Vi, Va), as follows:

Vi1, - (m 2 m2) = (E(m) & E(n2))

That is: the solution of variables X € Vj is the same for all those n that differ at most
on the values assigned to Y € V5. This is slightly more liberal than the usual syntactic
requirement that Y doesn’t occur syntactically in Ex. We overload the definition of indep for
individual variables and specifications (and any combination of those), e.g., indep(E, Sy, S2) =
indep(E, dom(S1), dom(Ss2)) and indep(E, X,Y) = indep(E,{X },{Y}).

This notion gives rise to the variable dependencyégmph of a FES (€,S8). The variables
in dom(S) form the nodes of this graph; the edges X £5, ¥ are defined as —indep(E, X,Y).
We define X depends (indirectly) on' Y (written X £S5 Y') as the reflexive, transitive closure
of £5;. In other words, there exists a path in the dependency graph from X to Y. We also

use the notation X <51V to denote the transitive closure of —’S—>, i.e. there is a non-empty



Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:13

path from X to Y in the dependency graph. We assume that indep(€, §X 4_Y) is decidable

for all £, X and Y. Since dom(S) is finite, this also makes 5 and 557 decidable.

4. SUBSTITUTING IN FES EQUATIONS

In this section, we define two substitution operations on the equations of a FES, and study
under which conditions these operations preserve solutions. The first operation allows
substituting variables by their definition. We show that this substitution preserves solutions
in some new cases (cf. Section 7). The second operation replaces a variable in an equation
by its solution.

4.1. Unfolding Definitions. We define unfold(€, X,Y’), where each occurrence of Y in
the definition of X is replaced by the definition of Y, as follows:

unfold(&, X,Y)(n) := EM[X = Ex([Y := Ey (n)])]

We will use the following observation several times. It basically states that unfolding Y
in X doesn’t affect other equations than that for X.

Lemma 4.1. If X ¢ dom(S), then
(1) unfold(,X,Y) S €
(2) [unfold(€,X,Y),S] = [€,S]

Proof. (1) holds by definition of unfold, as it only modifies the value of £ on variable X.
Then (2) holds by Lemma 3.7.2. ]

It is known (cf. Example 7.1) that in general one should not unfold Y in X, if YV
precedes X in the specification. As a new result we show that we can substitute X in its
own definition:

Lemma 4.2. Let £ € &s be monotonic. Let S = 0X;S1, and X ¢ dom(Sy). Then
[unfold(&,X,X),S] = [€,S].

Proof. For arbitrary 7, define
F(P) = &x (€. $i)(nlX = P)))
G(P) := unfold(g,X,X)X([[E,Sl]](n[X = p]))
H(P,Q) = &x ([€, S ([X = P)X := Q)

By Lemma 3.7.1 and X ¢ dom(Sy), we obtain: [E€,S1](n[X := P])(X) =n[X := P|(X) = P,
S0

[€,Si](nlX = PDIX := P] = [€ &](n[X := P]) (*)
Next, we prove that o(F) = o(G):
oP.G(P)

= (by definition of unfold)

oP.Ex (I8, STIX == P)[X i= ex (I, SMIX := P))])
= (by * above)



5:14 T. NEELE AND J. VAN DE PoL Vol. 20:3

oP.Ex ([€,SIMIX = P)| X i= Ex([€, SITMIX = PIX = P))))
— oP.H(P,H(P,P))
= (unfold rule, Lemma 2.1.7)

oP. H(P, P)
= (by * above)

oP.F(P)

We can now finish the proof:

[unfold(€, X, X), 0 X;51](n)
= (by definition and Lemma 4.1.2)
[€, S1](n[X := o(G)])
= (by the computation before)
[€, S1](n[X := o (F)])
= (by definition)
[€,0X:81](n) H

The full theorem allows to unfold Y in the equations for those X that precede that of
Y, and in the equation of Y itself. So in particular, the case X =Y is allowed.

Theorem 4.3. Let £ € Egs be monotonic. Let S = S1;0Y ;82 and X ¢ dom(S2). Then
[unfold(E,X,Y),S] = [€,S].

Proof. The proof is by induction on §;. The base case is S1 = . If X =Y, we have to prove
[unfold(&E, X, X),0X;S2] = [€,0X;S2], which is just Lemma 4.2. Otherwise, if X # Y,
then X ¢ dom(cY;S2), so by Lemma 4.1 [unfold(€,X,Y),cY ;S]] = [€,0Y;S52].

Next, for § = pZ;51;0Y;8, define S5 := S1;0Y;Ss, and assume the induction hypothesis,
[unfold(€,X,Y),S3] = [€, Ss].

If Z # X, then £ £} unfold(£,X,Y). From the induction hypothesis, it follows by
congruence (Lemma 3.9) that [unfold(€, X,Y), pZ;S3] = [€, pZ;Ss].

If Z = X, we compute for arbitrary n € Val:

[unfold(E,X,Y), 0 X;S3](n)
= (by definition of the semantics)

[unfold(€,X,Y),S3](n[X := o(F)]), where

F(P) := unfold(&, X,Y ) x ([unfold(E,X,Y),Ss](n[X := PJ))
= (by induction hypothesis)

[€,S3](n[X := o(F)]), where



Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:15

F(P):= unfold(€,X,Y)x([E,S3](n]X := P)))

= (definition unfold)
ex (&, Ssl (X = PY[Y = &v ([, Ss)n[X := P))))

= (Lemma 3.8; Y € dom(S3))
Ex (1€, Sl X = P |Y := [€, Sl (n[X = P))(Y)))

= (congruence and extensionality: ([Y := ((Y)] = ()
Ex([€, Ss)(nlX = PI))

= [[57 UX;S?)H (77) [

4.2. Substituting a Partial Solution. The following theorem is motivated in [Mad97] as
follows. Assume we know by some means the solution a for a variable X in (£,S). Then we
can replace the definition of X by simply putting X = a. We simplify the proof in [Mad97],
which is based on an infinite series of FESs. Instead, we just use induction on S and some
properties of complete lattices.

Theorem 4.4. Let £ € Egs be monotonic and let a := [E,S](n)(X). Then
[€,81(n) = [€]X = a], S](n)

Proof. We prove the theorem by induction on S. The base case is trivial, for [£,¢e](n) =
n = [E][X ~ a],e](n). For the induction step (c¥;S), we need to define the functions
a,b: Val > U and F,G: U - U and H: (U xU) — U:

a(n) = [€,8](n)(X)

b(n) = [&,0Y;S](n)(X)
F(P) = & ([€,S)(nlY := P)))
G(P) = & ([€[X — b(n)],S])
H(P,Q) = & ([€[X = a(nlY := P}, S]|(nlY := Q1))

Then from the induction hypothesis V7. [€,S](n') = [E[X — a(n')],S](n’), we must prove:
V. [€,0Y:S](n) = [E[X — b(n)], oY;S](n).

We distinguish three cases:
If X =Y and X ¢ dom(S), we compute:

[E[X = b(n)], e X:5](n)

= [€[X = b(n)], S](n[X := o P.b(n)])

= (by the constant rule, Lemma 2.1.2)
[E[X = b(n)], SI(n[X = b(n)])

= (by Lemma 3.7.2 and X ¢ dom(S))
€, S](n[X = b(n)])

= (unfold definition of [ | in b(n).)
[€,S](n[X = [&,S](n[X := o (F)])(X)])

= (by Lemma 3.7.1 and X ¢ dom(S))
€, S](n[X == o (F)])

= [€,0X;S](n)



5:16 T. NEELE AND J. VAN DE PoL Vol. 20:3

If X =Y and X € dom(S), then note that using Lemma 3.7.3, for any £ and appropriate
F’. we have:

[€',0X:S](n) = [€',S](n[X := o F']) = [€',S](n)
So in particular, b(n) = a(n), and we can apply the induction hypothesis: Hence

[E[X = b(n)], 0 XS] (n)

= (by the equality above)
[E[X = b(n)], S](n)

= [€[X — a(n)], S](n)

= (induction hypothesis)
[£, S1(n)

= (by the equality above)
[€,0X:S](n)

Finally, if X # Y, then we can compute:

[€,0Y:8](n)
= [€,S](nlY = o(F)])
= (induction hypothesis)
[E[X = a(n]Y := o(F)])], SI(Y := o (F)])
= (unfold definition of [ | in b(n).)
[E[X = b(n)], SI(Y := o (F)])
= (will be proved below)
[E[X = b(n)], SIY := o (G)])
= [€[X = b(n)],oY;S](n)

We must still prove that o(F) = o(G).

oP. F(P)
= (induction hypothesis)
oP. & ([E1X > a(ylY = P])], S|l = P)))
— oP. H(P,P)
= Lemma 2.1.8 (solve rule) on AP, Q. H(Q, P)
oP. H(oP. H(P, P), P)
= (F(P)= H(P,P) as above)
oP. H(oP. F(P), P)
= (unfold definition of [ ] in b in G)
oP.G(P) O



Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:17

5. SWAPPING VARIABLES IN FES SPECIFICATIONS

We now study swapping the order of variables in a specification. In general, this operation
doesn’t exactly preserve solutions. We first show that adjacent variables with the same sign
may be swapped without changing the semantics (Section 5.1). Subsequently, we will prove
that we can swap the order between blocks of equations, under certain independence criteria
(Section 5.2). The main theorem of that section is new (cf. Section 7). Finally, we show that
swapping a pu/v sequence by the corresponding v/u in general leads to a greater or equal
solution (Section 5.3).

5.1. Swapping Equations with the same Sign.

Theorem 5.1. Assume & € Egs is monotonic. Then
[€,81;0X;0Y:Ss] = [€,51;0Y;0X ;8]
Proof. We first compute for arbitrary n € Val:
[€,0X;0Y;S2](n)
= [€,0Y;82](n[X := o(F>)]), where
Fy(P) = Ex([€,0Y;82] (n[X = P]))
=[€,82](n[X = o(Fy), Y := o(F3)]), where
Fy(P) = Ex([€,0Y:8](n[X = PI))
F3(Q) = & ([€, 8] (nlX = 0(F2), YV := Q)))
= (unfold definition of [ | in Fy, introduce F})
[€,S2](n[X :=0(Fy), Y := o(F3)]), where

B (P)(Q) =&y ([€,S](n[X == P Y :=Q)]))
Fy(P) = Ex([€, S](n[X == P, Y :=o(F1(P))]))
F3(Q) = &y ([€, 8] (n[X =0 (F2), Y :=Q]))
= A(o(F3),0(F3)), where

AP, Q) = [€,85](n[X =P, Y :=Q)])

P (P)(Q) = &y (A(P,Q))
Fy(P) = Ex(A(P,o(F1(P))))
F3(Q) = &y (A(o(F2), Q)

Symmetrically, we get:

[€,0Y;0X;:8:](n)
= B(o(G3),0(G3)), where

B(Q,P) = [&,S]nY =Q, X := P
G1(Q)(P) = &x(B(Q, P))
G2(Q) = &v(B(Q,0(G1(Q))))
G3(P) = Ex(B(o(Ga), P))



5:18 T. NEELE AND J. VAN DE PoL Vol. 20:3

Note that the theorem is trivial when X = Y. So we may assume X # Y. Hence
A(P,Q) = B(Q, P), and we have:

O'(Fg)
= oP.Ex(A(P,o(F1(P))))
=oP. Sx(A(P, UQEY(A(Pa Q))))

= (Beki¢ rule, Lemma 2.1.9, with H(p, q) := Ex(A(p,q))
and K (p,q) := Ev(A(g,p)), which are monotonic, because
€ is by assumption, and [€,S3] by Lemma 3.6.1)

oP.Ex(A(P,0Q. & (A(aP.Ex(A(P,Q)),Q))))

= (while A(P,Q) = B(Q,P) )

oP.Ex(B(0Q. &y (B(Q,0P.Ex(B(Q, P))))), P)
=0oP.Ex(B(0Q. &y (B(Q,0(G1(Q)))), P))
=0oP.Ex(B(o(Ga), P))
= 0(Gs)

We can now finish the proof:

(computation above, and full symmetry)
o(Fy) = 0(G3) and o(F3) = 0(G2)
= (because A(P,Q) = B(Q,P) )
A(o(Fy),0(F3)) = B(o(Ga),0(G3))
= [€,0X;0Y:85](n) = [€,0Y;0X;52](n)
= (Lemma 3.9)
[€,81;0X50Y:52](n) = [€,81;0Y 50 X38:](n) N

5.2. Migrating Independent Blocks of Equations. Our aim here is to investigate
swapping blocks of equations that are independent. We first need two technical lemmas.
The first lemma enables to commute updates to valuations with computing solutions:

Lemma 5.2. If X ¢ dom(S) and indep(€,S, X), then
[€,S](n[X := P]) = ([€,S](n)[X := P]
Proof. Induction on §. The base case is trivial:
[€,e](n[X := P]) = n[X := P] = [€,e](n)[X := P]

Case S = 0V;S1. Assume X ¢ dom(S) and indep(E,S,X), then X # Y, and also X ¢
dom(81) and indep(E,S1, X), so the induction hypothesis can be applied. Then
[€,0Y;8:](n[X := P])
=[€,S1](n[X =P, Y := o(F)]), where



Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:19

F(Q) = & ([€, Si](n[X =P, Y :=Q]))
= (induction hypothesis, and X # Y)
Ey ([€, 8] (Y = Q))[X := P])
= (Y € dom(S) is independent of X)
Ey ([€,S](n[Y = Q)))
= G(Q)
=[&,&](X =P Y :=0(G)])
= (induction hypothesis, and X # Y)
[€. S]]y = o(G)])[X = P]
= [€,0Y:8](n)[X := P] O]

The next lemma states that independent specifications can be solved independently.

Lemma 5.3. Let £ € &s and 81,852 € Spec. If indep(E,81,82), then for all n € Val,
[€. Su:S](n) = [€, S ([€, S1](m)-

Proof. Induction on &;. In case S; = € we obtain indeed:

[€,&:52](n) = [€,Sal(n) = [€, S2([€, €] (n))

Next, consider §; = 0 X;S. Assume indep(€,S1,S2), then it follows that indep(&,S, S2), so
we can use the induction hypothesis. Define:

F(P) = &x([€,S5:5:](n[X := P)))
G(P) = Ex([€,S](nX := P))

In order to show that F' = G, it suffices (because Ex is independent of Sa) to show that
for any P e U and Y ¢ dom(S2):

[€,8:Sa](n[X = P])(Y)
= (induction hypothesis)
[€, S (€, S(n[X := P]))(Y)
= (Lemma 3.7.1)
[€,ST(nlX = P(Y)
Next, we finish the proof with the following calculation:
[€,0X;8;82](n)
= [€,8:8](n[X = o(F)])
= (induction hypothesis)
[€, Sal([€, ST(nlX = o (F)]))
= (F = G, see above)
[€, Sal([€, ST(nlX = a(G))))
= [€, &]([€, 0 X;S5](n)) O

The next theorem shows that two disjoint blocks of equations can be swapped, provided
one of them doesn’t depend on the other. Note that a dependence in one direction is allowed,



5:20 T. NEELE AND J. VAN DE PoL Vol. 20:3

and that it doesn’t matter in which direction by symmetry. Theorem 5.7 will generalize this
by adding left- and right-contexts under certain conditions.

Theorem 5.4. Let disjoint(Si,S2) and indep(E,S1,S2). Then [E,S1;52] = [€, S2;81].

Proof. Induction on S2. The base case is trivial. For the induction step, let S = 0 X;S.
If we assume disjoint(S1,S2) and indep(E,S1,S2), then we also obtain disjoint(S1,S) and
indep(E,81,S), so we may apply the induction hypothesis [£,S51;S] = [€, S;S1]. Further-
more, from the same assumptions, we also get X ¢ dom(S;) and indep(E,S1, X). Let n be
arbitrary.

[€,S1:0 XS] (n)
= (Lemma 5.3)
[€,0X;ST([E, Si](n)
= [E,SI([E,S1](n)[X := o(F)]), where
F(P):= Ex([€,SI([€, S ()X = P])
= (Lemma 5.2)
Ex ([, SI([E, Sil(nlX = PI)))
= (Lemma 5.3)
Ex([€, 58] (n[X == P)))
=: G(P)
= [&,SI([E, Sl ()X := o (G)])
= (Lemma 5.2)
[€, SI(IE; Sil(n[X = o (G)]))
= (Lemma 5.3)
[€,S1:S](nlX = o (G)])
= [€,0X;51;8](n)
= (Lemma 3.9 and induction hypothesis)
= [€,0X:8:85](n) O

This migration theorem has several interesting corollaries. First, we get right-congruence
for independent specifications.

Corollary 5.5. Assume that indep(E1,81,S), indep(Ea, Sa,S), disjoint(S,S1;S2) and that
51 i 52. Then [[81,81]] = [[52,82]] z'mplz'es [[51,81;8]} = [[82,82;5]].

We also get the near-reverse of Lemma 5.3:

Corollary 5.6. Let indep(E,S2,81) and disjoint(S1,S2). Then for all n € Val, we have
[€, Su:Sa](n) = [€, S1]([€, S2](m)-

Proof. Under the given assumptions, we obtain from Theorem 5.4 (applied from right to
left) and Lemma 5.3:

[€,81:82](n) = [€, 823811 (n) = [€, S1]([€, S20(n) N

Theorem 5.7. Assume that disjoint(S1,S2;S3). Also, assume that either indep(E, S1,82;S3),
or indep(E, S2;83,S1). Then [, So;51;52;83] = [€, S0;52;51;83] .-



Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:21

Proof. We also have disjoint(S1, Ss3), and either indep(€, S1,S3) or indep(E, S3,S1). Using
Lemma 3.9 and Theorem 5.4 twice (in either direction) we get:

[€,80;81:82:83] = [€, S0;82:83:81] = [€, S0;S2;81;S5] ]

5.3. Inequalities by Swapping or Changing Signs. In this section, we will prove a few

inequalities. Theorem 5.9 shows the consequence of swapping variables with a different sign;

Theorem 5.10 shows the effect of changing the sign of a variable. But first, it will be shown
that < is a left congruence:

Lemma 5.8. Let £,& € &gs and S,S1,Sy € Spec. If & is monotonic, & £ &, and
[[51,81]} < [[52,82]], then [[81,8;51]} < Hgg,S;SQ]].

Proof. Induction on S. The base case is trivial.
[&1,0X:8:51](n)
= [&1,8;851](n[X = o(F)]), where
F(P):= & x([&1,8:8](n[X == P)))
< (by induction hypothesis and & monotonic)
([&2, 8;82](n[X = P)))
= & x([&2, 58] (n[X = P)))
=: G(P)

< (Using Lemma 3.6.1)
[€1,S:81](n[X = o(G)])
< (by induction hypothesis)
[€2,S:8:](n[X = o(G)])
= [&2,0X;5:82](n) L]

Note that, by duality, the above lemma may also be applied if £ is monotonic instead of
&1. Moreover, note that (only) for monotonic &£, Lemma 3.9 would follow from Lemma 5.8.

Theorem 5.9. Assume £ € Egs is monotonic and X # Y. Then
[€,S1;uX5vY ;S]] < [€,81;0Y ;X852
Proof. As in Theorem 5.1, and using X # Y, we obtain:
[€, uX;vY:Sa](n) = A(p(Fr), v(F3)), where

E1,x

AP,Q) =[€,S](n[X =P, Y :=Q))
F1(P)(Q) = &y (A(P,Q))
Fy(P) = Ex(A(P,v(F1(P))))
F(Q) = &y (A(u(F2),Q))

[€,vY;uX;82](n) = A(u(G3),v(Ge)), where
G1(Q)(P) = Ex(A(P,Q))
G2(Q) = &y (A(u(G1(Q)), Q)
G3(P) = Ex(A(P,v(G2)))



5:22 T. NEELE AND J. VAN DE PoL Vol. 20:3

By Lemma 2.2.4(a), u(F2) < pu(Gs), and by Lemma 2.2.4(b), v(F3) < v(G3), whence it
follows that [£, uX;vY;S2](n) < [€,vY;uX;S2](n). The theorem then follows by Lemma 5.8.
[

We end this section with another inequality:
Theorem 5.10. If £ is monotonic, then [E,S1;uX ;S]] < [€,S1;,vX;82].
Proof. Let 1 be an arbitrary valuation, and define F' : U — U by
F(P) :=Ex([€,S2](n]X = P])). We then have:
(Theorem 2.2.1)
uP. F(P) < vP. F(P)
= (Monotonicity, Theorem 3.6.1)
€, S:1 (11X = uP. F(P)]) < [€,S:](n[X := vP. F(P)])
= (Definition semantics)
[€, 1 X;8](n) < [€,vX;S2](n)
= (n was arbitrary)
[€, 1 X;8] < [€,vX;Ss]
= (Congruence, Theorem 5.8)
[€,81;0X;8:] < [€,81;vX;85] ]
In the next section, we will see sufficient conditions under which the inequality signs of

these theorems can be turned into equalities. These conditions will be phrased in terms of
the dependency graph.

6. INDIRECT DEPENDENCIES AND LOOPS

In Section 5.2, we studied direct dependencies between variables. Basically, a direct depen-
dency of X on Y means that Y occurs in the definition of X. We will now study the effect
of indirect dependencies, written X &Sy (cf. the definitions in Section 3.3)

Given a specification S and a computable predicate f on variables, we define split f(S ) =
(81, 82), where &; is the sublist of § with those X for which f(X) does not hold and S
is the sublist of S with those X for which f(X) does hold. Notice that, within &; and Sa,
variables keep their order from S.

The following basic facts follow directly from the definition of split.

Lemma 6.1. Let split;(S) = (81,82), then dom(S) = dom(S1) U dom(Sz) and
disjoint(S1, S2).

We first show how the equations in a FES may be rearranged if the specification is split
in such a way that certain independence conditions are fulfilled.

Lemma 6.2. Let f be a predicate and S a specification such that split;(S) = (S1,S2) and
indep(é', 82, 81) Then [[5, S]] = [[5, 81;82]].

Proof. We perform induction on S. The base case is trivial. Let split;(S) = (S1,S2) and
assume as induction hypothesis that indep(E,Sa,S1) implies [€,S] = [€, S1;S2]. For the
induction step, we consider the specification ¢Y’;S and distinguish two cases.



Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:23

If f(Y) does not hold, then we have split;(cY;S) = (0Y;851,82). Accordingly, we
assume indep (&, 0Y;S2, S1), which implies indep(E, S2,S1). We can thus apply the induction
hypothesis and congruence (Lemma 3.9) to obtain [£,0Y;S] = [€,0Y;51;52].

Otherwise, if f(Y) holds, we obtain split (0Y;S) = (S1,0Y;S2). Now we assume that
indep(E,S2,0Y;S1), which again implies indep(E, Sz, S1). We also have disjoint(S1,0Y;S2)
(Lemma 6.1), so we may apply Theorem 5.7 below:

[€,0Y;S]
= (by induction hypothesis and Lemma 3.9)
[€,0Y;51;8:]
= (by Theorem 5.7)
[€,81;0Y ;8] ]

We simplify notation and write splity ¢(S) for split dep (S), defining the predicate
deppo(Y) =X LSy 1t indep(E, X,Y) is computable (thCh we assume henceforward),
then X <5 Y is also computable since S is finite. Intuitively, if split xe(S) = (81, 8),
then & is the sublist of S with those Y on which X does not depend indirectly; and Sy is the
sublist of S with those Z on which X does depend indirectly. Notice that, if X ¢ dom(S),
then splitx ¢(S) = (S, ).

We have the following lemma about splitting a specification based on the dependencies
of X:

Lemma 6.3. If splitx ¢(S) = (S1,S52), then indep(E, Sz, S1).

Proof. Assume that some Z € dom(S2) would use some Y € dom(S1) in its definition in £.
Then X &5 7 &5, Y, so X £5 Y, and Y would be in & and not in Sy. []

The key theorem of this section states that the equations in a FES can be rearranged,
such that all equations that X depends on precede all other equations, or vice versa. This is
useful, because those parts can be solved independently, using Lemma 5.3. By repeatedly
picking a variable in a terminal strongly connected component of the remaining variable
dependency graph, one can thus solve all SCCs one by one. This idea already appeared
in [Jur00] for parity games, although it does not always provide performance benefits in
practice [FL09]. The theorem may also be used to reduce the number of fixpoint alternations
in a FES.

Theorem 6.4. Let splity ¢(S) = (S1,82). Then [€,8] = [€,81;52] = [€, S2;51]-

Proof. The first equality follows from Lemmas 6.2 and 6.3. From Theorem 5.4 and Lemmas 6.1
and 6.3 it follows that also [€,S1;S2] = [€, S2;51]. []

Based on this reordering principle, we can prove three more interesting results, which
we will do in the next subsections.

6.1. Swapping Signs and Dependency Loops. The first result (Theorem 6.7) states
that the sign of a variable X is only relevant if it depends on itself, i.e., X is on a cycle in
£S5+ (recall that S5 indicates a non-empty path in the variable dependency graph). We
first need a couple of auxiliary lemmas:



5:24 T. NEELE AND J. VAN DE PoL Vol. 20:3

Lemma 6.5. If X ¢ dom(S) and we have indep(E,S,X) as well as indep(E, X, X), then
€, uX;8] = [€,vX;5].
Proof. For o € {u,v} and arbitrary valuation n, we have:
[€,0X:5](n)
= (by definition of semantics)
[£, S1n[X := o (F))), where
F(P) :=&Ex([€, S](n[X := PJ))
= (Lemma 5.2, and X ¢ dom(S) and indep(€,S, X)
Ex(([€, SIn)[X = P])
= (by definition of indep(&, X, X))
Ex([€,S]n)
= (constant rule, Lemma 2.1.2)
[€, SI(n[X = Ex([€, SIn)])
So indeed [€, uX;S] = [€,vX;S]. ]
Lemma 6.6. If not X ££557 X und X ¢ dom(S), then [€, nX;S] = [€,vX;S].

Proof. Let S; and Sy be such that split x ¢(0X;S) = (S1,0X;S2), for o € {u1,v}. Note that

if not indep (&, pX;Sz, X), then for some Y € dom(uX;S;y), by definition of split, X LnXiSy

S+

Y £ X, which contradicts the assumption not X <259 X From dom(S2) C dom(S),
we obtain X ¢ dom(S2). Hence, X ¢ dom(Sz) and indep(E, uX;S2, X), so Lemma 6.5
applies. Together with Theorem 6.4 and Lemma 3.9, we then compute:

€, XS] = [€, S1:u XS] = [€, 8150 XS] = [€,v XS] []
Intuitively, the sign of X is only relevant if X is the most relevant variable (i.e. leftmost
in the specification) on some loop in the dependency graph. So in the full theorem, we can
restrict to dependencies through variables right from X:
Theorem 6.7. Assume that not X S5 X 4nd X ¢ dom(S3). Then
[€,81;uX;8:] = [€,S1:vX;S2]
Proof. By Lemma 6.6, [€,uX;S2] = [€,vX;S2]. The result follows by congruence,
Lemma 3.9. []

6.2. Reordering Variables and Dependency Loops. The second result (Theorem 6.9)
allows to swap any two neighbouring variables that don’t occur on a loop in the dependency
graph.

Lemma 6.8. Let not X £752Y5, v Then [€,0X;pY;S] = [€, pY;0X;S].
Proof. Note that for some &1 and S, we have
splitx ¢(0X;pY;S) = (pY';81,0X;82) = split x £(pY ;0 X;;S)
Hence, by applying Theorem 6.4 twice, we obtain:
[£,0X;pY;S] = [€,pY:851:0 XS] = [€, pY ;0 XS] ]



Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:25

Again, we can strengthen this, by observing that X and Y can be swapped, when there
is no loop that has either X or Y as its most relevant variable in the specification:

Theorem 6.9. Assume that not X M Y. Then we have
€, 8150 X;pY ;80 = [€, S1;3pY 50 X;50]

Proof. By Lemma 6.8, [£,0X;pY;S2] = [€, pY;0X;S2]. The result then follows by congru-
ence, Lemma 3.9. L]

Note that this result strengthens Theorem 5.1 (the signs may now be different), The-
orem 5.7 (we can have mutual dependencies on S, as long as no loop is introduced) and
Theorem 5.9 (we have here equality rather than inequality).

6.3. Forward Substitution and Dependency Loops. The final result strengthens
Theorem 4.3 by allowing unfolding of Y in the definition of X, even if Y precedes X in the
specification, provided Y doesn’t depend on X:

Theorem 6.10. Let £ € Egs be monotonic. Let S = S1,0Y,Sy. Assume that not Y &5 x.
Then [€,S] = [unfold(€,X,Y),S].

Proof. Assume not Y £S5, X. Then the following two observations hold:
(1) forall Ze X,V £5% 7 « v fldEXN)S, 7
(2) splity,e(S) = splity upporae,x,v)(S)
The first item holds, because unfold(E, X,Y) only modifies the definition of X, but Y doesn’t
refer to it. The second then follows from the definition of split.

Let (L1, Lo) := splity ¢(S). Then, as Y’ £ Y, we have Ly = L3;0Y;Ly. Note that
X ¢ dom(Ly), for we would then have YV £y X, contradicting the assumptions. Then we
can compute:

[£,5]
= (Theorem 6.4)
[€, L1;L3;0Y 5 Ly
= (Theorem 4.3)
[unfold(E,X,Y), L1;L3;0Y ;L4]
= (Theorem 6.4, observation (2) above)
[unfold(€,X,Y),S] []

7. SUMMARY — EXAMPLES — RELATED WORK

Table 1 summarizes our main results. We will discuss their relevance and compare them to
previous work in Section 7.1-7.3. Table 2 contains some other useful facts on FES, discussed
in Section 7.4.



5:26 T. NEELE AND J. VAN DE PoL Vol. 20:3

7.1. Substituting Definitions and Solutions. Theorem 4.3 in this form is new. It
generalizes [Mad97, Lemma 6.3] (for BES only) and [GWO05a, Lemma 18] (for PBES
only) to FES. Another generalization is that we allow that X = Y. That is, besides
unfolding the Y’s in the definition of some X preceding Y, one can even unfold Y in its
own definition. The proof for this case is more involved (cf. Lemma 4.2). For BES this
is useless, but for PBES this is useful, and already used in [OW10, PWW11] to unfold
PBESs to BESs. The technique of unfolding PBESs is perhaps the most commonly applied
method of solving PBESs [FAAKS24, KFG20, PWW11], although symbolic approaches do
exist [KNIU19, NWG20].

Theorem 6.10 is a new result, generalizing the case where indep(E,Y, X) for all X (i.e. Y
is in solved form, [Mad97, GWO05a]). In general, one cannot unfold Y in the definition of X,
when Y precedes X. However, if there is no dependency path from Y to X, then a forward
substitution is allowed. The proof is based on clever reordering of equations. The following
example shows that this condition is necessary:

Example 7.1. Consider the following two Boolean Equation Systems:

B By
vy =X vy =X
uX =Y uX =X

Unfolding Y in the definition of X in B; yields By. However, B; has the solution (T, T),
while the solution of By is (L, L). The reader can check this with the method described in
Example 7.2.

Theorem 4.4 allows to substitute a partial solution in a FES. It occurs already in [Mad97,
Lemma 3.19]. However, our proof is more direct. Mader suggests that a direct inductive
argument is not possible, and proves the theorem by contradiction, constructing an infinite
set of equation systems. We show that with an appropriate induction loading, the theorem
can be reduced to another lemma in fixpoint calculus (Lemma 2.1.8).

The substitution theorems form the basis for solving BES and PBES by Gauss-
elimination. They are called the global steps. Besides global steps, one needs local steps, to
eliminate X from the right hand side of its own definition. For BES, a local step is trivial,
because (only) in the Boolean lattice we have pX.f(X) = f(L) and vX.f(X) = f(T).
Local solution for PBES is much harder, and studied in [GW05a, OW10]. We stress that
our results show that the global steps hold in any FES. However, effective local solution is
specific to the underlying complete lattice.

Example 7.2. The following example shows the solution of a BES by Gauss elimination.
Basically, one first substitutes definitions backwards using Theorem 4.3 (along the way, we
use the identity Y V (Y A X)=Y):

uX = YVZ X = Y X = YAX
v = Z S vy = YAX| o | vy = YAX
wZ = YAX wZ = YAX uZ = YAX

Next, one obtains X = L by a local elimination step in the first equation, using that
Y A L = 1. This solution can then be substituted forward by Theorem 6.10, to obtain the
full solution (L, L, 1). In general, steps 1 and 2 must be mixed.

The next example shows a PBES where unfolding X in its own definition makes sense.



Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:27

| Thm | (In)Equality | Conditions
Reordering Variables

5.1 [€,81;0X;0Y;8:] = [€,81;0Y;0X;S2] | - £ is monotonic

5.9 [€,S81;pX0Y;So] < [€,S1;0Y;uX;82] | - € is monotonic

X 4Y
6.9 [€,81;0X;pY ;8] = [€,81;pY;0X;82] |- X4 Y in (€,0X;pY;S2)
5.7 [€,850:81:52:83] = [€, S0:82:81;83] | - disjoint(St, S2;53)

- either indep(€, S1, S2;S3),
or indep (&, S2;S3, S1)
Substituting Definitions and Solutions

4.3 [unfold(€,X,Y),S] = [€,S] - £ is monotonic
-8 =81;0Y;85
(X =Y is allowed) - X ¢ dom(S2)
6.10 [unfold(€,X,Y),S] = [€,S] - £ is monotonic
-85 =81;0Y;85
-Y 4 X in (€,S)
4.4 1€, S](n) = [E[X — A],S](n) - € is monotonic

- A= [€,S](n)(X)

Swapping Signs
5.10 [€,S81;uX;8:] < [€,S1;vX;852] - £ is monotonic

6.7 [[5,81;/1)(;82]] = [[g,Sl;l/X;SQ]] -X¢ dom(Sg)

X AT X in (&, nX;S2)

Table 1: Main results for arbitrary FES

Example 7.3. Applying Theorem 4.3 to unfold X in its own definition, we get:

WY = X(T)
vY = X(T) B ~ -
UX() = (bAY)V X(-b) — | uX(b) ; gi)c?;)(;;(( bAY)V X (—-b))

Applying Theorem 4.3 again, to unfold X in Y yields vY =Y Vv X(T), hence by local
resolution Y = T, hence X (b) = T.

7.2. Reordering Variables. Theorem 5.1 indicates that two adjacent variables with the
same sign may be interchanged. This theorem occurs already in [Mad97, Lemma 3.21]. For
PBES it is repeated in [GW05a, Lemma 21]. However, [Mad97, GW05a] don’t give a full
proof, but refer to Beki¢ Lemma. In our proof, we show exactly how Theorem 4.3 reduces to
our version of Beki¢ Rule (Lemma 2.1.9). In other works [Sei96, KNIU19], adjacent variables
with the same sign are grouped in unordered blocks. No claim is made about the correctness
of such a definition.

Theorem 5.9 shows the inequality that arises when interchanging adjacent variables
with different sign. It occurs already in [Mad97, Lemma 3.23], but our proof is different.
Our proof depends on a probably new inequality in fixpoint calculus, which we coin Bekic
Inequality (Lemma 2.2.4).

Theorem 6.9 is a new result. It states that in the special case that X and Y are not
on the same dependency loop, they can be interchanged without modifying the solution.



5:28 T. NEELE AND J. VAN DE PoL Vol. 20:3

This generalizes [GW05a, Lemma 19], which requires that the right-hand side of Y in £ is a
constant, i.e., indep(E,Y, Z) for all Z.

Finally, Theorem 5.7 in this form is new. It allows to swap whole blocks of equa-
tions. Mader [Mad97, Lemma 3.22] claims a similar result, under the condition that both
indep(&E,S1,S2) and indep(E,Sa,S1). However, [GW05a] show a counter example to this.
The repair in [GWO05a, Lemma 22] requires that Ss is empty. We show a stronger result: if
Ss3 is empty, only one of the requirements indep(Sa, S1) or indep(Sa, S1) is needed.

Notably, our result even applies to nonempty Ss, provided we have indep(S1, S2;S3) (or
its reverse), i.e. S is also independent on the variables in S3. Note that we allow arbitrary
(dependent) alternations within S; and Sy, and even Sy might depend on S;. We lifted two
other unnecessary restrictions: surprisingly, this result doesn’t require monotonicity of £.
Also, the results in [Mad97, GWO05a] are for individual equations only, while we can swap
whole blocks at the same time.

We now show an application of swapping blocks to reduce the number of y/v-alternations.

Example 7.4. Consider the following four Boolean Equation Systems:

B3 By Bs Bg
uX =Y uX =Y vZ = W uX =Y
Yy = X vZ = W uX =Y Yy = X
vZ = W py = X uYy = X wW = Z
wW = Z pW = Z wW = Z vZ = W

For these BES, the dependency graph between the variables consists of two loops,
X <Y and Z <> W. In particular, we have indep({X,Y },{Z, W}). We want to transform
Bj3 to Bs, because it has fewer alternations. Theorem 5.1 cannot be applied, because the
sign of Z is different from all the others.

Using Theorem 5.7 on individual equations, one can show that [Bs] = [Ba], because
indep(Y,{Z,W}). However, one cannot derive [B] = [Bs] using Theorem 5.7, because
neither indep(X,{Z,Y,W}), nor indep({Z,Y, W}, X) holds. However, one can prove B3 =
Bs directly with Theorem 5.7, by swapping block [X,Y] with Z, because indeed we have
indep({X,Y},{Z,W}). Alternatively, one can observe that X - Z, and apply Theorem 6.9
to deduce that By = Bj directly.

All theorems fail to prove the equivalence of Bs_5 with Bg. However, Theorem 5.9
guarantees that [Bg] < [Bs]. As a matter of fact, the solution of B3, By and Bj is
(X=1,Y=1,Z=T,W =T), while the solutionof Bgis (X = L, Y =1,Z2=1, W =1).
The reader may verify this by Gauss Elimination, cf. Example 7.2. This shows that the
reordering theorems cannot easily be strengthened.

7.3. Swapping Signs. The inequality of Theorem 5.10 is well known and appears for
instance in [Mad97, Lemma 3.24]. Theorem 6.7 is new. It shows that the sign of variable X
is only relevant when X is the most relevant variable on a dependency loop.

Example 7.5. Now consider the next three BESs which only differ in their fixpoint signs:

By Bs By
uX =Y uX =Y uX =Y
vY = XVZ vY = XVZ Y = XVvZ
uZ = ZAW | vZ = ZAW | pZ = ZAW
vW = X AL vW = X AL uWw = XAL




Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:29

] Lem \ Result \ Condition ‘
3.8 1€,S](n)(X) =Ex([E,S](n)) - £ monotonic
- X € dom(S)
5.3 €, 81:82](n) = [€, S2]([€, S1](n)) - indep(&, 81, S2)
5.6 [€,81:8:](n) = [€, SII([E, S2D () = indep(€,8,,81)

- disjoint(S1, S2)
58 | [€,851] < [€,S2] implies [€,S;51] < [€,8:852] | - € monotonic
3.9 [[5781]] = IIg,SQ]] implies [[E,S;Sﬂ] = [[E,S;SQ]]
5.5 [€,81] = [€, S2] implies [€, S1;S] = [€,S2;S] | - indep(E,S1,S)
- indep(€, 82, S)
- disjoint(S, 51;52)

Table 2: Some useful lemmas for arbitrary FES

Like before, want to manipulate B7 to reduce the number of fixpoint alternations. We
identify two possibilities. First, we may flip the sign of Z, obtaining Bg, which has the
solution (T, T, L, 1). By Theorem 5.10, it holds that [Br] < [Bs] and so we conclude that
also [B7](Z) = [B7](W) = L. The other option is to flip the sign of Y and W, yielding By.
Since Y A7 Y in Y, Z, W, Theorem 6.7 gives that [B7] = [Bo]-

7.4. Other Results. Along the way, we proved (and proof checked) several lemmas on FES
that may be interesting on their own. For quick reference, we summarize these in Table 2.
Here 1 denotes an arbitrary valuation. All these lemmas occur in some form in the literature.
Lemma 3.8 states that the semantics indeed returns a solution, and follows from [Mad97,
Lemma 3.5]. Lemma 5.3 corresponds to [Mad97, Lemma 3.10] (which is not proved there)
and [GWO05a, Lemma 7). Actually, [Mad97] has Lemma 5.6, which is equivalent according to
our Theorem 5.7. Lemma 3.9 and 5.8 are from [Mad97, Lemma 3.14] as well, and Lemma 5.5
follows directly from Lemma 5.3. We included it here to stress that right congruence doesn’t
hold in general.

Finally, we needed some basic results on fixpoints in complete lattices, cf. Lemma 2.1
and 2.2. The existence and definition of least and greatest fixpoints is due to Knaster (on
sets) and Tarski (on complete lattices) [Tarb5], see [LNS82] for a historical account. We
(re)proved a number of identities (Lemma 2.1) and inequalities (Lemma 2.2) on fixpoint
expressions. Most of these results are known. Lemma 2.1.1-6 can for instance be found
in [Bac02]. Rule 9 (Beki¢ Equality) can be found in e.g. [dB80, Bek84], but stated in a
different form, involving simultaneous fixpoints. We have not found in the literature the
inequality in Lemma 2.2.4, which resembles Beki¢ equality on terms with mixed minimal
and maximal fixpoints.

8. FORMALISATION IN CoQ & PVS

We have formalised all of the above theory in both Coq [Ber08, St23] and PVS [OS08].
A replication artefact containing these proofs is available at [NvdP24]. The formalized
definitions and proofs follow the definitions and proof steps in this paper quite closely. Here,
we highlight the main difference between the two formalisations.



5:30 T. NEELE AND J. VAN DE PoL Vol. 20:3

In Coq, we captured the concepts of complete lattices and monotonic functions in
typeclasses. For these, we defined several typeclass instances, for example the product lattice
and composition of monotonic functions. In many cases, Coq is able to perform automatic
typeclass resolution, saving us from manually proving monotonicity of complex functions,
for example those in Lemma 2. Furthermore, Coq supports user-defined notation, allowing
us to closely follow the notation used in the paper. The proofs for showing decidability of
X &% v are extensive, something that is not reflected in the paper.

Our PVS definitions and proofs were originally developed under PVS version 4.2, but
could be ported to version 7.1 with minimal effort. Contrary to Coq, PVS is built on classical
logic and thus allows the law of excluded middle (for all propositions P, it holds PV —P).
We thus do not need to supply proofs for decidability of X £5 V. This also means that
we do not rely on finiteness of S, and thus the definition of — only depends on £ and the
domain & is restricted where necessary, e.g., in Theorem 6.7. This simplifies the proof of
Lemma 6.2: it can operate on split x ¢ directly.

9. CONCLUSION

We provided several equalities and inequalities involving a range of operations on fixpoint
equation systems (FES). We refer to Table 1 and 2 (Section 7) for a summary of the theorems.
Lemmas 2.1 and 2.2 provide a useful overview on equalities and inequalities for nested fixed
points in complete lattices.

We provided self-contained and detailed proofs of all results and mechanised these proofs
in two proof assistants, Coq and PVS.

By the generic nature of FES, these results carry over to other formalisms such as
Boolean equation systems (BES), parity games (and variations thereof), and parameterised
(first-order) Boolean equation systems (PBES).

ACKNOWLEDGMENT

Large part of the research was carried out at the Centrum voor Wiskunde en Informatica.

REFERENCES
[And94] Henrik Reif Andersen. Model checking and Boolean graphs. Theoretical Computer Science,
126(1):3-30, April 1994. doi:10.1016/0304-3975(94)90266-6.
[AV95] Henrik Reif Andersen and Bart Vergauwen. Efficient checking of behavioural relations and

modal assertions using fixed-point inversion. In P. Wolper, editor, CAV 1995, volume 939 of
LNCS, pages 142-154. Springer, 1995. doi:10.1007/3-540-60045-0_47.

[Bac02] Roland Backhouse. Galois connections and fixed point calculus. In R. Backhouse, R. Crole, and
J. Gibbons, editors, Algebraic and coalgebraic methods in the mathematics of program construc-
tion, volume 2297 of LNCS, pages 89-150. Springer, 2002. doi:10.1007/3-540-47797-7_4.

[Bek84] Hans Bekic¢. Definable operation in general algebras, and the theory of automata and flowcharts.
In C.B. Jones, editor, Programming Languages and Their Definition, volume 177 of LNCS,
pages 30-55. Springer, 1984. doi:10.1007/BFb0048939.

[Ber08] Yves Bertot. A Short Presentation of Coq. In Otmane Ait Mohamed, César Mufioz, and
Sofiene Tahar, editors, TPHOLs 2008, volume 5170 of LNCS, pages 12-16. Springer, 2008.
doi:10.1007/978-3-540-71067-7_3.


https://doi.org/10.1016/0304-3975(94)90266-6
https://doi.org/10.1007/3-540-60045-0_47
https://doi.org/10.1007/3-540-47797-7_4
https://doi.org/10.1007/BFb0048939
https://doi.org/10.1007/978-3-540-71067-7_3

Vol. 20:3

[BGK*19)

[BKP20]

[CD12]

[CIKT17]

[CPvdPWO07]

[CS93]

[dB80]
[EGLS19]

[EJ91]

[FAAKS24]

[FL09)

[GKO4]

[GLMS13]

[GM99]

[GWO05a]
[GWO5b]

[GW23]

[HS21]

[IMT22]

[Jur00]

OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:31

Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P.
de Vink, Wieger Wesselink, Anton Wijs, and Tim A. C. Willemse. The mCRL2 Toolset for
Analysing Concurrent Systems: Improvements in Expressivity and Usability. In TACAS 2019,
volume 11428 of LNCS, pages 21-39, 2019. doi:10.1007/978-3-030-17465-1_2.

Paolo Baldan, Barbara Konig, and Tommaso Padoan. Abstraction, Up-To Techniques and
Games for Systems of Fixpoint Equations. In Igor Konnov and Laura Kovécs, editors, CONCUR
2020, LIPIcs, pages 25:1-25:20, 2020. doi:10.4230/LIPIcs.CONCUR.2020.25.

Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theoretical Computer Science,
458:49-60, November 2012. doi:10.1016/j.tcs.2012.07.038.

Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In STOC 2017, pages 252—-263. ACM, June 2017.
doi:10.1145/3055399.3055409.

Taolue Chen, Bas Ploeger, Jaco van de Pol, and Tim A. C. Willemse. Equivalence Checking for
Infinite Systems using Parameterized Boolean Equation Systems. In CONCUR 2007, volume
4703 of LNCS, pages 120-135, 2007. doi:10.1007/978-3-540-74407-8_9.

Rance Cleaveland and Bernhard Steffen. A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. Formal Methods in System Design, 2:121-147, 1993. doi:
10.1007/BF01383878.

J.W. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall, 1980.

Sgren Enevoldsen, Kim Guldstrand Larsen, and Jif{ Srba. Abstract Dependency Graphs and
Their Application to Model Checking. In TACAS 2019, volume 11427 of LNCS, pages 316-333.
Springer, 2019. doi:10.1007/978-3-030-17462-0_18.

E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In FOCS 1991,
pages 368-377, 1991. doi:10.1109/sfcs.1991.185392.

Mahmudul Faisal Al Ameen, Naoki Kobayashi, and Ryosuke Sato. Asynchronous unfold/fold
transformation for fixpoint logic. Science of Computer Programming, 231:103014, January
2024. doi:10.1016/j.scico.2023.103014.

Oliver Friedmann and Martin Lange. Solving Parity Games in Practice. In ATVA 2009, volume
5799 of LNCS, pages 182-196. Springer, 2009. doi:10.1007/978-3-642-04761-9_15.

Jan Friso Groote and Misa Keindnen. Solving disjunctive/conjunctive boolean equation systems
with alternating fixed points. In K. Jensen and A. Podelski, editors, TACAS 2004, volume
2988 of LNCS, pages 436—450. Springer, 2004. doi:10.1007/978-3-540-24730-2_33.

Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2011: A Toolbox
for the Construction and Analysis of Distributed Processes. International Journal on Software
Tools for Technology Transfer, 15(2):89-107, 2013. ISBN: 978-3-540-73367-6. doi:10.1007/
978-3-540-73368-3_18.

Jan Friso Groote and Radu Mateescu. Verification of temporal properties of processes in a
setting with data. In A.M. Haeberer, editor, AMAST 1998, volume 1548 of LNCS, pages 74-90.
Springer, 1999. doi:10.1007/3-540-49253-4_8.

Jan Friso Groote and Tim A.C. Willemse. Parameterised boolean equation systems. Theoretical
Computer Science, 343:332-369, 2005. doi:10.1016/j.tcs.2005.06.016.

J.F. Groote and T.A.C. Willemse. Model-checking processes with data. Science of Computer
Programming, 56(3):251-273, 2005. doi:10.1016/j.scico.2004.08.002.

Jan Friso Groote and Tim A. C. Willemse. Real Equation Systems with Alternating Fixed-
Points. In CONCUR 2023, volume 279 of LIPIcs, pages 28:1-28:17. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2023. doi:10.4230/LIPICS.CONCUR.2023.28.

Daniel Hausmann and Lutz Schroder. Quasipolynomial Computation of Nested Fixpoints. In
Jan Friso Groote and Kim Guldstrand Larsen, editors, TACAS 2021, volume 12651 of LNCS,
pages 38-56. Springer, 2021. doi:10.1007/978-3-030-72016-2_3.

Marcin Jurdzinski, Rémi Morvan, and K. S. Thejaswini. Universal Algorithms for Parity Games
and Nested Fixpoints. In Principles of Systems Design, volume 13660 of LNCS, pages 252-271.
2022. doi:10.1007/978-3-031-22337-2_12.

Marcin Jurdziriski. Small Progress Measures for Solving Parity Games. In STACS 2000, volume
1770 of LNCS, pages 290-301. Springer, 2000. doi:10.1007/3-540-46541-3_24.


https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.4230/LIPIcs.CONCUR.2020.25
https://doi.org/10.1016/j.tcs.2012.07.038
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1007/978-3-540-74407-8_9
https://doi.org/10.1007/BF01383878
https://doi.org/10.1007/BF01383878
https://doi.org/10.1007/978-3-030-17462-0_18
https://doi.org/10.1109/sfcs.1991.185392
https://doi.org/10.1016/j.scico.2023.103014
https://doi.org/10.1007/978-3-642-04761-9_15
https://doi.org/10.1007/978-3-540-24730-2_33
https://doi.org/10.1007/978-3-540-73368-3_18
https://doi.org/10.1007/978-3-540-73368-3_18
https://doi.org/10.1007/3-540-49253-4_8
https://doi.org/10.1016/j.tcs.2005.06.016
https://doi.org/10.1016/j.scico.2004.08.002
https://doi.org/10.4230/LIPICS.CONCUR.2023.28
https://doi.org/10.1007/978-3-030-72016-2_3
https://doi.org/10.1007/978-3-031-22337-2_12
https://doi.org/10.1007/3-540-46541-3_24

5:32

[KFG20]

[KNIU19]

[LNS82]

[Mad97]
[Mat9s]

[Mat06]

[MS03]

[Nee22]

[NvdP24]

[NWG20]

[NWWV22]

[0S08]

[OW10]
[PWW11]
[S*T23]
[Sei96]
[Tar55]

[TC02]

[vD18]

[ZC05)

T. NEELE AND J. VAN DE PoL Vol. 20:3

Naoki Kobayashi, Grigory Fedyukovich, and Aarti Gupta. Fold/Unfold Transformations
for Fixpoint Logic. In TACAS 2020, volume 12079 of LNCS, pages 195-214, 2020. doi:
10.1007/978-3-030-45237-7_12.

Naoki Kobayashi, Takeshi Nishikawa, Atsushi Igarashi, and Hiroshi Unno. Temporal Verification
of Programs via First-Order Fixpoint Logic. In Bor-Yuh Evan Chang, editor, SAS 2019, volume
11822 of LNCS, pages 413-436. Springer, 2019. doi :10.1007/978-3-030-32304-2_20.

J.-L. Lassez, V. L. Nguyen, and E. A. Sonenberg. Fixed point theorems and semantics: A folk
tale. Information Processing Letters, 14(3):112-116, May 1982. doi:10.1016/0020-0190(82)
90065-5.

Angelika Mader. Verification of Modal Properties Using Boolean Equation Systems. PhD thesis,
Technische Universitdt Miinchen, 1997.

Radu Mateescu. Vérification des propriétés temporelles des programmes paralléles. PhD thesis,
Institut National Polytechnique de Grenoble - INPG, April 1998.

Radu Mateescu. CAESAR_SOLVE: A generic library for on-the-fly resolution of alternation-free
boolean equation systems. International Journal on Software Tools for Technology Transfer,
8(1):37-56, February 2006. doi:10.1007/510009-005-0194-9.

Radu Mateescu and Mihaela Sighireanu. Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Science of Computer Programming, 46(3):255-281, March 2003.
doi:10.1016/S0167-6423(02)00094-1.

Thomas Neele. (Re)moving Quantifiers to Simplify Parameterised Boolean Equation Systems.
In ARQNL 2022, volume 3326 of CEUR Workshop Proceedings, pages 64-80. CEUR-WS.org,
2022.

Thomas Neele and Jaco van de Pol. Replication package with proofs for the paper “Operations
on Fixpoint Equation Systems”, February 2024. doi:10.5281/zenodo.10640564.

Thomas Neele, Tim A. C. Willemse, and Jan Friso Groote. Finding Compact Proofs for
Infinite-Data Parameterised Boolean Equation Systems. Science of Computer Programming,
188:102389, 2020. doi:10.1016/j.scico.2019.102389.

Thomas Neele, Tim A. C. Willemse, Wieger Wesselink, and Antti Valmari. Partial-order
reduction for parity games and parameterised Boolean equation systems. International
Journal on Software Tools for Technology Transfer, 24(5):735-756, October 2022. doi:
10.1007/s10009-022-00672-0.

Sam Owre and Natarajan Shankar. A Brief Overview of PVS. In Otmane Ait Mohamed,
César Munoz, and Sofiene Tahar, editors, TPHOLs 2008, volume 5170 of LNCS, pages 22-27.
Springer, 2008. doi:10.1007/978-3-540-71067-7_5.

Simona Orzan and Tim A. C. Willemse. Invariants for Parameterised Boolean Equation Systems.
Theoretical Computer Science, 411(11-13):1338-1371, 2010. doi:10.1016/j.tcs.2009.11.001.
B. Ploeger, J. W. Wesselink, and T. A. C. Willemse. Verification of reactive systems via
instantiation of Parameterised Boolean Equation Systems. Information and Computation,
209(4):637-663, 2011. doi:10.1016/j.ic.2010.11.025.

Matthieu Sozeau et al. The Coq Proof Assistant, June 2023. doi:10.5281/zenodo.8161141.

Helmut Seidl. Fast and simple nested fixpoints. Information Processing Letters, 59(6):303-308,
September 1996. doi:10.1016/0020-0190(96)00130-5.

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285-309, June 1955. doi:10.2140/pjm.1955.5.285.

Li Tan and R. Cleaveland. Evidence-based model checking. In E. Brinksma and K.G. Larsen,
editors, CAV 2002, volume 2404 of LNCS, pages 455-470. Springer, 2002. doi:10.1007/
3-540-45657-0_37.

Tom van Dijk. Oink: An Implementation and Evaluation of Modern Parity Game Solvers.
In Marieke Huisman and Dirk Beyer, editors, TACAS 2018, volume 10805 of LNCS, pages
291-308. Springer, 2018. doi:10.1007/978-3-319-89960-2_16.

Dezhuang Zhang and Rance Cleaveland. Fast generic model-checking for data-based systems.
In F. Wang, editor, FORTE 2005, volume 3731 of LNCS, pages 83—97. Springer, 2005. doi:
10.1007/11562436_8.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany


https://doi.org/10.1007/978-3-030-45237-7_12
https://doi.org/10.1007/978-3-030-45237-7_12
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1016/0020-0190(82)90065-5
https://doi.org/10.1016/0020-0190(82)90065-5
https://doi.org/10.1007/s10009-005-0194-9
https://doi.org/10.1016/S0167-6423(02)00094-1
https://doi.org/10.5281/zenodo.10640564
https://doi.org/10.1016/j.scico.2019.102389
https://doi.org/10.1007/s10009-022-00672-0
https://doi.org/10.1007/s10009-022-00672-0
https://doi.org/10.1007/978-3-540-71067-7_5
https://doi.org/10.1016/j.tcs.2009.11.001
https://doi.org/10.1016/j.ic.2010.11.025
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.1016/0020-0190(96)00130-5
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.1007/3-540-45657-0_37
https://doi.org/10.1007/3-540-45657-0_37
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1007/11562436_8
https://doi.org/10.1007/11562436_8

	1. Introduction
	2. Fixpoint Laws in Complete Lattices
	3. Fixpoint Equation Systems
	3.1. Definition of Fixpoint Equation Systems
	3.2. Semantics of FES and Basic Results
	3.3. The Dependency Graph between Variables

	4. Substituting in FES Equations
	4.1. Unfolding Definitions
	4.2. Substituting a Partial Solution

	5. Swapping Variables in FES specifications
	5.1. Swapping Equations with the same Sign
	5.2. Migrating Independent Blocks of Equations
	5.3. Inequalities by Swapping or Changing Signs

	6. Indirect Dependencies and Loops
	6.1. Swapping Signs and Dependency Loops
	6.2. Reordering Variables and Dependency Loops
	6.3. Forward Substitution and Dependency Loops

	7. Summary – Examples – Related Work
	7.1. Substituting Definitions and Solutions
	7.2. Reordering Variables
	7.3. Swapping Signs
	7.4. Other Results

	8. Formalisation in Coq & PVS
	9. Conclusion
	Acknowledgment
	References

