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Abstract. We study operations on fixpoint equation systems (FES) over arbitrary com-
plete lattices. We investigate under which conditions these operations, such as substituting
variables by their definition, and swapping the ordering of equations, preserve the solution
of a FES. We provide rigorous, computer-checked proofs. Along the way, we list a number
of known and new identities and inequalities on extremal fixpoints in complete lattices.

1. Introduction

This paper deals with operations on systems of fixpoint equations over an arbitrary complete
lattice. We investigate when these operations preserve the solution of the equations. An
example of a system of equations is the set E := {X = f(X,Y, Z), Y = g(X,Y, Z), Z =
h(X,Y, Z)}. For most results, it is required that the functions f, g, h are monotonic in the
given lattice. Such systems may well have multiple solutions. In order to specify particular
solutions, we introduce specifications, for example S := [µX, νY, µZ], indicating for each
variable whether we are interested in the minimal (µ) or maximal (ν) solution. The order of
the variables in these specifications is relevant: the leftmost variable indicates the fixpoint
with the highest priority. A Fixpoint Equation System (FES) [Mad97] is a pair (E ,S), where
E is a set of equations, and S is a specification. Several well known instances are obtained
by instantiating the complete lattice.

Well-known instances of FES. Boolean Equation Systems (BES) arise as FES over
the complete lattice ⊥ < ⊤, and were proposed in [And94, AV95] for solving the model
checking and equivalence checking problems on finite labeled transition systems (LTS). BES
received extensive study in [Mad97, MS03, GK04, Mat06]. A generalisation to the domain
R ∪ {−∞,∞} is real equation systems (RES) [GW23].

An equivalent notion to BES is two-player parity games [EJ91], see [Mad97] for a proof.
Algorithms for solving parity games receive a lot of attention, since this is one of the few
problems which is in NP and in co-NP, but not known to be in P. Recently, it has been
shown that parity games (and thus BES) can be solved in quasi-polynomial time [CJK+17].
This result has also been lifted to the general setting of FES on finite lattices [HS21, JMT22].
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Other types of games can also be seen as an instance of FES, for example energy parity
games [CD12] are FES on the lattice Z → {⊥,⊤}, ordered pointwise. A modern parity game
solver is Oink [vD18].

Parameterised Boolean Equation Systems (PBES, also known as first-order, or predicate
BES) arise as FES over the powerset lattice (2D,⊆), with D some data type, typically
representing the state space of a possibly infinite LTS. In [Mat98, GM99], PBES are pro-
posed to encode the model-checking problem of first-order mu-calculus on infinite LTSs;
they are studied in more detail in [GW05b, GW05a]. An encoding of (branching) bisim-
ulation of infinite LTSs in PBES is proposed in [CPvdPW07]. Various procedures that
operate on PBES have been studied, for example to simplify [Nee22, OW10] or solve
PBES [NWG20, NWWV22, PWW11]. Algorithms for solving some timed fragments of
PBES automatically are studied in [ZC05]. PBES are implemented in the mCRL2 [BGK+19]
and CADP [GLMS13] model checking toolsets. MuArith [KFG20] is similar to PBES, but
the domain D is restricted to integers.

Fixpoint Equation Systems over arbitrary complete lattices (FES) are defined in [Mad97,
TC02]. Some works refer to the same concept as Hierarchical Equation Systems (HES) [Sei96,
KNIU19], Systems of Fixpoint Equations [BKP20] or Nested Fixpoint Equations [JMT22].
In [ZC05] it is recognized that BES and PBES (and also Modal Equation Systems [CS93],
an equational representation of the modal mu-calculus) are instances of FES. FESs are
mainly useful to provide generic definitions for all these kinds of equation systems. We
claim that the generic semantics of a FES is more elegant than the semantics of PBES, as
given in e.g. [GW05a]. In particular, equations in FES are defined in a semantic manner
as functions on valuations, rather than on syntactic expressions (possibly with binders).
Another advantage of FES is that one can derive a number of basic theorems for equation
systems over all lattices in one stride, like in Chapter 3 of Mader’s thesis [Mad97].

Abstract dependency graphs [EGLS19] are similar to FES, but variables range over a
Noetherian partial order with a least element, instead of a complete lattice. When assuming
every right-hand side is effectively computable, minimal fixpoints can be computed in an
iterative fashion. Dependency graphs do not contain fixpoint alternations.

Contributions. Our main goal is to study basic operations on FES, related with substituting
variables in the equations by their definition or final solution, or swapping the order of
equations in the specification. Substitution operations form the basis of solving BES by
so-called Gauss-elimination [Mad97]. Also for PBES, Gauss elimination plays a crucial role
in their solution. Reordering the variables in the specification is useful, because it may give
rise to independent subspecifications that can be solved separately. Also, swapping the order
of variables may bring down the number of alternations between µ and ν, thus lowering the
complexity of certain solution algorithms.

Our results consist of equalities and inequalities between FES, expressing under which
conditions the basic operations preserve the solution of a FES. The main results are
summarized in Table 1 (Section 7). In particular:

(1) Results on substitution for BES and PBES are generalized to FES.
(2) Results on swapping variables are generalized and sorted out, by weakening existing

conditions, and by providing alternative conditions.
(3) We provide rigorous proofs of our results. All proofs in this paper have been proof-

checked mechanically by the Coq theorem prover [Ber08, S+23] (version 8.17) as well as
the PVS theorem prover [OS08] (version 7.1). Our proofs are available online [NvdP24].
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Overview. We first provide the basic theory of complete lattices in Section 2 and reprove
all needed facts on fixpoints, in order to present a self-contained account. The formal
definition and semantics of Fixpoint Equation Systems is provided in Section 3. The proofs
(Section 4, 5 and 6) are quite elementary. They are mainly based on induction (to deal with
the recursive definition of FES semantics, Section 3.1) and on identities and inequalities
on fixpoints in complete lattices. In Section 7, we provide examples of applications of our
theory and discuss its relation with the literature. Finally, we highlight several aspects of
our Coq and PVS formalisations in Section 8.

2. Fixpoint Laws in Complete Lattices

A partial order on a universe U is a binary relation ≤ ⊆ U ×U , which is reflexive (∀x. x ≤ x),
anti-symmetric (∀x, y. x ≤ y∧y ≤ x ⇒ x = y) and transitive (∀x, y, z. x ≤ y∧y ≤ z ⇒ x ≤ z),
where in all cases x, y, z ∈ U .

Given partial orders (U,≤) and (V,≤), we define partial orders (U×V,≤) and (U → V,≤)
pointwise: (u1, v1) ≤ (u2, v2) iff u1 ≤ u2∧v1 ≤ v2, and f ≤ g iff ∀x ∈ U.f(x) ≤ g(x). Function
f : U → V is called monotonic, iff ∀x, y. x ≤ y ⇒ f(x) ≤ f(y).

Given a set X ⊆ U , we define its set of lower bounds in U as lb(X) := {y ∈ U | ∀x ∈
X. y ≤ x}. If y ∈ lb(X) and z ≤ y for all z ∈ lb(X), then y is called the greatest lower bound
of X. A complete lattice is a triple (U,≤, glb), where ≤ is a partial order, and glb(X) returns
the greatest lower bound of X in U , for all (finite or infinite) X ⊆ U .

Given a complete lattice (U,≤, glb), define the partial order (U,≥), by x ≥ y iff y ≤ x.
We define the set of upper bounds of X ⊆ U by ub(X) := {y ∈ U | ∀x ∈ X. y ≥ x}. Define
lub(X) := glb(ub(X)). Clearly, for all y ∈ ub(X), lub(X) ≤ y. But also lub(X) ∈ ub(X), for
if x ∈ X, then x ∈ lb(ub(X), hence x ≤ glb(ub(X). So lub(X) yields the least upper bound of
X, and (U,≥, lub) is a complete lattice as well.

Given a complete lattice (U,≤, glb), we define the least fixpoint (µ) and greatest fixpoint
(ν) of any function f : U → U (not only for monotonic) as follows:

µ(f) := glb({x | f(x) ≤ x})
ν(f) := lub({x |x ≤ f(x)})

For σ ∈ {µ, ν}, we abbreviate σ(λx.f(x)) by σx.f(x). Note that by definition, ν in (U,≤, glb)
equals µ in (U,≥, lub), so theorems on (µ,≤) hold for (ν,≥) as well “by duality”. Also note
that F : U → U is monotonic in (U,≤) if and only if it is monotonic in (U,≥). A direct
consequence of the definition of µ is the following principle (and its dual):

f(x) ≤ x ⇒ µ(f) ≤ x (µ-fixpoint induction)
x ≤ f(x) ⇒ x ≤ ν(f) (ν-fixpoint induction)

We now have the following identities on fixpoint expressions:

Lemma 2.1. Let (U,≤, glb) be a complete lattice. Let σ ∈ {µ, ν}, A ∈ U , and let F,G ∈
U → U and H,K ∈ U × U → U be monotonic functions. Then:

(1) F (σ(F )) = σ(F ) (computation rule)
(2) σx.A = A (constant rule)
(3) σx. F (G(x)) = F (σx.G(F (x))) (rolling rule)
(4) σx. F (F (x)) = σx. F (x) (square rule)
(5) σ is monotonic (fixpoint monotonicity)
(6) σx.H(x, x) = σx. σy.H(x, y) (diagonal rule)
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(7) σx.H(x, x) = σx.H(x,H(x, x)) (unfolding rule)
(8) σx.H(x, x) = σx.H(x, σx.H(x, x)) (solve rule)
(9) σx.H(x, σy.K(y, x)) = σx.H(x, σy.K(y, σz.H(z, y))) (Bekič rule)

Proof. We first prove the theorem for σ = µ. By the observations above, the theorem then
follows for σ = ν as well (“by duality”).

(1) (a) Let y with F (y) ≤ y be given. Then by fixpoint induction,
µ(F ) ≤ y. By monotonicity, F (µ(F )) ≤ F (y) ≤ y. Since y is arbitrary, F (µ(F )) is
a lower bound of {x |F (x) ≤ x}. Hence F (µ(F )) ≤ glb({x |F (x) ≤ x}) = µ(F )

(b) F (µ(F )) ≤ µ(F ) by (a), so by monotonicity,
F (F (µ(F ))) ≤ F (µ(F )). By fixpoint induction, µ(F ) ≤ F (µ(F )).

Then by anti-symmetry F (µ(F )) = µ(F ).
(2) Follows directly from (1) by taking F := λx.A (which is monotonic)
(3) Obviously, λx. F (G(x)) and λx.G(F (x)) are monotonic.

(a) By (1), F (G(F (µx.G(F (x))))) = F (µx.G(F (x))). Hence by fixpoint induction,
µx. F (G(x)) ≤ F (µx.G(F (x))).

(b)

G(F (G(µx. F (G(x)))))
(1)
= G(µx. F (G(x)))

⇒ (by fixpoint induction)

µx.G(F (x)) ≤ G(µx. F (G(x)))

⇒ (by monotonicity)

F (µx.G(F (x))) ≤ F (G(µx. F (G(x))))
(1)
= µx. F (G(x))

By anti-symmetry, we obtain µx. F (G(x)) = F (µx.G(F (x))).
(4) (a) Using (1) twice, F (F (µx. F (x))) = F (µx. F (x)) = µx. F (x). So by fixpoint induc-

tion, µx. F (F (x)) ≤ µx. F (x).
(b) By (3), we get F (µx. F (F (x))) = µx. F (F (x)). Hence by fixpoint induction,

µx. F (x) ≤ µx. F (F (x)).
Then by anti-symmetry, µx. F (F (x)) = µx. F (x).

(5) Assume f ≤ g. Let y with g(y) ≤ y be given. Then f(y) ≤ g(y) ≤ y, so µ(f) ≤ y by
fixpoint induction. Since y is arbitrary, µ(f) is a lower bound for {x | g(x) ≤ x}. By
definition µ(g) is its greatest lower bound, so µ(f) ≤ µ(g).

(6) (a)

H(µx.H(x, x), µx.H(x, x))
(1)
= µx.H(x, x)

⇒ (by fixpoint induction, applied with F := λx.H(x, x))

µy.H(µx.H(x, x), y) ≤ µx.H(x, x)

⇒ (by fixpoint induction)

µx. µy.H(x, y) ≤ µx.H(x, x)

(b) Let us abbreviate A := µx. µy.H(x, y). Using (5) one can show that λx. µy.H(x, y)
is monotonic. Then:

A
(1)
= µy.H(A, y)

(1)
= H(A,µy.H(A, y))

⇒ (by congruence and both equations above)

H(A,A) = H(A,µy.H(A, y)) = A
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⇒ (by fixpoint induction)

µx.H(x, x) ≤ A = µx. µy.H(x, y)

By anti-symmetry, we indeed get: µx.H(x, x) = µx. µy.H(x, y).
(7) Using (4) on λy.H(x, y) yields µx. µy.H(x, y) = µx. µy.H(x,H(x, y)). Applying (6) to

both sides yields µx.H(x, x) = µx.H(x,H(x, x)).
(8) We use (6) twice on the function λ(y, x).H(x, y):

µx.H(x, x)
(6)
= µy. µx.H(x, y)
(1)
= µx.H(x, µy. µx.H(x, y))
(6)
= µx.H(x, µx.H(x, x))

(9) Define F (y) := µx.H(x, y) and G(y) := µx.K(x, y). Then:

µy. F (G(y))
(3)
= F (µy.G(F (y)))

⇒ (by definition of F , G)

µy. µx.H(x,G(y)) = F (µy. µx.K(x, F (y)))

⇒ (by 6, applied to left- and right-hand side)

µx.H(x,G(x)) = F (µy.K(y, F (y)))

⇒ (by definition of F , G)

µx.H(x, µy.K(y, x)) = µx.H(x, µy.K(y, µz.H(z, y)))

A careful analysis shows that all these identities can be derived in an equational style
from the identities 1, 3, 4 and 6. A natural question is whether all true equalities (with µ as
second order operation, and variables ranging over monotonic functions) can be derived from
these four identities in an equational manner (thus excluding the fixpoint induction rule).
We don’t know the answer, but we expect that at least the equations µx. F (x) = µx. F p(x)
are needed for all primes p. Results from universal algebra don’t apply directly, due to the
second order nature of the fixpoint operator.

By mixing least and greatest fixpoints, we also obtain a number of inequalities. In
particular, 4 is new, as far as we know. Note the similarity of (4) with Bekič Rule, Lemma 2.1.
We will call (4) Bekič Inequality.

Lemma 2.2. Let (U,≤, glb) be a complete lattice. Let σ ∈ {µ, ν}, A ∈ U , and let F,G ∈
U → U and H,K ∈ U × U → U be monotonic functions. Then:

(1) µ(F ) ≤ ν(F )
(2) (a) µx.x ≤ A

(b) A ≤ νx.x
(3) µx. νy.H(x, y) ≤ νy. µx.H(x, y)
(4) (a) µx.H(x, νy.K(y, x)) ≤ µx.H(x, νy.K(y, µx.H(x, y)))

(b) νx.H(x, µy.K(y, x)) ≥ νx.H(x, µy.K(y, νx.H(x, y)))

Proof.

(1) F (ν(F ))
(2.1.1)
= ν(F ), so by fixpoint induction, µ(F ) ≤ ν(F ).

(2) (a) A ≤ A, hence by fixpoint induction, µx.x ≤ A. Then (b) follows by duality.
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(3) Define F (x) := νy.H(x, y) and G(y) := µx.H(x, y). Note that both F and G are
monotonic, using Lemma 2.1.5. Then:

µ(F )
(2.1.1)
= F (µ(F ))

(2.1.1)
= H(µ(F ), F (µ(F )))

(2.1.1)
= H(µ(F ), µ(F ))

⇒ (by fixpoint induction)

G(µ(F )) = µx.H(x, µ(F )) ≤ µ(F )

⇒ (monotonicity F )

F (G(µ(F ))) ≤ F (µ(F ))
(2.1.1)
= µ(F )

⇒ (monotonicity H)

F (G(µ(F ))
(2.1.1)
= H(G(µ(F )), F (G(µ(F )))) ≤ H(G(µ(F )), µ(F ))

(2.1.1)
= G(µ(F ))

⇒ (by fixpoint induction)

µ(F ) ≤ G(µ(F ))

⇒ (by fixpoint induction for ν)

µ(F ) ≤ ν(G)

(4) (a) Define F (y) := µx.H(x, y) and G(x) := νy.K(y, x). Note that both F and G are
monotonic, using Lemma 2.1.5. Then:

µx.H(x, νy.K(y, x))
(2.1.6)
= µx. µz.H(z, νy.K(y, x))

= µx. F (G(x))
(2.1.3)
= F (µx.G(F (x)))

≤ (using 1, and monotonicity of F )

F (νx.G(F (x)))

= F (νx. νy.K(y, F (x)))
(2.1.6)
= F (νy.K(y, F (y)))

= µx.H(x, νy.K(y, µx.H(x, y)))

Then (b) follows by “duality” (reversing µ/ν and ≤/≥). More precisely, (b) is (a) in
the reversed complete lattice (U,≥, lub).

Note that (1) and (3) are their own dual.

3. Fixpoint Equation Systems

In this section we first formally define Fixpoint Equation Systems (FES). We show by
examples how they generalize Boolean and Predicate Equation Systems. Subsection 3.2
introduces the semantics of a FES by defining its solutions. Finally, Subsection 3.3 defines
the variable dependency graph in a FES.
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3.1. Definition of Fixpoint Equation Systems. Fix a complete lattice (U,≤, glb), and a
set of variables X . Throughout the paper, we assume that equality on variables is decidable.
We define the set of valuations Val := X → U . For X ∈ X , η ∈ Val , P ∈ U , we denote
by η[X := P ] the valuation that returns P on X and η(Y ) on Y ̸= X. As any function,
valuations can be ordered pointwise, i.e. η1 ≤ η2 iff ∀X ∈ X . η1(X) ≤ η2(X). Note that
valuation update is monotonic, that is, if P ≤ Q, then η[X := P ] ≤ η[X := Q]. To indicate
that two valuations agree on a set of variables V ⊆ X , we write η1 =

V η2, formally defined as
∀X ∈ V.η1(X) = η2(X). The complement of V in X is denoted V .

A set of mutually recursive equations is a member of Eqs := Val → Val . The set Eqs is
also ordered pointwise. E is monotonic iff it is a monotonic function on Val . Note that this
semantic view on equations escapes the need to introduce (and be limited) to a particular
syntax.

Example 3.1. Take X = {X,Y, Z} and U = B, the Boolean lattice ⊥ < ⊤. We write
(a, b, c) ∈ B3 as a shorthand for the valuation {X=a, Y=b, Z=c}. The system of equations
{X = Y ∧ Z, Y = X ∨ Z, Z = ¬X} is represented in our theory as the function

B := λ(X,Y, Z) ∈ B3. (Y ∧ Z, X ∨ Z, ¬X) .

It is not monotonic, because as valuations, (⊥,⊥,⊥) ≤ (⊤,⊤,⊤), but

B(⊥,⊥,⊥) = (⊥,⊥,⊤) ̸≤ (⊤,⊤,⊥) = B(⊤,⊤,⊤) .

Note that Eqs is isomorphic with X → Val → U . This motivates the following slight
abuse of notation: Given E ∈ Eqs, we will often write EX(η) for E(η)(X). This expression
denotes the definition of X in E , possibly depending on other variables as represented by the
valuation η. Similar to valuations, agreement on variables from V ⊆ X is denoted E1 =V E2,
defined as ∀η ∈ Val , X ∈ V.E1(η)(X) = E2(η)(X).

The set of specifications consists of finite lists of signed variables: Spec := ({µ, ν} × X )∗.
Note that a specification selects a subset of variables to be considered, assigns a fixpoint sign
to these variables, and assigns an order to these variables. We use σX as a notation for (σ,X),
write ε for the empty list, and use ; for list concatenation. We will identify a singleton list
with its element. For instance, [µX, νY ];µZ denotes the specification [(µ,X), (ν, Y ), (µ,Z)].
We define dom(S) ⊆ X as the set of variables that occur in some pair in S. Decidability of
X ∈ dom(S) follows from finiteness of S and decidability of equality on variables. We define
disjoint(S1,S2) iff dom(S1) ∩ dom(S2) = ∅.

We often require that valuations or equation systems agree on the variables in a
specification. Accordingly, we overload =

· so that η1 =
S η2 (resp. E1 =

S E2) is defined as
η1 =

S η2 (resp. E1 =
S E2). This also applies when a complement is involved: η1 =

S η2 is
η1 =

dom(S) η2.
Finally, a fixpoint equation system (FES) F on (U,X ) is simply a pair in Fes := Eqs×Spec.

Before we present the semantics of FES, we first consider several instances of FES.

Example 3.2. The Boolean Equation System [Mad97] traditionally written as

µX = Y ∧ Z
νY = X ∨ Z
νZ = ¬X

is represented in our theory as the pair (B, [µX, νY, νZ]), where B is from Example 3.1.
Note that this notation for BES integrates the set of equations and the specification into
one, and these cannot be considered separately.
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Example 3.3. A PBES (parameterized BES [GW05a], or predicate equation system [ZC05])
is a FES over the complete lattice U := (P(D),⊆) for some data set D, or equivalently
(D → B,≤). PBES thus generalise BES: each variable is now a predicate over domain D,
allowing one to create complex expressions over data. For our example, let X = {X,Y } and
D = N× B. Again using the shorthand (X,Y ) ∈ (D → B)2 for valuations, (B′, [µX, νY ]) is
a PBES, where

B′ := λ(X,Y ) ∈ (D → B)2.
(λm ∈ N, b ∈ B. (b → m > 0 ∧ Y (m,⊥)) ∧ (¬b → m < 5 ∧ Y (m,⊥)),
λm ∈ N, b ∈ B. X(m− 1,m > 4) ∨ Y (m+ 1,⊥))

The function on the last line, which defines Y , does not contain an occurrence of the
argument b. However, in our theory we are required to include it so that both variables in
X := {X,Y } are predicates over the same D := N × B. In the notation of [GW05a], the
same PBES is simply written as a pair of predicate definitions with accompanying fixpoint
signs. The argument b of Y may be left out:

µX(m : N, b : B) = (b → m > 0 ∧ Y (m)) ∧ (¬b → m < 5 ∧ Y (m))
νY (m : N) = X(m− 1,m > 4) ∨ Y (m+ 1)

Similar to BES, the PBES formalism as defined in [GW05a] does not consider the equations
and the specification separately.

Remark 3.4. Our choice of separating the set of equations and the specification makes it
easier to perform induction proofs over the specification (because one retains knowledge of
all equations in the proof scope). However, we have not required that all variables in S are
unique. This is not needed in our formalization, because in Lemma 3.7.3 we will show that if
X ∈ dom(S), then any set of equations E has the same semantics when combined with S or
with σX;S, for any σ ∈ {µ, ν}. Do note that there is a hidden assumption: even if X occurs
multiple times in S, possibly with different signs, there can only be one defining equation
for it, because E is a function. So when transferring the results to traditional notation, one
should add the (quite natural) requirement that all equations have unique variable names.

Example 3.5. Modal equation systems (MES) [CS93] is a very similar FES instance to
PBES since it also uses the powerset lattice (P(D),⊆). However, a MES is interpreted on a
labelled transition system (LTS), so that D is equal to the set of states in the LTS. MES
includes, for every action a in the LTS, the modal operators [a]φ (“φ must hold after every
possible transition labelled with a”) and ⟨a⟩φ (“there exists an a-transition after which
φ holds”). MES is an equational representation of the modal mu-calculus. Adopting the
notation from the previous examples, an example of a MES is:

νX = Y
µY = [a]X ∧ [b]Y

This MES expresses that on every path in the LTS, action a occurs infinitely often (and b
may happen only finitely often in between).
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3.2. Semantics of FES and Basic Results. Next, the semantics of a FES, JE ,SK : Val →
Val , is defined recursively on S:

JE , εK(η) := η
JE , σX;SK(η) := JE ,SK(η[X := σ(F )]),

where F : U → U is defined as
F (P ) := EX(JE ,SK(η[X := P ]))

We now state the first results on the semantics of FES. The lemma below states
monotonicity properties for the semantics. They ensure that fixpoints are well-behaved.
Below, recall that we use pointwise ordering, e.g., E1 ≤ E2 iff E1(η)(X) ≤ E2(η)(X) for all η
and X.

Lemma 3.6. Let E, E1, E2 ∈ Eqs and S ∈ Spec, then
(1) If E is monotonic, then JE ,SK is monotonic.
(2) If E1 is monotonic and E1 ≤ E2, then JE1,SK ≤ JE2,SK.

Proof.

(1) We prove ∀η1, η2. η1 ≤ η2 ⇒ JE ,SK(η1) ≤ JE ,SK(η2) by induction on S. The base case:
assume η1 ≤ η2, then JE , εK(η1) = η1 ≤ η2 = JE , εK(η2). Induction step: Let η1 ≤ η2 be
given, then for any P ∈ U , we have η1[X := P ] ≤ η2[X := P ]. So

(induction hypothesis)

JE ,SK(η1[X := P ]) ≤ JE ,SK(η2[X := P ])

⇒ (E is monotonic)

EX(JE ,SK(η1[X := P ])) ≤ EX(JE ,SK(η2[X := P ]))

⇒ (fixpoint monotonicity, Lemma 2.1.5)

σP. EX(JE ,SK(η1[X := P ])) ≤ σP. EX(JE ,SK(η2[X := P ]))

⇒ (define Fi(P ) := EX(JE ,SK(ηi[X := P ])), for i = 1, 2)

η1[X := σ(F1)] ≤ η2[X := σ(F2)]

⇒ (induction hypothesis)

JE ,SK(η1[X := σ(F1)]) ≤ JE ,SK(η2[X := σ(F2)])

⇔ (definition)

JE , σX ;SK(η1) ≤ JE , σX ;SK(η2)

(2) Assume E1 is monotonic, and E1 ≤ E2 (pointwise). We prove by induction on S that
∀η. JE1,SK(η) ≤ JE2,SK(η). The base case is simple: for all η, we have JE1, εK(η) = η =
JE2, εK(η). For the induction step, let η be given, then for any P ∈ U :

(induction hypothesis)

JE1,SK(η[X := P ]) ≤ JE2,SK(η[X := P ])

⇒ (monotonicity of E1 and E1 ≤ E2, pointwise))
E1,X(JE1,SK(η[X := P ])) ≤ E2,X(JE2,SK(η[X := P ]))

⇒ (fixpoint monotonicity, Lemma 2.1.5)

σP. E1,X(JE1,SK(η[X := P ])) ≤ σP. E2,X(JE2,SK(η[X := P ]))

⇒ (define Fi(P ) := Ei,X(JEi,SK(η[X := P ])), for i = 1, 2)
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η[X := σ(F1)] ≤ η[X := σ(F2)]

⇒ JE1,SK(η[X := σ(F1)])
≤ (monotonicity, part 1 of this lemma)

JE1,SK(η[X := σ(F2)])
≤ (induction hypothesis)

JE2,SK(η[X := σ(F2)])

⇒ (definition)

JE1, σX ;SK(η) ≤ JE2, σX ;SK(η)

The next lemma states three sanity properties of the semantics: (1) The semantics
only modifies the valuation on elements in the domain; (2) the semantics only depends on
equations mentioned in the domain; (3) the input valuation is only used for variables outside
the domain.

Lemma 3.7. Let E , E1, E2 ∈ Eqs, S ∈ Spec, η ∈ Val and X ∈ X .

(1) If X /∈ dom(S) then JE ,SK(η)(X) = η(X).

(2) If E1 =S E2, then JE1,SK = JE2,SK.
(3) If η1 =

S η2, then JE ,SK(η1) = JE ,SK(η2).

Proof.

(1) Induction on S. The base case holds by definition. For the induction step, assume
X /∈ dom(σY ;S). Then

JE , σY ;SK(η)(X)

= (define F (P ) := EY (JE ,SK(η[Y := P ]))

JE ,SK(η[Y := σ(F )])(X)

= (induction hypothesis, note: X /∈ dom(S))
η[Y := σ(F )](X)

= (X /∈ dom(σY ;S), so X ̸= Y )

η(X)

(2) Induction on S. The base case holds by definition. For the induction step, let η be given,
and assume E1 =

σX;S E2. Note that this implies E1 =
S E2, so we can use the induction

hypothesis. For any P ∈ U we have:

(induction hypothesis)

JE1,SK(η[X := P ]) = JE2,SK(η[X := P ])

⇒ (X ∈ dom(σX;S), so E1,X = E2,X by assumption)

E1,X(JE1,SK(η[X := P ])) = E2,X(JE2,SK(η[X := P ]))

⇒ (define Fi(P ) := Ei,X(JEi,SK(η[X := P ])) for i = 1, 2)

η[X := σ(F1)] = η[X := σ(F2)]

⇒ (induction hypothesis)

JE1,SK(η[X := σ(F1)]) = JE2,SK(η[X := σ(F2)])

⇔ (definition)
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JE1, σX ;SK(η) = JE2, σX ;SK(η)

(3) Induction on S. The base case is trivial, because both the assumption and the conclusion
reduce to η1 = η2. The induction step is proved as follows (for arbitrary P ∈ U):

(assumption)

η1 =
σX;S η2

⇒ (extensionality)

η1[X := P ] =
S η2[X := P ]

⇒ (induction hypothesis)

JE ,SK(η1[X := P ]) = JE ,SK(η2[X := P ])

⇒ (define Fi(P ) := EX(JE ,SK(ηi[X := P ])), for i = 1, 2)

σ(F1) = σ(F2)

⇒ (extensionality)

η1[X := σ(F1)] =
S η2[X := σ(F2)]

⇒ (induction hypothesis)

JE ,SK(η1[X := σ(F1)]) = JE ,SK(η2[X := σ(F2)])

⇒ (definition)

JE , σX ;SK(η1) = JE , σX ;SK(η2)

Next, we can prove that the semantics as defined above indeed solves the equations for
those variables occurring in the specification:

Lemma 3.8. Let E ∈ Eqs be monotonic, S ∈ Spec, η ∈ Val and X ∈ X .
If X ∈ dom(S), then EX(JE ,SK(η)) = JE ,SK(η)(X).

Proof. Let E be monotonic. By induction on S, we will prove that for all X ∈ dom(S) and
for all η, it holds that EX(JE ,SK(η)) = JE ,SK(η)(X). The base case trivially holds, because
X /∈ dom(ε). For the induction step, assume X ∈ dom(σY ;S). We distinguish cases.

If X ∈ dom(S):
JE , σY ;SK(η)(X)

= (define F (P ) := EY (JE ,SK(η[Y := P ])) )

JE ,SK(η[Y := σ(F )])(X)

= (induction hypothesis; X ∈ dom(S))
EX(JE ,SK(η[Y := σ(F )]))

= (definition)

EX(JE , σY ;SK(η))

Otherwise, if X /∈ dom(S) then X = Y . We compute:

JE , σX ;SK(η)(X)

= (define F (P ) := EX(JE ,SK(η[X := P ])) )

JE ,SK(η[X := σ(F )])(X)
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= (Lemma 3.7.1; X /∈ dom(S))
σ(F )

= (computation rule, Lemma 2.1.1; F is monotonic because EX
is monotonic by assumption, and JE ,SK is by Lemma 3.6.1)

F (σ(F ))

= EX(JE ,SK(η[X := σ(F )]))

= (definition)

EX(JE , σX ;SK(η))

We have the following left-congruence result:

Lemma 3.9. For E1, E2 ∈ Eqs, S,S1,S2 ∈ Spec, if E1 =
S E2 and JE1,S1K = JE2,S2K, then

JE1,S;S1K = JE2,S;S2K.

Proof. Induction on S. The base case is trivial. For the induction step, assume JE1,S1K =
JE2,S2K and E1 =

σX;S E2. Then also E1 =S E2. So, for any P ∈ U :

(induction hypothesis)

JE1,S ;S1K(η[X := P ]) = JE2,S ;S2K(η[X := P ])

⇒ (define Fi(P ) := Ei,X(JEi,S;SiK(η[X := P ])); note E1,X = E2,X)

η[X := σ(F1)] = η[X := σ(F2)]

⇒ (induction hypothesis)

JE1,S ;S1K(η[X := σ(F1)]) = JE2,S ;S2K(η[X := σ(F2)])

⇒ (definition)

JE1, σX ;S ;S1K(η) = JE2, σX ;S ;S2K(η)

Remarkably, right-congruence doesn’t hold in general. Corollary 5.5 will state a sufficient
condition for right-congruence.

3.3. The Dependency Graph between Variables. Since we introduced a semantic
notion of equations, avoiding syntactic expressions, we also need a semantic notion of
dependence between variables. Given V1, V2 ⊆ X , we define that V1 is independent of V2

with respect to E , notation indep(E , V1, V2), as follows:

∀η1, η2. (η1 =
V2 η2) ⇒ (E(η1) =V1 E(η2)) .

That is: the solution of variables X ∈ V1 is the same for all those η that differ at most
on the values assigned to Y ∈ V2. This is slightly more liberal than the usual syntactic
requirement that Y doesn’t occur syntactically in EX . We overload the definition of indep for
individual variables and specifications (and any combination of those), e.g., indep(E ,S1,S2) =
indep(E , dom(S1), dom(S2)) and indep(E , X, Y ) = indep(E , {X}, {Y }).

This notion gives rise to the variable dependency graph of a FES (E ,S). The variables
in dom(S) form the nodes of this graph; the edges X

E,S−−−→ Y are defined as ¬indep(E , X, Y ).
We define X depends (indirectly) on Y (written X

E,S−−−→→ Y ) as the reflexive, transitive closure
of

E,S−−−→. In other words, there exists a path in the dependency graph from X to Y . We also
use the notation X

E,S−−−→+
Y to denote the transitive closure of

E,S−−−→, i.e. there is a non-empty
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path from X to Y in the dependency graph. We assume that indep(E , X, Y ) is decidable
for all E , X and Y . Since dom(S) is finite, this also makes

E,S−−−→→ and
E,S−−−→+

decidable.

4. Substituting in FES Equations

In this section, we define two substitution operations on the equations of a FES, and study
under which conditions these operations preserve solutions. The first operation allows
substituting variables by their definition. We show that this substitution preserves solutions
in some new cases (cf. Section 7). The second operation replaces a variable in an equation
by its solution.

4.1. Unfolding Definitions. We define unfold(E , X, Y ), where each occurrence of Y in
the definition of X is replaced by the definition of Y , as follows:

unfold(E , X, Y )(η) := E(η)[X := EX(η[Y := EY (η)])]
We will use the following observation several times. It basically states that unfolding Y

in X doesn’t affect other equations than that for X.

Lemma 4.1. If X /∈ dom(S), then
(1) unfold(E , X, Y ) =

S E
(2) Junfold(E , X, Y ),SK = JE ,SK

Proof. (1) holds by definition of unfold , as it only modifies the value of E on variable X.
Then (2) holds by Lemma 3.7.2.

It is known (cf. Example 7.1) that in general one should not unfold Y in X, if Y
precedes X in the specification. As a new result we show that we can substitute X in its
own definition:

Lemma 4.2. Let E ∈ Eqs be monotonic. Let S = σX;S1, and X /∈ dom(S1). Then
Junfold(E , X,X),SK = JE ,SK.

Proof. For arbitrary η, define

F (P ) := EX
(
JE ,S1K(η[X := P ])

)
G(P ) := unfold(E , X,X)X

(
JE ,S1K(η[X := P ])

)
H(P,Q) := EX

(
JE ,S1K(η[X := P ])[X := Q]

)
By Lemma 3.7.1 and X /∈ dom(S1), we obtain: JE ,S1K(η[X := P ])(X) = η[X := P ](X) = P ,
so

JE ,S1K(η[X := P ])[X := P ] = JE ,S1K(η[X := P ]) (*)

Next, we prove that σ(F ) = σ(G):

σP.G(P )

= (by definition of unfold)

σP. EX
(
JE ,S1K(η[X := P ])

[
X := EX

(
JE ,S1K(η[X := P ])

)])
= (by * above)
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σP. EX
(
JE ,S1K(η[X := P ])

[
X := EX

(
JE ,S1K(η[X := P ])[X := P ]

)])
= σP.H(P,H(P, P ))

= (unfold rule, Lemma 2.1.7)

σP.H(P, P )

= (by * above)

σP. F (P )

We can now finish the proof:

Junfold(E , X,X), σX ;S1K(η)
= (by definition and Lemma 4.1.2)

JE ,S1K(η[X := σ(G)])

= (by the computation before)

JE ,S1K(η[X := σ(F )])

= (by definition)

JE , σX ;S1K(η)

The full theorem allows to unfold Y in the equations for those X that precede that of
Y , and in the equation of Y itself. So in particular, the case X = Y is allowed.

Theorem 4.3. Let E ∈ Eqs be monotonic. Let S = S1;σY ;S2 and X /∈ dom(S2). Then
Junfold(E , X, Y ),SK = JE ,SK.

Proof. The proof is by induction on S1. The base case is S1 = ε. If X = Y , we have to prove
Junfold(E , X,X), σX;S2K = JE , σX;S2K, which is just Lemma 4.2. Otherwise, if X ̸= Y ,
then X /∈ dom(σY ;S2), so by Lemma 4.1 Junfold(E , X, Y ), σY ;S2K = JE , σY ;S2K.

Next, for S = ρZ;S1;σY ;S2, define S3 := S1;σY ;S2, and assume the induction hypothesis,
Junfold(E , X, Y ),S3K = JE ,S3K.

If Z ̸= X, then E =
{Z} unfold(E , X, Y ). From the induction hypothesis, it follows by

congruence (Lemma 3.9) that Junfold(E , X, Y ), ρZ;S3K = JE , ρZ;S3K.
If Z = X, we compute for arbitrary η ∈ Val :

Junfold(E , X, Y ), σX ;S3K(η)
= (by definition of the semantics)

Junfold(E , X, Y ),S3K(η[X := σ(F )]), where

F (P ) := unfold(E , X, Y )X(Junfold(E , X, Y ),S3K(η[X := P ]))

= (by induction hypothesis)

JE ,S3K(η[X := σ(F )]), where
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F (P ) := unfold(E , X, Y )X(JE ,S3K(η[X := P ]))
= (definition unfold)

EX
(
JE ,S3K(η[X := P ])

[
Y := EY (JE ,S3K(η[X := P ]))

])
= (Lemma 3.8; Y ∈ dom(S3))

EX
(
JE ,S3K(η[X := P ])

[
Y := JE ,S3K(η[X := P ])(Y )

])
= (congruence and extensionality: ζ[Y := ζ(Y )] = ζ)

EX(JE ,S3K(η[X := P ]))

= JE , σX ;S3K(η)

4.2. Substituting a Partial Solution. The following theorem is motivated in [Mad97] as
follows. Assume we know by some means the solution a for a variable X in (E ,S). Then we
can replace the definition of X by simply putting X = a. We simplify the proof in [Mad97],
which is based on an infinite series of FESs. Instead, we just use induction on S and some
properties of complete lattices.

Theorem 4.4. Let E ∈ Eqs be monotonic and let a := JE ,SK(η)(X). Then

JE ,SK(η) = JE [X 7→ a],SK(η)

Proof. We prove the theorem by induction on S. The base case is trivial, for JE , εK(η) =
η = JE [X 7→ a], εK(η). For the induction step (σY ;S), we need to define the functions
a, b : Val → U and F,G : U → U and H : (U × U) → U :

a(η′) := JE ,SK(η′)(X)
b(η) := JE , σY ;SK(η)(X)

F (P ) := EY (JE ,SK(η[Y := P ]))
G(P ) := EY (JE [X 7→ b(η)],SK)

H(P,Q) := EY (JE [X 7→ a(η[Y := P ])],SK(η[Y := Q]))

Then from the induction hypothesis ∀η′. JE ,SK(η′) = JE [X 7→ a(η′)],SK(η′), we must prove:
∀η. JE , σY ;SK(η) = JE [X 7→ b(η)], σY ;SK(η).

We distinguish three cases:
If X = Y and X /∈ dom(S), we compute:

JE [X 7→ b(η)], σX ;SK(η)
= JE [X 7→ b(η)],SK(η[X := σP. b(η)])

= (by the constant rule, Lemma 2.1.2)

JE [X 7→ b(η)],SK(η[X := b(η)])

= (by Lemma 3.7.2 and X /∈ dom(S))
JE ,SK(η[X := b(η)])

= (unfold definition of J K in b(η).)

JE ,SK(η[X := JE ,SK(η[X := σ(F )])(X)])

= (by Lemma 3.7.1 and X /∈ dom(S))
JE ,SK(η[X := σ(F )])

= JE , σX ;SK(η)
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If X = Y and X ∈ dom(S), then note that using Lemma 3.7.3, for any E ′ and appropriate
F ′, we have:

JE ′, σX ;SK(η) = JE ′,SK(η[X := σF ′]) = JE ′,SK(η)

So in particular, b(η) = a(η), and we can apply the induction hypothesis: Hence

JE [X 7→ b(η)], σX ;SK(η)
= (by the equality above)

JE [X 7→ b(η)],SK(η)
= JE [X 7→ a(η)],SK(η)
= (induction hypothesis)

JE ,SK(η)
= (by the equality above)

JE , σX ;SK(η)

Finally, if X ̸= Y , then we can compute:

JE , σY ;SK(η)
= JE ,SK(η[Y := σ(F )])

= (induction hypothesis)

JE [X 7→ a(η[Y := σ(F )])],SK(η[Y := σ(F )])

= (unfold definition of J K in b(η).)

JE [X 7→ b(η)],SK(η[Y := σ(F )])

= (will be proved below)

JE [X 7→ b(η)],SK(η[Y := σ(G)])

= JE [X 7→ b(η)], σY ;SK(η)

We must still prove that σ(F ) = σ(G).

σP. F (P )

= (induction hypothesis)

σP. EY (JE [X 7→ a(η[Y := P ])],SK(η[Y := P ]))

= σP.H(P, P )

= Lemma 2.1.8 (solve rule) on λP,Q.H(Q,P )

σP.H(σP.H(P, P ), P )

= (F (P ) = H(P, P ) as above)

σP.H(σP. F (P ), P )

= (unfold definition of J K in b in G)

σP.G(P )
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5. Swapping Variables in FES specifications

We now study swapping the order of variables in a specification. In general, this operation
doesn’t exactly preserve solutions. We first show that adjacent variables with the same sign
may be swapped without changing the semantics (Section 5.1). Subsequently, we will prove
that we can swap the order between blocks of equations, under certain independence criteria
(Section 5.2). The main theorem of that section is new (cf. Section 7). Finally, we show that
swapping a µ/ν sequence by the corresponding ν/µ in general leads to a greater or equal
solution (Section 5.3).

5.1. Swapping Equations with the same Sign.

Theorem 5.1. Assume E ∈ Eqs is monotonic. Then

JE ,S1;σX ;σY ;S2K = JE ,S1;σY ;σX ;S2K

Proof. We first compute for arbitrary η ∈ Val :

JE , σX ;σY ;S2K(η)
= JE , σY ;S2K(η[X := σ(F2)]), where

F2(P ) = EX(JE , σY ;S2K(η[X := P ]))

= JE ,S2K(η[X := σ(F2), Y := σ(F3)]), where

F2(P ) = EX(JE , σY ;S2K(η[X := P ]))

F3(Q) = EY (JE ,S2K(η[X := σ(F2), Y := Q]))

= (unfold definition of J K in F2, introduce F1)

JE ,S2K(η[X := σ(F2), Y := σ(F3)]), where

F1(P )(Q) = EY (JE ,S2K(η[X := P, Y := Q]))

F2(P ) = EX(JE ,S2K(η[X := P, Y := σ(F1(P ))]))

F3(Q) = EY (JE ,S2K(η[X := σ(F2), Y := Q]))

= A(σ(F2), σ(F3)), where

A(P,Q) = JE ,S2K(η[X := P, Y := Q])

F1(P )(Q) = EY (A(P,Q))

F2(P ) = EX(A(P, σ(F1(P ))))

F3(Q) = EY (A(σ(F2), Q))

Symmetrically, we get:

JE , σY ;σX ;S2K(η)
= B(σ(G2), σ(G3)), where

B(Q,P ) = JE ,S2K(η[Y := Q, X := P ])

G1(Q)(P ) = EX(B(Q,P ))

G2(Q) = EY (B(Q, σ(G1(Q))))

G3(P ) = EX(B(σ(G2), P ))
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Note that the theorem is trivial when X = Y . So we may assume X ̸= Y . Hence
A(P,Q) = B(Q,P ), and we have:

σ(F2)

= σP. EX(A(P, σ(F1(P ))))

= σP. EX(A(P, σQ. EY (A(P,Q))))

= (Bekič rule, Lemma 2.1.9, with H(p, q) := EX(A(p, q))
and K(p, q) := EY (A(q, p)), which are monotonic, because
E is by assumption, and JE ,S2K by Lemma 3.6.1)

σP. EX(A(P, σQ. EY (A(σP. EX(A(P,Q)), Q))))

= (while A(P,Q) = B(Q,P ) )

σP. EX(B(σQ. EY (B(Q, σP. EX(B(Q,P ))))), P )

= σP. EX(B(σQ. EY (B(Q, σ(G1(Q)))), P ))

= σP. EX(B(σ(G2), P ))

= σ(G3)

We can now finish the proof:

(computation above, and full symmetry)

σ(F2) = σ(G3) and σ(F3) = σ(G2)

⇒ (because A(P,Q) = B(Q,P ) )

A(σ(F2), σ(F3)) = B(σ(G2), σ(G3))

⇒ JE , σX ;σY ;S2K(η) = JE , σY ;σX ;S2K(η)
⇒ (Lemma 3.9)

JE ,S1;σX ;σY ;S2K(η) = JE ,S1;σY ;σX ;S2K(η)

5.2. Migrating Independent Blocks of Equations. Our aim here is to investigate
swapping blocks of equations that are independent. We first need two technical lemmas.
The first lemma enables to commute updates to valuations with computing solutions:

Lemma 5.2. If X /∈ dom(S) and indep(E ,S, X), then

JE ,SK(η[X := P ]) = (JE ,SK(η))[X := P ]

Proof. Induction on S. The base case is trivial:

JE , εK(η[X := P ]) = η[X := P ] = JE , εK(η)[X := P ]

Case S = σY ;S1. Assume X /∈ dom(S) and indep(E ,S, X), then X ≠ Y , and also X /∈
dom(S1) and indep(E ,S1, X), so the induction hypothesis can be applied. Then

JE , σY ;S1K(η[X := P ])

= JE ,S1K(η[X := P, Y := σ(F )]), where
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F (Q) := EY (JE ,S1K(η[X := P, Y := Q]))

= (induction hypothesis, and X ̸= Y )

EY (JE ,S1K(η[Y := Q])[X := P ])

= (Y ∈ dom(S) is independent of X)

EY (JE ,S1K(η[Y := Q]))

=: G(Q)

= JE ,S1K(η[X := P, Y := σ(G)])

= (induction hypothesis, and X ̸= Y )

JE ,S1K(η[Y := σ(G)])[X := P ]

= JE , σY ;S1K(η)[X := P ]

The next lemma states that independent specifications can be solved independently.

Lemma 5.3. Let E ∈ Eqs and S1,S2 ∈ Spec. If indep(E ,S1,S2), then for all η ∈ Val,
JE ,S1;S2K(η) = JE ,S2K(JE ,S1K(η)).

Proof. Induction on S1. In case S1 = ε we obtain indeed:

JE , ε;S2K(η) = JE ,S2K(η) = JE ,S2K(JE , εK(η))

Next, consider S1 = σX;S. Assume indep(E ,S1,S2), then it follows that indep(E ,S,S2), so
we can use the induction hypothesis. Define:

F (P ) := EX(JE ,S;S2K(η[X := P ]))
G(P ) := EX(JE ,SK(η[X := P ]))

In order to show that F = G, it suffices (because EX is independent of S2) to show that
for any P ∈ U and Y /∈ dom(S2):

JE ,S ;S2K(η[X := P ])(Y )

= (induction hypothesis)

JE ,S2K(JE ,SK(η[X := P ]))(Y )

= (Lemma 3.7.1)

JE ,SK(η[X := P ])(Y )

Next, we finish the proof with the following calculation:

JE , σX ;S ;S2K(η)
= JE ,S ;S2K(η[X := σ(F )])

= (induction hypothesis)

JE ,S2K(JE ,SK(η[X := σ(F )]))

= (F = G, see above)

JE ,S2K(JE ,SK(η[X := σ(G)]))

= JE ,S2K(JE , σX ;SK(η))

The next theorem shows that two disjoint blocks of equations can be swapped, provided
one of them doesn’t depend on the other. Note that a dependence in one direction is allowed,
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and that it doesn’t matter in which direction by symmetry. Theorem 5.7 will generalize this
by adding left- and right-contexts under certain conditions.

Theorem 5.4. Let disjoint(S1,S2) and indep(E ,S1,S2). Then JE ,S1;S2K = JE ,S2;S1K.

Proof. Induction on S2. The base case is trivial. For the induction step, let S2 = σX;S.
If we assume disjoint(S1,S2) and indep(E ,S1,S2), then we also obtain disjoint(S1,S) and
indep(E ,S1,S), so we may apply the induction hypothesis JE ,S1;SK = JE ,S;S1K. Further-
more, from the same assumptions, we also get X /∈ dom(S1) and indep(E ,S1, X). Let η be
arbitrary.

JE ,S1;σX ;SK(η)
= (Lemma 5.3)

JE , σX ;SK(JE ,S1K(η))
= JE ,SK(JE ,S1K(η)[X := σ(F )]), where

F (P ) := EX(JE ,SK(JE ,S1K(η)[X := P ])

= (Lemma 5.2)

EX(JE ,SK(JE ,S1K(η[X := P ])))

= (Lemma 5.3)

EX(JE ,S1;SK(η[X := P ]))

=: G(P )

= JE ,SK(JE ,S1K(η)[X := σ(G)])

= (Lemma 5.2)

JE ,SK(JE ,S1K(η[X := σ(G)]))

= (Lemma 5.3)

JE ,S1;SK(η[X := σ(G)])

= JE , σX ;S1;SK(η)
= (Lemma 3.9 and induction hypothesis)

= JE , σX ;S ;S1K(η)

This migration theorem has several interesting corollaries. First, we get right-congruence
for independent specifications.

Corollary 5.5. Assume that indep(E1,S1,S), indep(E2,S2,S), disjoint(S,S1;S2) and that
E1 =S E2. Then JE1,S1K = JE2,S2K implies JE1,S1;SK = JE2,S2;SK.

We also get the near-reverse of Lemma 5.3:

Corollary 5.6. Let indep(E ,S2,S1) and disjoint(S1,S2). Then for all η ∈ Val, we have
JE ,S1;S2K(η) = JE ,S1K(JE ,S2K(η)).

Proof. Under the given assumptions, we obtain from Theorem 5.4 (applied from right to
left) and Lemma 5.3:

JE ,S1;S2K(η) = JE ,S2;S1K(η) = JE ,S1K(JE ,S2K(η))

Theorem 5.7. Assume that disjoint(S1,S2;S3). Also, assume that either indep(E ,S1,S2;S3),
or indep(E ,S2;S3,S1). Then JE ,S0;S1;S2;S3K = JE ,S0;S2;S1;S3K.
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Proof. We also have disjoint(S1,S3), and either indep(E ,S1,S3) or indep(E ,S3,S1). Using
Lemma 3.9 and Theorem 5.4 twice (in either direction) we get:

JE ,S0;S1;S2;S3K = JE ,S0;S2;S3;S1K = JE ,S0;S2;S1;S3K

5.3. Inequalities by Swapping or Changing Signs. In this section, we will prove a few
inequalities. Theorem 5.9 shows the consequence of swapping variables with a different sign;
Theorem 5.10 shows the effect of changing the sign of a variable. But first, it will be shown
that ≤ is a left congruence:

Lemma 5.8. Let E1, E2 ∈ Eqs and S,S1,S2 ∈ Spec. If E1 is monotonic, E1 =
S E2, and

JE1,S1K ≤ JE2,S2K, then JE1,S;S1K ≤ JE2,S;S2K.

Proof. Induction on S. The base case is trivial.

JE1, σX ;S ;S1K(η)
= JE1,S ;S1K(η[X := σ(F )]), where

F (P ) := E1,X(JE1,S ;S1K(η[X := P ]))

≤ (by induction hypothesis and E1 monotonic)

E1,X(JE2,S ;S2K(η[X := P ]))

= E2,X(JE2,S ;S2K(η[X := P ]))

=: G(P )

≤ (Using Lemma 3.6.1)

JE1,S ;S1K(η[X := σ(G)])

≤ (by induction hypothesis)

JE2,S ;S2K(η[X := σ(G)])

= JE2, σX ;S ;S2K(η)

Note that, by duality, the above lemma may also be applied if E2 is monotonic instead of
E1. Moreover, note that (only) for monotonic E1, Lemma 3.9 would follow from Lemma 5.8.

Theorem 5.9. Assume E ∈ Eqs is monotonic and X ̸= Y . Then

JE ,S1;µX ;νY ;S2K ≤ JE ,S1;νY ;µX ;S2K

Proof. As in Theorem 5.1, and using X ̸= Y , we obtain:

JE , µX ;νY ;S2K(η) = A(µ(F2), ν(F3)), where

A(P,Q) = JE ,S2K(η[X := P, Y := Q])

F1(P )(Q) = EY (A(P,Q))

F2(P ) = EX(A(P, ν(F1(P ))))

F3(Q) = EY (A(µ(F2), Q))

JE , νY ;µX ;S2K(η) = A(µ(G3), ν(G2)), where

G1(Q)(P ) = EX(A(P,Q))

G2(Q) = EY (A(µ(G1(Q)), Q))

G3(P ) = EX(A(P, ν(G2)))
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By Lemma 2.2.4(a), µ(F2) ≤ µ(G3), and by Lemma 2.2.4(b), ν(F3) ≤ ν(G2), whence it
follows that JE , µX;νY ;S2K(η) ≤ JE , νY ;µX;S2K(η). The theorem then follows by Lemma 5.8.

We end this section with another inequality:

Theorem 5.10. If E is monotonic, then JE ,S1;µX;S2K ≤ JE ,S1;νX;S2K.

Proof. Let η be an arbitrary valuation, and define F : U → U by
F (P ) := EX(JE ,S2K(η[X := P ])). We then have:

(Theorem 2.2.1)

µP. F (P ) ≤ νP. F (P )

⇒ (Monotonicity, Theorem 3.6.1)

JE ,S2K(η[X := µP. F (P )]) ≤ JE ,S2K(η[X := νP. F (P )])

⇒ (Definition semantics)

JE , µX ;SK(η) ≤ JE , νX ;S2K(η)
⇒ (η was arbitrary)

JE , µX ;SK ≤ JE , νX ;S2K
⇒ (Congruence, Theorem 5.8)

JE ,S1;µX ;S2K ≤ JE ,S1;νX ;S2K

In the next section, we will see sufficient conditions under which the inequality signs of
these theorems can be turned into equalities. These conditions will be phrased in terms of
the dependency graph.

6. Indirect Dependencies and Loops

In Section 5.2, we studied direct dependencies between variables. Basically, a direct depen-
dency of X on Y means that Y occurs in the definition of X. We will now study the effect
of indirect dependencies, written X

E,S−−−→→ Y (cf. the definitions in Section 3.3)
Given a specification S and a computable predicate f on variables, we define splitf (S) =

(S1,S2), where S1 is the sublist of S with those X for which f(X) does not hold and S2

is the sublist of S with those X for which f(X) does hold. Notice that, within S1 and S2,
variables keep their order from S.

The following basic facts follow directly from the definition of split .

Lemma 6.1. Let splitf (S) = (S1,S2), then dom(S) = dom(S1) ∪ dom(S2) and
disjoint(S1,S2).

We first show how the equations in a FES may be rearranged if the specification is split
in such a way that certain independence conditions are fulfilled.

Lemma 6.2. Let f be a predicate and S a specification such that splitf (S) = (S1,S2) and
indep(E ,S2,S1). Then JE ,SK = JE ,S1;S2K.

Proof. We perform induction on S. The base case is trivial. Let splitf (S) = (S1,S2) and
assume as induction hypothesis that indep(E ,S2,S1) implies JE ,SK = JE ,S1;S2K. For the
induction step, we consider the specification σY ;S and distinguish two cases.
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If f(Y ) does not hold, then we have splitf (σY ;S) = (σY ;S1,S2). Accordingly, we
assume indep(E , σY ;S2,S1), which implies indep(E ,S2,S1). We can thus apply the induction
hypothesis and congruence (Lemma 3.9) to obtain JE , σY ;SK = JE , σY ;S1;S2K.

Otherwise, if f(Y ) holds, we obtain splitf (σY ;S) = (S1, σY ;S2). Now we assume that
indep(E ,S2, σY ;S1), which again implies indep(E ,S2,S1). We also have disjoint(S1, σY ;S2)
(Lemma 6.1), so we may apply Theorem 5.7 below:

JE , σY ;SK
= (by induction hypothesis and Lemma 3.9)

JE , σY ;S1;S2K
= (by Theorem 5.7)

JE ,S1;σY ;S2K

We simplify notation and write splitX,E(S) for splitdepX
E,S

(S), defining the predicate

depXE,S(Y ) = X
E,S−−−→→ Y . If indep(E , X, Y ) is computable (which we assume henceforward),

then X
E,S−−−→→ Y is also computable since S is finite. Intuitively, if splitX,E(S) = (S1,S2),

then S1 is the sublist of S with those Y on which X does not depend indirectly; and S2 is the
sublist of S with those Z on which X does depend indirectly. Notice that, if X /∈ dom(S),
then splitX,E(S) = (S, ε).

We have the following lemma about splitting a specification based on the dependencies
of X:

Lemma 6.3. If splitX,E(S) = (S1,S2), then indep(E ,S2,S1).

Proof. Assume that some Z ∈ dom(S2) would use some Y ∈ dom(S1) in its definition in E .
Then X

E,S−−−→→ Z
E,S−−−→ Y , so X

E,S−−−→→ Y , and Y would be in S2 and not in S1.

The key theorem of this section states that the equations in a FES can be rearranged,
such that all equations that X depends on precede all other equations, or vice versa. This is
useful, because those parts can be solved independently, using Lemma 5.3. By repeatedly
picking a variable in a terminal strongly connected component of the remaining variable
dependency graph, one can thus solve all SCCs one by one. This idea already appeared
in [Jur00] for parity games, although it does not always provide performance benefits in
practice [FL09]. The theorem may also be used to reduce the number of fixpoint alternations
in a FES.

Theorem 6.4. Let splitX,E(S) = (S1,S2). Then JE ,SK = JE ,S1;S2K = JE ,S2;S1K.

Proof. The first equality follows from Lemmas 6.2 and 6.3. From Theorem 5.4 and Lemmas 6.1
and 6.3 it follows that also JE ,S1;S2K = JE ,S2;S1K.

Based on this reordering principle, we can prove three more interesting results, which
we will do in the next subsections.

6.1. Swapping Signs and Dependency Loops. The first result (Theorem 6.7) states
that the sign of a variable X is only relevant if it depends on itself, i.e., X is on a cycle in
E,S−−−→+ (recall that

E,S−−−→+ indicates a non-empty path in the variable dependency graph). We
first need a couple of auxiliary lemmas:
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Lemma 6.5. If X /∈ dom(S) and we have indep(E ,S, X) as well as indep(E , X,X), then
JE , µX;SK = JE , νX;SK.

Proof. For σ ∈ {µ, ν} and arbitrary valuation η, we have:

JE , σX ;SK(η)
= (by definition of semantics)

JE ,SK(η[X := σ(F )]), where

F (P ) := EX(JE ,SK(η[X := P ]))

= (Lemma 5.2, and X /∈ dom(S) and indep(E ,S, X)

EX((JE ,SKη)[X := P ])

= (by definition of indep(E , X,X))

EX(JE ,SKη)
= (constant rule, Lemma 2.1.2)

JE ,SK(η[X := EX(JE ,SKη)])

So indeed JE , µX;SK = JE , νX;SK.

Lemma 6.6. If not X
E,µX;S−−−−−−→+

X, and X /∈ dom(S), then JE , µX;SK = JE , νX;SK.

Proof. Let S1 and S2 be such that splitX,E(σX;S) = (S1, σX;S2), for σ ∈ {µ, ν}. Note that
if not indep(E , µX;S2, X), then for some Y ∈ dom(µX;S2), by definition of split , X

E,µX;S−−−−−−→→
Y E−−→ X, which contradicts the assumption not X

E,µX;S−−−−−−→+ X. From dom(S2) ⊆ dom(S),
we obtain X /∈ dom(S2). Hence, X /∈ dom(S2) and indep(E , µX;S2, X), so Lemma 6.5
applies. Together with Theorem 6.4 and Lemma 3.9, we then compute:

JE , µX ;SK = JE ,S1;µX ;S2K = JE ,S1;νX ;S2K = JE , νX ;SK

Intuitively, the sign of X is only relevant if X is the most relevant variable (i.e. leftmost
in the specification) on some loop in the dependency graph. So in the full theorem, we can
restrict to dependencies through variables right from X:

Theorem 6.7. Assume that not X
E,µX;S2−−−−−−−→+

X, and X /∈ dom(S2). Then

JE ,S1;µX ;S2K = JE ,S1;νX ;S2K

Proof. By Lemma 6.6, JE , µX;S2K = JE , νX;S2K. The result follows by congruence,
Lemma 3.9.

6.2. Reordering Variables and Dependency Loops. The second result (Theorem 6.9)
allows to swap any two neighbouring variables that don’t occur on a loop in the dependency
graph.

Lemma 6.8. Let not X
E,σX;ρY ;S−−−−−−−−−→→ Y . Then JE , σX;ρY ;SK = JE , ρY ;σX;SK.

Proof. Note that for some S1 and S2, we have

splitX,E(σX ;ρY ;S) = (ρY ;S1, σX ;S2) = splitX,E(ρY ;σX ;S)
Hence, by applying Theorem 6.4 twice, we obtain:

JE , σX ;ρY ;SK = JE , ρY ;S1;σX ;S2K = JE , ρY ;σX ;SK
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Again, we can strengthen this, by observing that X and Y can be swapped, when there
is no loop that has either X or Y as its most relevant variable in the specification:

Theorem 6.9. Assume that not X
E,σX;ρY ;S2−−−−−−−−−−→→ Y . Then we have

JE ,S1;σX ;ρY ;S2K = JE ,S1;ρY ;σX ;S2K

Proof. By Lemma 6.8, JE , σX;ρY ;S2K = JE , ρY ;σX;S2K. The result then follows by congru-
ence, Lemma 3.9.

Note that this result strengthens Theorem 5.1 (the signs may now be different), The-
orem 5.7 (we can have mutual dependencies on S, as long as no loop is introduced) and
Theorem 5.9 (we have here equality rather than inequality).

6.3. Forward Substitution and Dependency Loops. The final result strengthens
Theorem 4.3 by allowing unfolding of Y in the definition of X, even if Y precedes X in the
specification, provided Y doesn’t depend on X:

Theorem 6.10. Let E ∈ Eqs be monotonic. Let S = S1, σY,S2. Assume that not Y
E,S−−−→→ X.

Then JE ,SK = Junfold(E , X, Y ),SK.

Proof. Assume not Y
E,S−−−→→ X. Then the following two observations hold:

(1) for all Z ∈ X , Y
E,S−−−→→ Z ⇐⇒ Y

unfold(E,X,Y ),S−−−−−−−−−−−−−→→ Z
(2) splitY,E(S) = splitY,unfold(E,X,Y )(S)
The first item holds, because unfold(E , X, Y ) only modifies the definition of X, but Y doesn’t
refer to it. The second then follows from the definition of split .

Let (L1, L2) := splitY,E(S). Then, as Y
E,S−−−→→ Y , we have L2 = L3;σY ;L4. Note that

X /∈ dom(L4), for we would then have Y
E,S−−−→→ X, contradicting the assumptions. Then we

can compute:

JE ,SK
= (Theorem 6.4)

JE , L1;L3;σY ;L4K
= (Theorem 4.3)

Junfold(E , X, Y ), L1;L3;σY ;L4K
= (Theorem 6.4, observation (2) above)

Junfold(E , X, Y ),SK

7. Summary – Examples – Related Work

Table 1 summarizes our main results. We will discuss their relevance and compare them to
previous work in Section 7.1-7.3. Table 2 contains some other useful facts on FES, discussed
in Section 7.4.
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7.1. Substituting Definitions and Solutions. Theorem 4.3 in this form is new. It
generalizes [Mad97, Lemma 6.3] (for BES only) and [GW05a, Lemma 18] (for PBES
only) to FES. Another generalization is that we allow that X = Y . That is, besides
unfolding the Y ’s in the definition of some X preceding Y , one can even unfold Y in its
own definition. The proof for this case is more involved (cf. Lemma 4.2). For BES this
is useless, but for PBES this is useful, and already used in [OW10, PWW11] to unfold
PBESs to BESs. The technique of unfolding PBESs is perhaps the most commonly applied
method of solving PBESs [FAAKS24, KFG20, PWW11], although symbolic approaches do
exist [KNIU19, NWG20].

Theorem 6.10 is a new result, generalizing the case where indep(E , Y,X) for all X (i.e. Y
is in solved form, [Mad97, GW05a]). In general, one cannot unfold Y in the definition of X,
when Y precedes X. However, if there is no dependency path from Y to X, then a forward
substitution is allowed. The proof is based on clever reordering of equations. The following
example shows that this condition is necessary:

Example 7.1. Consider the following two Boolean Equation Systems:

B1 B2

νY = X
µX = Y

νY = X
µX = X

Unfolding Y in the definition of X in B1 yields B2. However, B1 has the solution (⊤,⊤),
while the solution of B2 is (⊥,⊥). The reader can check this with the method described in
Example 7.2.

Theorem 4.4 allows to substitute a partial solution in a FES. It occurs already in [Mad97,
Lemma 3.19]. However, our proof is more direct. Mader suggests that a direct inductive
argument is not possible, and proves the theorem by contradiction, constructing an infinite
set of equation systems. We show that with an appropriate induction loading, the theorem
can be reduced to another lemma in fixpoint calculus (Lemma 2.1.8).

The substitution theorems form the basis for solving BES and PBES by Gauss-
elimination. They are called the global steps. Besides global steps, one needs local steps, to
eliminate X from the right hand side of its own definition. For BES, a local step is trivial,
because (only) in the Boolean lattice we have µX.f(X) = f(⊥) and νX.f(X) = f(⊤).
Local solution for PBES is much harder, and studied in [GW05a, OW10]. We stress that
our results show that the global steps hold in any FES. However, effective local solution is
specific to the underlying complete lattice.

Example 7.2. The following example shows the solution of a BES by Gauss elimination.
Basically, one first substitutes definitions backwards using Theorem 4.3 (along the way, we
use the identity Y ∨ (Y ∧X) ≡ Y ):

µX = Y ∨ Z
νY = Z
µZ = Y ∧X

→
µX = Y
νY = Y ∧X
µZ = Y ∧X

→
µX = Y ∧X
νY = Y ∧X
µZ = Y ∧X

Next, one obtains X = ⊥ by a local elimination step in the first equation, using that
Y ∧ ⊥ ≡ ⊥. This solution can then be substituted forward by Theorem 6.10, to obtain the
full solution (⊥,⊥,⊥). In general, steps 1 and 2 must be mixed.

The next example shows a PBES where unfolding X in its own definition makes sense.



Vol. 20:3 OPERATIONS ON FIXPOINT EQUATION SYSTEMS 5:27

Thm (In)Equality Conditions

Reordering Variables
5.1 JE ,S1;σX;σY ;S2K = JE ,S1;σY ;σX;S2K - E is monotonic
5.9 JE ,S1;µX;νY ;S2K ≤ JE ,S1;νY ;µX;S2K - E is monotonic

- X ̸= Y
6.9 JE ,S1;σX;ρY ;S2K = JE ,S1;ρY ;σX;S2K - X ̸−→→ Y in (E , σX;ρY ;S2)
5.7 JE ,S0;S1;S2;S3K = JE ,S0;S2;S1;S3K - disjoint(S1,S2;S3)

- either indep(E ,S1,S2;S3),
or indep(E ,S2;S3,S1)

Substituting Definitions and Solutions
4.3 Junfold(E , X, Y ),SK = JE ,SK - E is monotonic

- S = S1;σY ;S2

(X = Y is allowed) - X /∈ dom(S2)
6.10 Junfold(E , X, Y ),SK = JE ,SK - E is monotonic

- S = S1;σY ;S2

- Y ̸−→→ X in (E ,S)
4.4 JE ,SK(η) = JE [X 7→ A],SK(η) - E is monotonic

- A = JE ,SK(η)(X)
Swapping Signs

5.10 JE ,S1;µX;S2K ≤ JE ,S1;νX;S2K - E is monotonic
6.7 JE ,S1;µX;S2K = JE ,S1;νX;S2K - X /∈ dom(S2)

- X ̸−→+ X in (E , µX;S2)

Table 1: Main results for arbitrary FES

Example 7.3. Applying Theorem 4.3 to unfold X in its own definition, we get:

νY = X(⊤)
µX(b) = (b ∧ Y ) ∨X(¬b) →

νY = X(⊤)
µX(b) = (b ∧ Y ) ∨ ((¬b ∧ Y ) ∨X(¬¬b))

≡ Y ∨X(b)

Applying Theorem 4.3 again, to unfold X in Y yields νY = Y ∨ X(⊤), hence by local
resolution Y = ⊤, hence X(b) = ⊤.

7.2. Reordering Variables. Theorem 5.1 indicates that two adjacent variables with the
same sign may be interchanged. This theorem occurs already in [Mad97, Lemma 3.21]. For
PBES it is repeated in [GW05a, Lemma 21]. However, [Mad97, GW05a] don’t give a full
proof, but refer to Bekič Lemma. In our proof, we show exactly how Theorem 4.3 reduces to
our version of Bekič Rule (Lemma 2.1.9). In other works [Sei96, KNIU19], adjacent variables
with the same sign are grouped in unordered blocks. No claim is made about the correctness
of such a definition.

Theorem 5.9 shows the inequality that arises when interchanging adjacent variables
with different sign. It occurs already in [Mad97, Lemma 3.23], but our proof is different.
Our proof depends on a probably new inequality in fixpoint calculus, which we coin Bekič
Inequality (Lemma 2.2.4).

Theorem 6.9 is a new result. It states that in the special case that X and Y are not
on the same dependency loop, they can be interchanged without modifying the solution.
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This generalizes [GW05a, Lemma 19], which requires that the right-hand side of Y in E is a
constant, i.e., indep(E , Y, Z) for all Z.

Finally, Theorem 5.7 in this form is new. It allows to swap whole blocks of equa-
tions. Mader [Mad97, Lemma 3.22] claims a similar result, under the condition that both
indep(E ,S1,S2) and indep(E ,S2,S1). However, [GW05a] show a counter example to this.
The repair in [GW05a, Lemma 22] requires that S3 is empty. We show a stronger result: if
S3 is empty, only one of the requirements indep(S2,S1) or indep(S2,S1) is needed.

Notably, our result even applies to nonempty S3, provided we have indep(S1,S2;S3) (or
its reverse), i.e. S1 is also independent on the variables in S3. Note that we allow arbitrary
(dependent) alternations within S1 and S2, and even S2 might depend on S1. We lifted two
other unnecessary restrictions: surprisingly, this result doesn’t require monotonicity of E .
Also, the results in [Mad97, GW05a] are for individual equations only, while we can swap
whole blocks at the same time.

We now show an application of swapping blocks to reduce the number of µ/ν-alternations.

Example 7.4. Consider the following four Boolean Equation Systems:

B3 B4 B5 B6

µX = Y
µY = X
νZ = W
µW = Z

µX = Y
νZ = W
µY = X
µW = Z

νZ = W
µX = Y
µY = X
µW = Z

µX = Y
µY = X
µW = Z
νZ = W

For these BES, the dependency graph between the variables consists of two loops,
X ↔ Y and Z ↔ W . In particular, we have indep({X,Y }, {Z,W}). We want to transform
B3 to B5, because it has fewer alternations. Theorem 5.1 cannot be applied, because the
sign of Z is different from all the others.

Using Theorem 5.7 on individual equations, one can show that JB3K = JB4K, because
indep(Y, {Z,W}). However, one cannot derive JB4K = JB5K using Theorem 5.7, because
neither indep(X, {Z, Y,W}), nor indep({Z, Y,W}, X) holds. However, one can prove B3 =
B5 directly with Theorem 5.7, by swapping block [X,Y ] with Z, because indeed we have
indep({X,Y }, {Z,W}). Alternatively, one can observe that X ̸−→→ Z, and apply Theorem 6.9
to deduce that B4 = B5 directly.

All theorems fail to prove the equivalence of B3−5 with B6. However, Theorem 5.9
guarantees that JB6K ≤ JB3K. As a matter of fact, the solution of B3, B4 and B5 is
(X = ⊥, Y = ⊥, Z = ⊤,W = ⊤), while the solution of B6 is (X = ⊥, Y = ⊥, Z = ⊥,W = ⊥).
The reader may verify this by Gauss Elimination, cf. Example 7.2. This shows that the
reordering theorems cannot easily be strengthened.

7.3. Swapping Signs. The inequality of Theorem 5.10 is well known and appears for
instance in [Mad97, Lemma 3.24]. Theorem 6.7 is new. It shows that the sign of variable X
is only relevant when X is the most relevant variable on a dependency loop.

Example 7.5. Now consider the next three BESs which only differ in their fixpoint signs:

B7 B8 B9

µX = Y
νY = X ∨ Z
µZ = Z ∧W
νW = X ∧ ⊥

µX = Y
νY = X ∨ Z
νZ = Z ∧W
νW = X ∧ ⊥

µX = Y
µY = X ∨ Z
µZ = Z ∧W
µW = X ∧ ⊥
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Lem Result Condition

3.8 JE ,SK(η)(X) = EX(JE ,SK(η)) - E monotonic
- X ∈ dom(S)

5.3 JE ,S1;S2K(η) = JE ,S2K(JE ,S1K(η)) - indep(E ,S1,S2)
5.6 JE ,S1;S2K(η) = JE ,S1K(JE ,S2K(η)) - indep(E ,S2,S1)

- disjoint(S1,S2)

5.8 JE ,S1K ≤ JE ,S2K implies JE ,S;S1K ≤ JE ,S;S2K - E monotonic
3.9 JE ,S1K = JE ,S2K implies JE ,S;S1K = JE ,S;S2K
5.5 JE ,S1K = JE ,S2K implies JE ,S1;SK = JE ,S2;SK - indep(E ,S1,S)

- indep(E ,S2,S)
- disjoint(S,S1;S2)

Table 2: Some useful lemmas for arbitrary FES

Like before, want to manipulate B7 to reduce the number of fixpoint alternations. We
identify two possibilities. First, we may flip the sign of Z, obtaining B8, which has the
solution (⊤,⊤,⊥,⊥). By Theorem 5.10, it holds that JB7K ≤ JB8K and so we conclude that
also JB7K(Z) = JB7K(W ) = ⊥. The other option is to flip the sign of Y and W , yielding B9.
Since Y ̸−→+ Y in Y, Z,W , Theorem 6.7 gives that JB7K = JB9K.

7.4. Other Results. Along the way, we proved (and proof checked) several lemmas on FES
that may be interesting on their own. For quick reference, we summarize these in Table 2.
Here η denotes an arbitrary valuation. All these lemmas occur in some form in the literature.
Lemma 3.8 states that the semantics indeed returns a solution, and follows from [Mad97,
Lemma 3.5]. Lemma 5.3 corresponds to [Mad97, Lemma 3.10] (which is not proved there)
and [GW05a, Lemma 7]. Actually, [Mad97] has Lemma 5.6, which is equivalent according to
our Theorem 5.7. Lemma 3.9 and 5.8 are from [Mad97, Lemma 3.14] as well, and Lemma 5.5
follows directly from Lemma 5.3. We included it here to stress that right congruence doesn’t
hold in general.

Finally, we needed some basic results on fixpoints in complete lattices, cf. Lemma 2.1
and 2.2. The existence and definition of least and greatest fixpoints is due to Knaster (on
sets) and Tarski (on complete lattices) [Tar55], see [LNS82] for a historical account. We
(re)proved a number of identities (Lemma 2.1) and inequalities (Lemma 2.2) on fixpoint
expressions. Most of these results are known. Lemma 2.1.1-6 can for instance be found
in [Bac02]. Rule 9 (Bekič Equality) can be found in e.g. [dB80, Bek84], but stated in a
different form, involving simultaneous fixpoints. We have not found in the literature the
inequality in Lemma 2.2.4, which resembles Bekič equality on terms with mixed minimal
and maximal fixpoints.

8. Formalisation in Coq & PVS

We have formalised all of the above theory in both Coq [Ber08, S+23] and PVS [OS08].
A replication artefact containing these proofs is available at [NvdP24]. The formalized
definitions and proofs follow the definitions and proof steps in this paper quite closely. Here,
we highlight the main difference between the two formalisations.
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In Coq, we captured the concepts of complete lattices and monotonic functions in
typeclasses. For these, we defined several typeclass instances, for example the product lattice
and composition of monotonic functions. In many cases, Coq is able to perform automatic
typeclass resolution, saving us from manually proving monotonicity of complex functions,
for example those in Lemma 2. Furthermore, Coq supports user-defined notation, allowing
us to closely follow the notation used in the paper. The proofs for showing decidability of
X

E,S−−−→→ Y are extensive, something that is not reflected in the paper.
Our PVS definitions and proofs were originally developed under PVS version 4.2, but

could be ported to version 7.1 with minimal effort. Contrary to Coq, PVS is built on classical
logic and thus allows the law of excluded middle (for all propositions P , it holds P ∨ ¬P ).
We thus do not need to supply proofs for decidability of X

E,S−−−→→ Y . This also means that
we do not rely on finiteness of S, and thus the definition of −→→ only depends on E and the
domain E is restricted where necessary, e.g., in Theorem 6.7. This simplifies the proof of
Lemma 6.2: it can operate on splitX,E directly.

9. Conclusion

We provided several equalities and inequalities involving a range of operations on fixpoint
equation systems (FES). We refer to Table 1 and 2 (Section 7) for a summary of the theorems.
Lemmas 2.1 and 2.2 provide a useful overview on equalities and inequalities for nested fixed
points in complete lattices.

We provided self-contained and detailed proofs of all results and mechanised these proofs
in two proof assistants, Coq and PVS.

By the generic nature of FES, these results carry over to other formalisms such as
Boolean equation systems (BES), parity games (and variations thereof), and parameterised
(first-order) Boolean equation systems (PBES).
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