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Abstract

Model checking using GPUs has seen increased popularity over the last years. Be-
cause GPUs have only a limited amount of memory, only small to medium-sized
systems can be verified. We improve memory efficiency for explicit-state GPU model
checking by applying on-the-fly partial-order reduction. The correctness of the pro-
posed algorithms is proved using a new version of the cycle proviso. Benchmarks
show that our implementation achieves a reduction similar to or better than the
state-of-the-art techniques for CPUs, while the runtime overhead is acceptable.

We also propose several optimisations for the tool GPUexplore. Benchmarks show
that this results in a 7.8 times speed-up compared to the original implementation.
For large models, our optimized version of GPUexplore can be more than two orders
of magnitude faster than a sequential CPU implementation, reducing the runtime
from more than an hour down to less than 37 seconds.
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Chapter 1

Introduction

This chapter gives an introduction by providing a short overview of the field of model
checking and general-purpose GPU programming. Then, it defines the contributions
of this thesis and discusses related work. Finally, it gives an overview of the structure
of this thesis.

1.1 Overview

In the research field of formal methods, model checking [2, 14] is a popular technique
for proving the correctness of concurrent systems. However, the practical applica-
bility is still limited by the problem of state-space explosion. This is due to the
many possible interleavings of actions of concurrent processes and the many con-
figurations of the state vector describing the process variables. In the early days,
model checkers relied on the newest hardware to improve their performance. In
recent years, however, sequential performance has not seen major improvements.
A speed up can now only be gained by implementing parallel algorithms. While
distributed systems saw a lot of popularity in the early 2000s, the focus has since
shifted to the multi-core shared-memory architecture that is used in all modern-day
hardware. Designing multi-threaded algorithms for this hardware brings forward
new challenges: to achieve good scalability, resource contention between the threads
should be kept to a minimum. Furthermore, subtle errors in the implementation may
break the correctness. Most of the popular model checkers already have multi-core
implementations [5, 13, 16, 23, 27].

Many-core architectures are a relatively new phenomenon and can mainly be
found in graphics processing units (GPUs). Although GPUs are primarily aimed at
rendering graphics to a screen, they can also be programmed for general tasks. This
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is called general-purpose GPU (GPGPU) programming. Since the introduction of
NVIDIA’s CUDA [1] (a complete API for GPGPU programming) in 2008, GPUs have
been used in many different applications, including model checking [4, 19, 44, 41].

Although GPUs do not seem suited to aid model checking due to their limited
amount of memory, the massive number of threads that run in parallel makes GPUs
attractive for this computationally intensive task. Their parallel power can speed-up
state-space exploration by up to two orders of magnitude [3, 18, 41, 44]. Moreover,
the amount of memory available on GPUs has increased significantly over the last
years. Therefore, it is interesting to investigate the potential of GPUs, at least for
future interest. Research has shown that, although GPUs can greatly outperform
CPUs, they quickly run out of memory for larger models [7]. Therefore, the practical
applicability of GPU model checking is still limited.

An approach to increase the memory efficiency of explicit-state model checking
is by applying reduction techniques. Several approaches have been proposed, among
others: partial-order reduction (POR) [38, 37, 22], symmetry reduction [25] and
bisimulation minimisation [35]. All of these techniques exploit the fact that the state
space may contain several states that are similar with respect to the property under
consideration. By merging or not exploring the similar states, the memory footprint
of the state-space exploration is reduced. When done efficiently, the amount of time
required to check the property under consideration can also be reduced. Partial-order
reduction and symmetry reduction can be performed on-the-fly, i.e. while exploring
the state-space. Bisimulation minimisation can only be applied after the whole state
space has been generated.

Contributions Our contributions are as follows:

1. We improve the memory efficiency of GPU model checking. To that end,
we extend GPUexplore [41, 42], one of the first tools that runs a complete
model checking algorithm on the GPU, with POR. We propose GPU algorithms
for three practical approaches to POR, based on ample [24], cample [9] and
stubborn sets [38].

2. We improve the cample-set approach by identifying clusters of processes on-
the-fly. This removes the need to manually specify the structure of the input
model and improves the reduction potential of the cample-set approach for
many types of models.

3. We introduce a new, weaker version of the cycle proviso and use it to prove
that our algorithms do not allow ignoring of actions. Furthermore, we also
prove that our algorithms adhere to the other POR conditions.
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4. We compare the performance of our POR algorithms on a GPU with LTSmin [27],
a model checker that implements state-of-the-art algorithms for multi-core
POR.

5. We propose several general optimizations to improve GPUexplore’s runtime.
We compare the performance of our implementation and the original version
from [42] to determine the speed-up that follows from our optimizations. Ad-
ditionally, we provide a comparison with CADP [20], a sequential CPU model
checker.

The results related to POR from this thesis have also been published in [36].

1.2 Related Work

Partial-order reduction In multi-core model checking, there are several works
on partial-order reduction: Barnat et al. [6] propose a new cycle proviso that is
based on a topological sorting. A state-space cannot be topologically sorted if it
contains cycles. This information is used to determine which states need to be fully
expanded. Their implementation can obtain competitive reductions. However, it is
not clear from the paper whether it is slower of faster than a standard DFS-based
implementation.

Laarman and Wijs [32] designed a multi-core version of POR that is based on
Laarman et al.’s earlier work on multi-core nested depth-first search [29]. Their algo-
rithm yields better reductions than SPIN’s implementation, but has higher runtimes.
The scalability of the algorithm is good up to 64 cores.

Bošnački et al. have defined cycle provisos for breadth-first search [11] and gen-
eral state expanding algorithms (GSEA) [12], a generalization of search algorithms,
including depth-first and breadth-first search. They implemented this in an exten-
sion of SPIN. The results of the benchmarks show a significant improvement over the
standard implementation of SPIN. Comparisons with other tools are not provided.
Although the included algorithms are not multi-core, the theory is relevant for our
design, since we will focus on GSEA.

GPU model checking GPGPU techniques have already been applied in model
checking by several others, all with a different approach: DIVINE performs state-
space generation on the CPU, but offloads the detection of cycles to the GPU [4, 3].
The GPU then applies the Maximal Accepting Predecessors (MAP) or One Way
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Catch Them Young (OWCTY) algorithm to find these cycles. This results in a
speed-up over both multi-core DIVINE and multi-core LTSmin.

Edelkamp and Sulewski [19] perform successor generation on the GPU and apply
delayed duplicate detection to store the generated states in main memory. They im-
plemented the ideas in a tool called CuDMoC. It was benchmarked running natively
on a GPU as well as being emulated by a CPU. This comparison yields a significant
speed-up of about 8 times of the GPU over the CPU emulation. CuDMoC performs
better than DIVINE, it is faster and consumes less memory per state. The perfor-
mance is worse than multi-core SPIN, although it should be noted SPIN was not
always able to explore the complete state space.

GPUexplore by Wijs and Bošnački [41, 42] performs the complete model checking
process on the GPU, including successor generation and storage of states. In addition,
this tool can check for absence of deadlocks and can also check safety properties. The
performance of GPUexplore is similar to LTSmin running on about 10 threads.

Bartocci et al. [7] have implemented a CUDA version of SPIN. Their approach is
similar to GPUexplore: the state-space generation is completely done on the GPU.
The implementation has a significant overhead for smaller models, but performs
reasonably well for medium-sized state spaces.

Wu et al. [43] extend the model checker PAT with a CUDA implementation of
counter-example generation. Their ideas can be applied to generate shortest counter-
examples for SCC-based LTL model checking. After the CPU has generated the state
space and performed SCC decomposition, the GPU explores small parts of the state
space to compute the shortest path to an error state. The implementation applies
dynamic parallelism to cope with the variable width of breadth-first search layers.
The paper does not contain a performance comparison with other tools.

Wu et al. [44] also implemented a complete model checker in CUDA. They
adopted several techniques from GPUexplore, and added mechanisms for dynamic
parallelism and parallel generation of synchronizing transitions. The speed up gained
from dynamic parallelism proved to be minimal. A comparison with traditional
sequential state-space exploration shows a good speed-up, but it is not clear from
the paper how the performance compares with other multi-core or many-core tools.

GPUs have also been applied in probabilistic model checking: Bošnački et al.
[10, 40] speed up value-iteration for probabilistic properties by solving linear equa-
tion systems on the GPU. Češka et al [13] implemented parameter synthesis for
parametrized continuous time Markov chains.
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1.3 Thesis Structure

The rest of this report is structured as follows: Chapter 2 explains the theory re-
quired to read the other chapters. Then, Chapter 3 gives a detailed description of
optimizations to speed-up state-space exploration. Chapter 4 describes the GPU
POR algorithms we propose and formally proves why the proposed algorithms are
correct. Next, Chapter 5 provides the results of experiments we performed. Finally,
Chapter 6 gives a conclusion and several areas that require further study.
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Chapter 2

Background

This chapter starts by introducing the basic theory of transition systems and concur-
rent processes. Then, it explains the ideas behind partial-order reduction. Finally,
an introduction to the architecture of GPUs is given.

2.1 Transition Systems

Definition 1. A labelled transition system (LTS) is a tuple T = (S,A, τ, ŝ), where:

• S is the set of states.

• A is the set of actions.

• τ ⊆ S × A × S is the relation that defines transitions between states. Each
transition is labelled with an action.

• ŝ ∈ S is the initial state.

Let enabled(s) = {α|(s, α, t) ∈ τ} be the set of actions that is enabled in state
s and succ(s, α) = {t|(s, α, t) ∈ τ} the set of successors reachable through some
action α. Additionally, we lift succ to take a set of states or actions as argument
respectively. The second argument of succ is omitted when all actions are considered:
succ(s) = succ(s, A). If (s, α, t) ∈ τ , then we write s

α−→ t. We call a sequence of
actions and states s0

α1−→ s1
α2−→ . . .

αn−→ sn an execution. When the actions are left
out of an execution, we call this a path: π = s0 . . . sn. The sequence of actions
observed along an execution is called an action sequence: α1 . . . αn. If there exists a
path s0 . . . sn such that s0

α1−→ s1
α2−→ . . .

αn−→ sn, then we say that sn is reachable from
s0. The set of all reachable states from a state s is the reflexive transitive closure of
succ. The set of reachable states of an LTS T is equal to the set of states reachable
from the initial state.

8



To specify concurrent systems consisting of a finite number of finite-state pro-
cesses, we define a network of LTSs based on [33]. In this context we also refer to
the participating LTSs as concurrent processes.

Definition 2. A network of LTSs is a tuple N = (Π, V ), where:

• Π is a list of n processes Π[1], . . . ,Π[n] that are modelled as LTSs.

• V is a list of synchronization rules. A synchronization rule is a tuple (~t, a),
where a is an action and ~t ∈ {0, 1}n is a synchronization vector that denotes
which processes take part in the synchronization on a.

Based on the definition of a network of LTSs, we can distinguish two types of
actions: (1) local actions that are not part of any synchronization rule and there-
fore cannot be blocked and (2) synchronizing actions that are part of at least one
synchronization rule. Syncing actions are blocked when there is no applicable syn-
chronization rule for that action. More formally: action α is blocked in state s when
¬∃(~t, a) ∈ V : (a = α ∧ ∀i ∈ {1 . . . n} : ~t[i] = 1 ⇒ a ∈ enabled i(s)). Note that
although processes can only synchronize on actions with the same name, this does
not limit the expressiveness. Any network following a more general definition can be
transformed into a network that follows our definition by proper action renaming.

Example 1. An example of an LTS network can be found in Figure 2.1. This network
contains one producer and two consumers. After the producer generates work (action
gen work), the work is sent to one of the two consumers by synchronizing on the send
action. The consumer that received the work, processes it (action work), until at
some point it is ready to receive new work. The synchronization rules are specified
using the EXP syntax on the right. The two synchronization rules represent the
transmission of work to the first and second consumer respectively. An underscore
indicates that a process does not synchronize based on that rule.

For every network, we can define an LTS that represents its state space.

Definition 3. Let N = (Π, V ) be a network of processes. TN = (S,A, τ, ŝ) is the
LTS induced by this network, where:

• S = S[1]× · · · × S[n] is the cross-product of all the state spaces.

• A = A[1] ∪ · · · ∪ A[n] is the union of all actions sets.

• τ = {(〈s1, . . . , sn〉, a, 〈s′1, . . . , s′n〉)|∃(~t, a) ∈ V.∀i ∈ {1, . . . , n}.~t(i) = 1 ⇒
(si, a, s

′
i) ∈ τi ∧ ~t(i) = 0 ⇒ si = s′i} ∪ {(〈s1, . . . , sn〉, a, 〈s′1, . . . , s′n〉)|∃i ∈

{1, . . . , n}.(si, a, s′i) ∈ τi ∧ ∀j 6= i : si = s′i} is the transition relation that
follows from each of the processes and the synchronization rules.
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p0

p1 c0 c1

c0 c1

gen work trans
trans

work
τ

trans

work
τ

par using

trans * trans * _ -> trans,

trans * _ * trans -> trans

in

"producer.aut"

||

"consumer.aut"

||

"consumer.aut"

end par

Figure 2.1: Example of LTS network with one producer and two consumers.

• ŝ = 〈ŝ[0], . . . , ŝ[n]〉 is the initial state, which is a combination of the initial
states of the processes.

The states of TN are vectors with n slots. The ith slot in a state s is called s[i].
We refer to each of the fields of process Π[i] with S[i], A[i], τ [i] and ŝ[i] respectively.
The actions of process Π[i] that are enabled in state s are referred to as enabled i(s) =
enabled(s[i]).

2.2 Exploration

Since the set of reachable states of a process network is restricted by the synchro-
nization rules in most cases, it is hard to predict whether it contains some error state
or other undesired behaviour. To decide this problem, the whole set of reachable
states has to be constructed on a state-by-state basis, starting with the initial state.
This is computationally a hard problem, due to the fact that the size of the state
space grows exponentially with the amount of processes. This phenomenon is called
state-space explosion.

A detailed procedure for state-space exploration is listed in Algorithm 1. States
are stored in two sets: all the states that still need to be explored are in Open and
all the states for which exploration has at least started are in Closed. On lines 2 and
3, one state s is selected from Open and moved to Closed. Then, all the successors
of s that have not been explored yet are added to Open (line 6). The algorithm
terminates when there are no states left to explore.

The implementation of Open influences the order in which states are visited.
When Open is implemented as a stack, the exploration follows a depth-first search
(DFS) order. When Open is implemented as a queue, the exploration follows a
breadth-first search (BFS) order.
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Algorithm 1: State-space exploration algorithm
Data: Open← {ŝ}, Closed← ∅

1 while Open 6= ∅ do
2 Open← Open \ {s} for some s ∈ Open;
3 Closed← Closed ∪ {s};
4 foreach t ∈ succ(s) do
5 if t /∈ Closed then
6 Open← Open ∪ {t};

2.3 Partial-Order Reduction

To combat the state-space explosion, several reduction techniques have been pro-
posed [38, 26, 35]. The general concept of reductions can be formally defined using
a reduction function.

Definition 4. A reduced LTS can be defined according to some reduction function
r : S → 2A. The reduction of T according to r is denoted by Tr = (Sr, A, τr, ŝ), such
that:

• (s, α, t) ∈ τr if and only if (s, α, t) ∈ τ and α ∈ r(s).

• Sr is the set of states reachable from ŝ under τr.

As we can see, for each reduction function r and transition system T , there
is a unique reduced system Tr. Clearly, Tr does not depend on the way that r was
computed. Although it is possible to compute the reduction function after generating
the whole state space, this does not solve the problem of state-space explosion. We
would likely run into memory limitations before the state-space generation even
completed. Another option is to compute some restrictions on r beforehand [28].
However, this technique may offer significantly less reduction [34]. Therefore, the
preferred solution is to compute the reduction function while generating the state
space (on-the-fly). In that case, we decide which actions to preserve and which
actions to prune at the moment a state is explored. The states to which the pruned
actions lead are not explored at that time (see Figure 2.2). However, these states
may be explored later if they are reachable through other transitions. The downside
of performing some reduction algorithm on-the-fly is that there is no overview of the
whole state space. Therefore, the choice for r(s) is usually not optimal.

The main idea behind partial-order reduction is that not all interleavings of ac-
tions of the parallel processes are relevant to the property under consideration. It
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s

r(s) ∩ enabled(s)

not explored

Figure 2.2: Transitions that are not
defined under the reduction function
r are not explored.

s0

s1 s2

s3

α β

β α

Figure 2.3: LTS with two indepen-
dent actions α and β.

suffices to check only some of those interleavings. To reason about this, we define
when actions are independent.

Definition 5. Two actions α, β, with α 6= β are independent in state s if and only
if the following conditions hold:

• if β ∈ enabled(s), then α ∈ enabled(s)⇔ α ∈ enabled(succ(s, β))

• if α ∈ enabled(s), then β ∈ enabled(s)⇔ β ∈ enabled(succ(s, α))

• succ(succ(s, α), β) = succ(succ(s, β), α)

Actions that are not independent are called dependent.

Example 2. We consider a system where one process reads a variable x (action
α) and another process writes variable y (action β). These actions are globally
independent, because the order in which they are executed does not influence the
result. This can be represented visually as in Figure 2.3. We call this a diamond
structure.

From any execution in the system, we can obtain other interleavings by repeatedly
permuting adjacent independent actions.

Example 3. Let αβ1β2 be an action sequence in T , where α is globally independent
of β1 and β2. Then β1αβ2 and β1β2α are also action sequences in T . On the other
hand, αβ2β1 is not an action sequence in T , because β1 and β2 are dependent.

12



s0 s1 · · · sn−1 sn

t0 t1 · · · tn−1 tn

β

α1 α2 αn−1 αn

β β β

α1 α2 αn−1 αn

Figure 2.4: By repeatedly applying the persistence condition (C1) to the path
s0 . . . si, where 0 < i ≤ n, we can conclude that states t1 . . . tn exist. Therefore, C1
enforces that we can only choose r(s0) = {β} when β is independent of all αi for
0 < i ≤ n. In this way, the persistence condition is prevents loss of behaviour.

2.3.1 Persistent Sets

Based on the theory of independent actions and their interleavings, the following
restrictions on the reduction function have been defined [12, 37]:

C0a r(s) ⊆ enabled(s).

C0b r(s) = ∅ ⇔ enabled(s) = ∅.

C1 For all s ∈ S and executions s
α1−→ s1

α2−→ . . .
αn−1−−−→ sn−1

αn−→ sn such that
α1, . . . , αn /∈ r(s), αn is independent in sn−1 with all actions in r(s).

C0a and C0b make sure that the reduction does not introduce new behaviour
and new deadlocks respectively. C1 implies that all α ∈ r(s) are independent of
enabled(s) \ r(s). Informally, this means that only the execution of independent
actions can be postponed to a later state (cf. Figure 2.4). A set of actions that
satisfies these criteria is called a persistent set. It is hard to compute the smallest
persistent set, therefore several practical approaches have been proposed, which will
be introduced in Chapter 4.

Any persistent set preserves deadlocks and can therefore be used to check a
system for deadlocks. However, we are also interested in safety properties, which are
generally not preserved. Therefore, we have to address another issue: the action-
ignoring problem.

2.3.2 Action Ignoring

When exploring a state space and applying partial-order reduction, it is possible
that the execution of a certain action is postponed indefinitely, i.e. there is an action
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s0

s1

s2

α1

α2

α3 ||

t0

t1

β =

s0t0

s1t0

s2t0

s0t1

s1t1

s2t1

α1

α2

α3

α1

α2

α3

β

β

β

Figure 2.5: Indefinite ignoring of action β.

that is not part of r(s) for any state s ∈ Tr. Because we are dealing with finite
state-spaces and we have to satisfy condition C0b, this can only happen in a cycle.

Example 4. In Figure 2.5, we see the parallel composition of two processes. In the
parallel composition, action β is ignored indefinitely along one of the loops, which
leads to states s0t0, s1t1 and s2t1 never being explored.

In order to preserve safety properties, we need to impose another condition on
the reduction function. This condition is called the action ignoring proviso and it
prevents actions from being postponed for ever.

C2ai For every state s ∈ Sr and every action α ∈ enabled(s), there exists an execu-
tion s

α1−→ s1
α2−→ . . .

αn−→ sn in the reduced state space, such that α ∈ r(sn).

By preventing ignoring of actions, any transition label that occurs in the original
state space, also occurs in the reduced state space [38]. Therefore, violations of safety
properties (indicated by a special error transition either in one of the processes or
in an additional monitor process) are also preserved. Note that other temporal
properties are not preserved, but they fall outside of the scope of this thesis.

The problem with the action ignoring proviso is that it requires an overview of
the reduced state-space. Moreover, the problem of finding the minimal amount of
states covering all cycles is NP-complete. Therefore, it is not possible to apply these
provisos directly in an on-the-fly POR algorithm.

Provisos for Safety Properties

We can define a stronger version of this proviso that can be decided on a per-state
basis. Then, the information about the search history can be used to decide whether
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it is possible to further postpone the execution of some action. As an example, we
consider POR under depth-first search. When a certain state s is expanded and we
find a transition leading back to a state that is on the DFS stack, we have found
a cycle. In case all actions in r(s) lead back to the stack, this might result in
action-ignoring. In that case we should either try to find another set of actions for
our reduction or fully expand s. This strategy is formally defined in condition C2s
(C2-stack):

C2s There is at least one action α ∈ r(s) and state t such that s
α−→ t and t is not

in the DFS stack. Otherwise, r(s) = enabled(s).

Condition C2s implies C2ai [11], therefore C2s prevents the ignoring of actions.
For algorithms that do not follow a DFS order, the following, more general closed-set
proviso [12] can be used as an alternative for C2s.

C2c There is at least one action α ∈ r(s) and state t such that s
α−→ t and t /∈ Closed .

Otherwise, r(s) = enabled(s).

2.4 GPU Architecture

CUDA is a programming interface developed by NVIDIA to enable general purpose
programming on a GPU [1]. It provides a unified view of the GPU (‘device’), sim-
plifying the process of developing for multiple devices. Code to be run on the device
(‘kernel’) can be programmed using a subset of C++. The kernel specifies the be-
haviour of a single thread. When the kernel is executed, multiple threads execute
the same code in parallel.

Considering the hardware, a GPU is divided up into several streaming multi-
processors (SM) that each contain a large amount of cores. On the side of the
programmer, threads are grouped into blocks. When assigning work to a GPU, the
number of threads per block and the number of blocks need to be specified. The
GPU then schedules the thread blocks on the streaming multiprocessors. One SM
can run multiple blocks at the same time, but one block cannot execute on more than
one SM. The SM manages threads in groups of 32 threads, called warps. Threads in
a warp execute instructions in lock-step fashion. Figure 2.6 provides an overview of
the software and hardware thread hierarchy.

Another important aspect of the GPU architecture is the memory hierarchy.
Firstly, each SM has shared memory that is divided between the blocks running on
that SM. The shared memory assigned to a block can only be accessed by the threads
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software hardware

thread core

warp

block SM

grid GPU

Figure 2.6: Summary of software and hardware thread hierarchy in CUDA.

in that block. The shared memory is placed on-chip, therefore it has a low latency.
Secondly, there is the global memory that can be accessed by all the threads. It has a
high bandwidth, but also a high latency. The amount of global memory is typically
multiple gigabytes. There are three caches for the global memory: the L1 cache,
the L2 cache and the texture cache. Data in the global memory that is marked as
read-only (a ‘texture’) may be placed in the texture cache. The global memory can
also be accessed by the CPU (‘host’), thus it serves as an interface between the host
and the device. Figure 2.7 provides a schematic overview of the architecture.

The key to writing efficient GPGPU programs is making optimal use of the ar-
chitecture. The work should be divided into small tasks that will be executed by the
thread blocks. All threads in a block work together on this small task. The work
division strategy plays an important role, because communication between blocks
is only possible via global memory. Therefore, data dependencies between blocks
should be avoided.

Warps influence the performance of GPU algorithms in several ways. Firstly, the
amount of branch divergence within warps should be kept to a minimum. Consider
an if-statement with condition C, where C is true for at least one thread and false
for at least one thread. Since the threads in one warp step through all instructions
together, the two branches will be executed sequentially. This can lead to a reduction
in performance.

On the other hand, the concept of warps can be exploited when fetching data
from memory. When the threads in a warp fetch a continuous block of 32 integers
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Figure 2.7: Schematic overview of the GPU architecture.

from global memory, this memory access can be executed in parallel. This is called
coalesced access. Additionally, this data fits exactly in one cache line of 128 bytes.

Finally, there are several instructions for quickly exchanging data between threads
of a warp. These warp instructions are implemented by register swapping. CUDA’s
memory model does not guarantee visibility of writes without a barrier synchroniza-
tion, even between threads of the same warp. Therefore, it is often faster to apply
warp instructions and avoid synchronization of the whole block.

Example 5. Figure 2.8 illustrates how warp instructions enable fast data sharing.
Here, we will compute the minimum value of a variable a of all threads in a warp
using butterfly reduction. For this reduction algorithm, the shuffle instruction is
used. This function has two arguments: the first argument is the value to exchange
and the second argument is the source lane (index of a thread in its warp). It
returns the value of the first argument as computed by the source lane. For this
algorithm, we compute the source lane by applying an offset. After each shuffle
operation, the minimum value of variable a is recomputed and the offset is increased
by a factor two. In this way, we achieve a tree-like structure for the data exchanges
and only five instructions are necessary to compute a minimum from the variables
of 32 threads. Although Figure 2.8 only displays the information flow relevant for
the first thread, the same algorithm is executed by all threads in a warp. Therefore,
when the algorithm terminates, all 32 threads have computed the same minimum
value.

The use of shared memory can be an important factor in the performance of
GPGPU applications. However, there is only a limited amount of shared memory
available per SM, typically no more than several tens of kilobytes. Therefore, the
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a = min( shfl(a,lane+1),a);

a = min( shfl(a,lane+2),a);

a = min( shfl(a,lane+4),a);

a = min( shfl(a,lane+8),a);

a = min( shfl(a,lane+16),a);

Figure 2.8: Computing the minimum of variable a over all threads of one warp
with butterfly reduction. The flow of data relevant for the first thread of the warp
(lane = 0) is indicated by the arrows. Of course, variable a also carries over between
iterations, as indicated by dashed lines. The value of variable a for the first thread
is the minimum of all as of the orange-coloured threads after each step.

data that is accessed most often should be stored in shared memory. In that way,
it serves as a user-managed cache for global memory. Storing critical data in shared
memory helps to reduce the amount of memory accesses to the global memory.
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Chapter 3

Optimizations

This chapter first introduces the existing architecture of GPUexplore. Then, it dis-
cusses how we optimized the implementation to minimize the runtime required for
state-space exploration.

3.1 Existing Design

GPUexplore is a model checker that can check for deadlocks and safety properties.
GPUexplore executes all the computations on the GPU and does not rely on any
processing by the CPU. The main kernel of GPUexplore implements lines 2-6 of
Algorithm 1. This kernel is launched repetitively until all states have been explored.

The Open and Closed set are implemented by a single hash table that occupies
most of the global memory. All states are stored in this hash table. Whether a state
is new (in the Open set) or old (in the Closed set) is indicated by a single bit in the
state vector. This bit is not considered by the hash function. This ensures that a
state will be inserted in the same position, regardless of the value of the new/old bit.

The hash table uses open addressing with rehashing. Since we are not interested
in deleting states from the hash table, it only needs to support a findOrPut operation.
This operation tries to find an element, and if it is not present, the element is inserted.
The implementation of findOrPut is thread-safe: it does not allow for data races.
In addition, it is lock-less: the atomic compareAndSet (CAS) operation is used to
guarantee thread-safety. The hash table is divided into buckets of 32 integers. Each
bucket may contain multiple state vectors. Whenever possible, threads cooperate
with the other threads in their warp and read/write a complete bucket to ensure
coalesced access.

The threads are organized as follows: each thread is primarily part of a block.
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As described in section 2.4, the hardware enforces that threads are grouped in warps
of size 32. We also created logical groups, called vector groups (note that vector
groups are not a CUDA concept). The number of threads in a vector group is equal
to the number of processes in the network (cf. section 2).The threads in a vector
group cooperate to compute the successors of a single state. Each thread has a
vector group thread index (vgtid) and is responsible for generating the successors
of process Π[vgtid]. Successors following from synchronizing actions are generated
in cooperation. Threads with vgtid 0 are group leaders. Note that the algorithms
presented here specify the behaviour of one thread, but are run on multiple threads
and on multiple blocks. Most of the synchronization is hidden in the functions that
access shared or global memory.

Algorithm 2: GPUexplore exploration framework
Data: global table[ ]
Data: shared workTile[ ], cache[ ]

1 vgid← tid / numProc; /* index of the vector group */

2 vgtid← tidmodnumProc; /* id of the thread in the group */

3 foreach i ∈ 0 . . .NumIterations do
4 workT ile← gatherWork();
5 syncthreads();
6 s← workT ile[vgid];
7 foreach t ∈ succvgtid(s) do
8 storeInCache(t);

9 syncthreads();
10 foreach t ∈ cache do
11 if isNew(t) then
12 findOrPutWarp(t);
13 markOld(t);

A high-level view on the algorithm of GPUexplore is presented in Algorithm 2.
This kernel is executed repetitively until all reachable states have been explored. In
between two kernel launches, the CPU only queries the GPU to determine whether
exploration has finished. Several kernel iterations may be performed during each
launch of the kernel (NumIterations is set by the user). Each iteration starts
with work gathering : blocks search for unexplored states in global memory and copy
those states to the work tile in shared memory (line 4). Once the work tile is full, the
syncthreads function from the CUDA API synchronizes all threads in the block

and guarantees that writes to the work tile are visible to all threads (line 5). Then,
each vector group takes a state from the work tile (line 6) and generates its successors
(line 7). To prevent non-coalesced accesses to global memory, the successors are first
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placed in a cache in shared memory (line 8). When all the vector groups in a block
are done with successor generation, each warp scans the cache for new states and
copies them to global memory (line 12). The states are then marked old in the cache
(line 13), so they are still available for local duplicate detection later on. For details
on how successors are computed and the inner workings of the hash table, we refer
to [42].

3.2 Improvement of Work Scanning

At the beginning of each iteration, each block fills its work tile by linearly scanning the
hash table in global memory (cf. Algorithm 3). Each warp linearly scans its section
of the hash table by stepping a nrOfWarps amount of buckets in each iteration
(line 14). When a new state is found (line 9), the amount of states in the work tile
(stored in tileCount) is incremented atomically (line 10). If the previous value of
tileCount (stored in j ) is smaller than the size of the work tile (line 11), then the
state is copied from the hash table into the work tile and marked as old in the hash
table (lines 12-13).

Algorithm 3: Work gathering
Data: global table[ ]
Data: shared workTile[ ], tileCount

1 function gatherWork():
2 lane← threadId mod warpSize;
3 warpId← threadId/warpSize;
4 globalWarpId← (nrOfBlocks/warpSize) ∗ blockId + warpId;
5 nrOfWarps ← (blockSize/warpSize) ∗ nrOfBlocks;
6 i← globalWarpId;
7 while i < |table| ∧ tileCount < blockSize/nrProcs do
8 s← table[i ∗ warpSize + lane];
9 if isNew(s) then

10 j ← atomicInc(&tileCount);
11 if j < blockSize/nrProcs then
12 workT ile[j]← s;
13 markOld(table[i ∗ warpSize + lane]);

14 i← i + nrOfWarps;

As Wijs and Bošnački [42] already discussed, work scanning can be a performance
bottleneck, especially when using a large hash table that is only sparsely filled with
new states. To combat this problem, GPUexplore already implemented work claim-
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ing : at the end of each iteration, when copying new states from the cache to global
memory, blocks can immediately place these in their work tile. This saves time when
scanning for work in the next iteration. In the case that a block manages to fill the
entire work tile, it even avoids work scanning completely.

This technique can not be applied during the last iteration of a kernel launch,
however, since the contents of shared memory are lost after the termination of a
kernel. To solve this problem, we copy the contents of the work tile to global memory
after the last iteration. Before the first iteration of the next kernel launch, we copy
this information back to the work tile in shared memory.

The second improvement we made is to save the location where the previous scan
terminated. During the next iteration, we will start scanning from that location.
Suppose the hash table was scanned until location n during the previous iteration.
In that case, the locations 0 ≤ globalWarpId + k ∗ nrOfWarps < n, for all k ∈ N,
only contain new states that were inserted between the previous scan and this scan.
Therefore, it is more efficient to continue scanning at location n.

The third optimization is to track whether work is available for a block: for every
block, there is a flag that indicates whether the part of the hash table scanned by
that block contains a new state. The flags are stored in global memory, so they can
be accessed by all threads. Initially, all flags are set to false. Whenever a new state
is inserted into the hash table, the flag of the block corresponding to the location of
the state is set to true. When a block scans its part of the hash table and finds no
new states, it sets its flag to false. Blocks will not try to scan the hash table for new
states when their flag is set to false. This optimization carries some overhead, due to
the increased amount of accesses to global memory. However, blocks no longer scan
the hash table unnecessarily. The benefit becomes greater as the hash table becomes
larger.

The final, small optimization in this area is to avoid scanning the cache (line
10 of Algorithm 2) when the work tile is empty. In that case, no states have been
gathered, no successors have been generated and thus the cache is empty.

3.3 Hash Table

Experiments with larger models showed that GPUexplore would quickly run out of
space in its hash table. In most cases, only 50% of the hash table was occupied
with states. Further analysis proved that these states where poorly spread over the
table. This is all due to a high amount of hash collisions : the hash function often
produces the same hash value for different state vectors. This leads to all states
being concentrated on a relatively small part of the hash table.
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Therefore, we have improved the hash function (Algorithm 4). The new imple-
mentation first sums all integers of the state vector, while applying some bit shifts in
between (line 3). Then, it multiplies with a hash constant a, adds a constant b and
computes the modulo with respect to P, where P is a large prime number (line 4).
Finally, the position in the hash table is computed by taking the modulo with respect
to the number of buckets.

We have empirically determined that this hash function offers a good trade-off
between runtime and the amount of hash collisions. It leads to a good spread of
states in the hash table.

Algorithm 4: Improved hash function
Input: constant a, constant b, constant P, nr buckets, state[ ]
Output: hash

1 hash ← 0;
2 foreach s ∈ state[ ] do
3 hash ← (hash + s) << 5;

4 hash ← ((a*hash+b) mod P) mod nr buckets;

This hash function can slightly improve the runtime of the state-space explo-
ration. Since states are spread better through the hash table, finding a fully oc-
cupied bucket on the first try is less likely. Therefore, less rehashing is required.
Furthermore, we changed the implementation to avoid costly 64 bit modulo opera-
tions whenever possible.

The second improvement related to the hash table is the removal of all single-
threaded accesses to the hash table. In the original implementation, whenever the
cache was full, a thread may insert states directly into the hash table in global mem-
ory by itself. This single-threaded implementation was sensitive to race-conditions,
however, resulting in duplicate entries in the hash table. By exchanging data with
warp instructions, it is possible to use the warp version of findOrPut instead. This
implementation provides coalesced access, so it helps to speed-up exploration in those
cases where the cache overflows.

3.4 Branch Divergence and Synchronization

GPUexplore contains a lot of branch divergence. Since the algorithms are complex,
this is unavoidable in most places. However, there were several critical points in the
code where branch divergence could be avoided.
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In the original version of GPUexplore, vector groups and warps were not related in
any way. This means that a vector group can be part of more than one warp. To bring
the threads of a vector group in sync required a call to the syncthreads function
from the CUDA API, which forces the whole block to synchronize. This caused a lot
of unnecessary waiting. Therefore, we restructured the thread layout, so that a vector
group will never cross a warp boundary. A warp may still contain multiple vector
groups, however. This allows us to perform most of the communication between
threads via warp instructions and to remove all calls to syncthreads from the
main loop of the kernel. This greatly speeds up successor generation, since threads
spend less time waiting for each other.

3.5 Generating Synchronizing Transitions

The generation of successors (lines 7 and 8 of Algorithm 2) has also been optimized.
In the original design of Wijs and Bošnački [42], finding the action with the smallest
label index was done by the group leader, which scanned the buffer of each of the
threads in the group. Next, the synchronizing transitions for the action with the
smallest label index were generated.

First, we replaced the sequential buffer scanning by butterfly reduction through
warp instructions (cf. section 2.4) to find the smallest label index. Since we only have
to find the minimum within the vector group, this requires dlog2 ne warp instructions,
where n is the number of processes in the network.

The procedure of generating synchronizing transitions according to sync vectors
has also been enhanced. Previously, for every applicable sync vector, a leader would
be selected that generated the successors following from that vector. In our improved
version, all group members read sync vectors in parallel. They iterate through the
array of sync vector until all threads in the vector group have found an applicable
sync vector or they have reached the end of the array. Then, the successors following
from the sync vectors are computed in parallel.
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Chapter 4

Partial-Order Reduction

This chapter explains the details of the implementation of partial-order reduction in
GPUexplore. First, it discusses how GPUexplore can be extended with partial-order
reduction. Then, a formal proof is provided to show that the proposed algorithms
are correct.

Before we explain the extensions required to implement partial-order reduction,
it is important to note that the search order of GPUexplore is not strictly DFS or
BFS. GPUexplore does not implement a stack or a queue to enforce a work order,
but gathers states from global memory. Therefore, the search algorithm should be
categorized as general state expanding algorithm (GSEA) [17]. We satisfy the action
ignoring proviso by implementing the GSEA cycle proviso that was introduced by
Bošnački et al. [12].

In literature, multiple practical approaches to partial-order reduction have been
proposed. The GPU implementation of ample sets [37, 24], cample sets [8] and
stubborn sets [38] is discussed below. Sleep sets have not been considered, since they
require a large amount of memory for each state.

In the following sections, we will explain how lines 7 and 8 of Algorithm 2 can be
adjusted to implement POR.

4.1 Ample-set Approach

The ample-set approach is based on the idea of safe actions [24]: an action is safe
if it is independent of all actions of all other processes. While exploring a state s, if
there is a process Π[i] that has only safe actions enabled in s, then r(s) = enabled i(s)
is a valid ample set, where enabled i(s) is the set of actions of process Π[i] enabled
in s. Otherwise, r(s) = enabled(s). In our context of an LTS network, only local
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Algorithm 5: Successor generation under the ample-set approach
Data: global table[ ]
Data: shared cache[ ], buf[ ][ ], reduceProc[ ]

1 function generateSuccessors():
2 bufCount ← 0, reduceProc[vgid]← numProcs;
3 if processHasOnlyLocalTrans(s, vgtid) then
4 foreach t ∈ succvgtid(s) do
5 location← storeInCache(t);
6 buf [tid][bufCount ]← location;
7 bufCount ← bufCount + 1;

8 foreach i ∈ [0..bufCount − 1] do
9 j ←findGlobal(cache[buf [tid ][i ]]);

10 if j = NotFound∨ isNew(table[j ]) then
11 atomicMinimum(&reduceProc[vgid], vgtid);

12 syncthreads();
13 if reduceProc[vgid] < numProcs ∧ reduceProc[vgid] 6= vgtid then
14 foreach i ∈ [0..bufCount − 1] do
15 markOld(cache[buf [tid ][i ]]);

16 syncthreads();
17 if reduceProc[vgid] = vgtid then
18 foreach i ∈ [0..bufCount − 1] do
19 markNew(cache[buf [tid ][i ]]);

20 if reduceProc[vgid] ≥ numProcs then
21 /* generate the remaining successors */

actions are safe, so reduction can only be applied if we find a process with only local
actions enabled.

An outline of the GPU ample-set algorithm can be found in Algorithm 5. First,
the successors of processes that have only local actions enabled are generated. These
states are stored in the cache (line 5) by some thread i, and their location in the
cache is stored in a buffer that has been allocated in shared memory for each thread
(line 6). Then, line 9 finds the location of the states in global memory. This step is
performed by threads cooperating in warps to ensure coalesced memory accesses. If
the state is not explored yet (line 10), then the cycle proviso has been satisfied (cf.
section 2.3.2) and thread i reports it can apply reduction through the reduceProc
shared variable (line 11). In case the process of some thread has been elected for
reduction (reduceProc[vgid] < numProcs), the other threads apply the reduction
by marking successors in their buffer as old in the cache, so they will not be copied
to global memory later. Finally, threads corresponding to elected processes get a
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chance to mark their states as new if they have been marked as old by a thread
from another vector group (line 19). In case no thread can apply reduction, the
algorithm continues as normal (line 21). Why states need to be marked as new will
be explained in section 4.4.

4.2 Cample-set Approach

In our definition of a network of LTSs, local actions represent internal process be-
haviour. Since most practical models frequently perform communication, they have
only few local actions and consist mainly of synchronizing actions. The ample-set
approach relies on local actions to achieve reduction, so it often fails to reduce the
state space. To solve this issue, we implemented cluster-based POR [9]. Contrary
to the ample-set approach, all actions of a particular set of processes (the cluster)
are selected. The notion of safe actions is still key. However, the definition is now
based on clusters. An action is safe with respect to a cluster C ⊆ {1, . . . , n} (n is the
number of processes in the network), if it is part of a process of that cluster and it
is independent of all actions of processes outside the cluster. Now, for any cluster C
that has only actions enabled that are safe with respect to C, r(s) =

⋃
i∈C enabled i(s)

is a valid cluster-based ample (cample) set. Note that the cluster containing all
processes always yields a valid cample set.

Whereas Basten and Bošnački [9] determine a tree-shaped cluster hierarchy a
priori and by hand, our implementation computes a cluster on-the-fly for every in-
dividual state. This should lead to better reductions, since the fixed hierarchy only
works for parallel processes that are structured as a tree. Dynamic clustering works
for any structure, for example ring or star structured LTS networks. In [9], it is
argued that computing the cluster on-the-fly is an expensive operation, so it should
be avoided. Our approach, when exploring a state s, is to compute the smallest
cluster C, such that ∀i ∈ C : C[i] ⊆ C, where C[i] is the set of processes that process
i synchronizes with in the state s. This can be done by running a simple fixed-point
algorithm, with complexity O(n), once for every C[i] and finding the smallest from
those fixed points. This gives a total complexity of O(n2). However, in our imple-
mentation, n parallel threads each compute a fixed point for some C[i]. Therefore, we
are able to compute the smallest cluster in linear time with respect to the amount
of processes. Dynamic clusters do not influence the correctness of the cample-set
approach, the reasoning of [9] still applies.

The computation of dynamic clusters is detailed in Algorithm 6. Each vector
group accesses two arrays in shared memory: cluster to track the dynamic cluster as
computed by each thread and proviso to track which processes/threads satisfy the
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cycle proviso (we remind the reader that each thread is associated with exactly one
process). Each thread starts by assigning the information obtained during successor
generation to cluster and proviso(lines 2-3). After the work set of processes is initial-
ized (line 5), some process i is selected from the work set (line 7). Then, i is added to
the cluster of this thread (line 8) and the work set and proviso status is updated with
the data from i (lines 9-10). When every thread has finished computing the closure,
the results are shared (lines 12-13). From all clusters, the group leader selects the
smallest (line 16). This cluster is then returned by all threads in the group.

Algorithm 6: Algorithm for computing a cluster in parallel.
Data: shared cluster[ ], proviso[ ]

1 function determineCluster(myCluster , provisoSatisfied):
2 cluster[vgtid]← myCluster;
3 proviso[vgtid]← provisoSatisfied ;
4 syncthreads();
5 clWork ← myCluster;
6 while clWork 6= ∅ do
7 clWork ← clWork \ {i} for some i ∈ clWork;
8 myCluster ← myCluster ∪ {i};
9 clWork ← clWork ∪ (cluster[i] \myCluster);

10 provisoSatisfied ← provisoSatisfied ∨ proviso[i];

11 syncthreads();
12 cluster[vgtid]← myCluster;
13 proviso[vgtid]← provisoSatisfied ;
14 syncthreads();
15 if vgtid = 0 then
16 selectedCluster ← cluster[i] where proviso[i] ∧ |cluster[i]| ≤ |cluster[j]| for all j;
17 cluster[0]← selectedCluster;

18 syncthreads();
19 return cluster[0];

The algorithm for generating successors following from the cample-set suffers from
the fact that it is not possible to determine a good upper bound on the maximum
amount of successors that can follow from a single state. Therefore, it is not possible
to statically allocate a buffer, as was done for the ample-set approach (Algorithm
5). Dynamic allocation in shared memory is not supported by CUDA. The only
alternative is to check immediately whether the last generated state is marked as
new in global memory. This is outlined in Algorithm 7. On lines 4 to 6, successors
are generated and stored in the cache as usual. Each successor is immediately looked
up in the global hash table (line 7). If it has not been explored yet, the cycle proviso
is satisfied by the successors of the process associated with the thread (line 9). For
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all actions, we determine which processes may synchronize on that action and save
this information in myCluster (line 10). Then, the cluster is computed according to
Algorithm 6 (line 11). Finally, states are marked as old (line 14) or new (line 14)
depending on whether they follow from an action in the cample set.

Algorithm 7: Algorithm for generating states using a cample set.
Data: shared cluster[ ]

1 function generateSuccessors():
2 myCluster ← {vgtid};
3 provisoSatisfied ← false;
4 foreach a ∈ enabled(s, vgtid) do
5 foreach t← succ(s, a) do
6 loc← storeInCache(t);
7 j ←findGlobal(t);
8 if j = NotFound∨ isNew(table[j ]) then
9 provisoSatisfied ← true;

10 myCluster ← myCluster ∪ actionSyncsWith(a);

11 cluster ← determineCluster(myCluster,provisoSatisfied);
12 if vgtid ∈ cluster then
13 foreach t ∈ successors(s, vgtid) do
14 markOld(cache[findInCache(t)]);

15 syncthreads();
16 if vgtid /∈ cluster then
17 foreach t ∈ successors(s, vgtid) do
18 markNew(cache[findInCache(t)]);

4.3 Stubborn-set Approach

The stubborn-set approach was originally introduced by Valmari [38]. The algorithm
starts by selecting one enabled action and builds a stubborn set by iteratively adding
actions. For enabled actions, all actions that are dependent on that action are added.
For disabled actions, all actions that can enable it are added. When a closure has
been reached, all enabled actions in the stubborn set together form a persistent set.

Our implementation uses bitvectors to store the stubborn set in shared memory.
In case we apply the cycle proviso, we need four of such bitvectors: to store the
stubborn set, the work set, the set of enabled actions and the set of actions that satisfy
the cycle proviso. This design may have an impact on the practical applicability of the
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algorithm, since the amount of shared memory required is relatively high. However,
this is the only design that results in an acceptable computational overhead.

To compute a stubborn set, we use several matrices that have been computed
during pre-processing. Information about the dependency of actions is stored in the
do-not-accord (DNA) matrix and information about how action can be enabled and
disabled is stored in the necessary enabling set (NES) and necessary disabling set
(NDS) matrices respectively. For more details on these matrices, we refer the reader
to Laarman et al. [30]. To further reduce the size of the computed stubborn set,
we apply the heuristic function from [30]. Contrary to their implementation, we do
not compute a stubborn set for all possible choices of initial action. Effectively, we
sacrifice some reduction potential in order to minimize the runtime overhead and the
amount of memory required for computing a stubborn set.

An outline of the implementation is given in Algorithm 8. Since it is not possible
to determine whether an action is enabled in constant time, we generate the set of
enabled transitions before computing the stubborn set (lines 8-9). This also allows
us to build a set of actions that satisfy the cycle proviso (lines 10-13). If no action
satisfies the cycle proviso, the set of all actions is returned (lines 15-17). On line
20, the group leader selects a single initial action. Our implementation first looks
for local actions, because they are less likely to cause large stubborn sets. The
actual stubborn set is computed in the loop starting on line 23. Since this is done
in parallel, each thread gathers an action from one of its own slots of the work set
(line 24). Actions from the DNA matrix or a NES/NDS matrix are added on line
28 and 30 respectively. At the end of a loop, threads vote whether they may still
have work to do (line 36). If not, the buildStubbornSet function terminates and
all states following from actions in the stubborn set are generated (lines 3-6).
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Algorithm 8: Algorithm for generating states using a stubborn set.
Data: shared stubborn[ ][ ], work[ ][ ], enabled[ ][ ], proviso[ ][ ], continue[ ]

1 function generateSuccessors():
2 buildStubbornSet();
3 foreach a ∈ enabled(s, vgtid) do
4 if stubborn[vgid][a] then
5 foreach t← succ(s, a) do
6 storeInCache(t);

7 function buildStubbornSet():
8 foreach a ∈ enabled(s, vgtid) do
9 enabled[vgid][a]← true;

10 foreach t← succ(s, a) do
11 j ←findGlobal(t);
12 if j = NotFound∨ isNew(table[j ]) then
13 proviso[vgid][a]← true;

14 syncthreads();
15 if ¬proviso[vgid][a] for all a then
16 stubborn[vgid][a]← true for all a;
17 return;

18 syncthreads();
19 if vgtid = 0 then
20 work[vgid][a]← true for some a : proviso[vgid][a];
21 continue[vgid]← true;

22 syncthreads();
23 while continue[vgid] do
24 act← a for some a : work[vgid][a] ∧ a = k ∗ num procs + vgtid;
25 work[vgid][a]← false;
26 stubborn[vgid][a]← true;
27 if enabled[vgid][a] then
28 atomicOr(&work[vgid], fetchTexture(DNA[a])∧¬stubborn[vgid]);
29 else
30 atomicOr(&work[vgid], fetchTexture(N [a])∧¬stubborn[vgid]) where

N ← find nes heur(act);

31 syncthreads();
32 if vgtid = 0 then
33 continue[vgid]← false;

34 syncthreads();
35 if act then
36 continue[vgid]← true;

37 syncthreads();
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4.4 Proof of Correctness

In this section, we give a formal argument why the GPU POR algorithms we proposed
are correct, i.e. why they produce a reduction function that satisfies the criteria of
a persistent set.

4.4.1 Sequential correctness

First, we will prove that each of the POR algorithms we proposed produces valid
persistent sets when run with minimal parallelism.

Theorem 1. Algorithm 5 produces a correct ample set that satisfies the action ig-
noring proviso when run with minimal parallelism (using only one vector group of
numProcs threads).

Proof. The algorithm can generate successors according to either of two results:

• All transitions of a process Π[i] that has at least one local transition and no
synchronizing transitions (r(s) = enabled i(s)).

• All transitions (r(s) = enabled(s))

Since conditions C0 - C2 are trivially true for the second result, we will focus on the
first outcome. C0a and C0b are again trivially true. In order to determine locally
whether r(s) = enabled i(s) satisfies condition C1, we have to satisfy two conditions
[2]:

C1a: Any α ∈ A[j] is independent of enabled i(s) for i 6= j.

C1b: Any α ∈ A[i] \ enabled(s) may not become enabled through the activities of
some process Π[j] with i 6= j.

Because we chose a process with only local actions, all actions in enabled i(s) are
independent of any α ∈ A[j] (C1a is satisfied). C1b is trivially satisfied: since
enabled i(s) does not contain blocked actions, there is no action in Π[i] that can
become enabled in any way. Therefore, we have satisfied C1b. We can now deduce
that condition C1 is also satisfied.

Condition C2 is satisfied by the fact that reduceProc is only changed by threads
that have at least one non-closed state in their buffer (line 11). So, the set of successor
states resulting from the selected ample set always contains at least one state that
is not in closed.
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These conditions together imply that the selected set of actions is indeed a correct
persistent set (conditions C0 - C2) that satisfies the action ignoring proviso (condition
C2).

As stated in the previous proof, we apply the local criteria from Baier and Ka-
toen [2] for condition C1 to compute a valid ample set. In order to apply these
criteria to cample sets, a slight generalization is needed. The following local criteria
ensure that condition C1 is satisfied when we choose r(s) =

⋃
i∈C enabled i(s) for

some cluster ∅ 6= C ⊆ {1, . . . , n} of a network N .

C1c: Any α ∈ A[j] is independent of
⋃
i∈C enabled i(s) for j /∈ C.

C1d: Any α ∈ (
⋃
i∈C A[i])\enabled(s) may not become enabled through the activities

of some process Π[j] with j /∈ C.

The accompanying lemma is also adapted (Baier and Katoen [2], lemma 8.27):

Lemma 1. If C1c and C1d hold, then r(s) =
⋃
i∈C enabled i(s) for some cluster

∅ 6= C ⊆ {1, . . . , n} satisfies condition C1 for all executions that start in s.

Proof. In case C = {1, . . . , n}, C1 trivially holds. In other cases, the reasoning below
applies.

Suppose that C1c and C1d hold, but C1 does not hold. Let s be the state we are
exploring. Because C1 does not hold, there exists an execution s

α1−→ s1
α2−→ . . .

αm−−→
sm

αm+1−−−→, where α1, . . . , αm /∈ r(s) (and therefore α1, . . . , αm /∈
⋃
i∈C enabled i(s))

and αm+1 depends on r(s). Because of condition C1c, any action that depends on
r(s) is an action of some process Π[i] with i ∈ C.

Let k be the largest index in {1, . . . ,m} such that α1, . . . , αk−1 are actions of
processes not in C: α1, . . . , αk−1 ∈

⋃
j /∈C A[j] \

⋃
i∈C A[i] and αk ∈

⋃
i∈C A[i]. Be-

cause the actions α1, . . . , αk−1 cannot change the state of any process Π[i] with
i ∈ C, states s1, . . . , sk−1 are the same as state s in all slots i ∈ C. αk /∈ r(s)
and αk ∈

⋃
i∈C enabled i(sk−1), so action αk becomes enabled in some slot i ∈ C

through the execution of one of the actions α1, . . . , αk−1. Since α1, . . . , αk−1 are
actions of processes Π[j] with j /∈ C, this contradicts C1d.

Theorem 2. Algorithm 7 produces a correct cample set that satisfies the action
ignoring proviso when run with minimal parallelism (using only one vector group of
numProcs threads).

Proof. For this proof, we can follow exactly the same reasoning as for Theorem 1,
but we use local criteria C1c and C1d instead of C1a and C1b.
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Theorem 3. Algorithm 8 produces a correct stubborn set that satisfies the action
ignoring proviso when run with minimal parallelism (using only one vector group of
numProcs threads).

Since our stubborn-set algorithm is not fundamentally different from the original
sequential version, we refer to Theorem 4.18 of Godefroid [21] for the proof of this
theorem.

4.4.2 Parallel correctness

The cache that is maintained in shared memory is read and modified by all threads.
Therefore, our algorithms may no longer be correct when executed on multiple vector
groups within one block. With the following theorem, we prove that this is not the
case. The ample-set algorithm is used as an example, but the reasoning applies to
all three implementations.

Theorem 4. Algorithm 5 produces a correct ample set when run using multiple vector
groups within one block.

Proof. We consider two vector groups A and B that are member of the same block.
From Theorem 1 we know that the result of each of the vector groups produces a
correct ample set when run sequentially. When run in parallel, there are two ways
in which the actions of group B can influence the result of group A.

• Vector group A does not apply reduction. However, group B marks some of
the states in the buffer of group A as old. This may lead to an unwanted loss
of states.

• Vector group A applies reduction by marking states in the cache as old (line
15). However, group B later marks some or all of these states as new (line 19).
This makes the group of selected transitions for A larger, possibly affecting
correctness.

In the first situation, the actions of group B are negated, because group A marks all
the successors it found as new after B marked them as old. Therefore, the correctness
of the result of group A is not affected.

The second situation is the reverse of the first one. Here, B adds successors to
the result computed by A. This leads to the same states being added to Closed as
when group A and B would be run in sequence. Therefore, the correctness of the
algorithm is not affected.
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Figure 4.1: ‘Lasso’ shaped path from the proof of Lemma 2

Blocks communicate with each other via global memory. For partial-order reduc-
tion, the only relevant access to global memory happens at line 10 of Algorithm 5.
We will now show that the correctness of our algorithms is not affected when running
on multiple blocks. First, we introduce a new version of the cycle proviso and show
that it implies the action-ignoring proviso.

Lemma 2. (closed-set cycle proviso) If a reduction algorithm satisfies conditions

C0a, C0b and C1 and for every cycle s0
α0−→ s1

α1−→ . . .
αn−1−−−→ sn

αn−→ s0 in the reduced
state space with β ∈ enabled(s0) and β 6= αi for all 0 ≤ i ≤ n, selects (i) at least one
transition labelled with β or (ii) at least one transition that, during the generation of
the reduced state space, led to a state outside the cycle that has not been explored yet
(i.e. ∃ i ∃(si, γ, t) ∈ τ : γ ∈ r(si) ∧ t /∈ Closed); then condition C2ai is satisfied.

Proof. Suppose that action β ∈ enabled(s0) for some s0 ∈ Sr is always ignored,
i.e. condition C2ai is not satisfied. This means there is no execution s0

α0−→ s1
α1−→

. . .
αn−1−−−→ sn

β−→ t where αi ∈ r(si) for all 0 ≤ i < n. Because we are dealing with
finite state spaces, every execution that infinitely ignores β has to end in a cycle.
These executions have a ‘lasso’ shape, they consist of an initial phase and a cycle.

Let s0
α0−→ s1

α1−→ . . .
αi−1−−→ si

αi−→ . . .
αn−1−−−→ sn

αn−→ si be the execution with the longest
initial phase, i.e. with the highest value i (see Figure 4.1). Since condition C1 is
satisfied, β is independent of any αk and thus enabled on any sk with 0 ≤ k ≤ n. It
is assumed that for at least one of the states si . . . sn an action exiting the cycle is
selected. Let sj be such a state (i ≤ j ≤ n). Since β is ignored, β /∈ r(sj). According
to the assumption, one of the successors found through r(sj) has not been in Closed.
Let this state be t. Any finite path starting with s0 . . . sjt cannot end in a deadlock
without taking action β at some point (condition C0b). Any infinite path starting
with s0 . . . sjt has a longer initial phase (after all j + 1 > i) than the execution we
assumed had the longest initial phase. Thus, our assumption is contradicted.

Whereas the closed-set proviso (cf. section 2.3.2) is a local condition which can be
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evaluated on a per-state basis, the new closed-set cycle proviso is a global property.
Although the new proviso assumes C0a, C0b and C1, it can allow smaller reduction
functions r, since only one transition per cycle is required to lead to a state outside
Closed.

Before we start the next proof, it is important to note three things. Firstly, the
work gathering function on line 4 of Algorithm 2 moves the gathered states from
Open to Closed. Secondly, the working of the algorithm with respect to conditions
C0a, C0b and C1 is not affected when it executes on multiple blocks. Finally, we
again use our ample-set algorithm as an example, but the theorem applies to all
three algorithms.

Theorem 5. Algorithm 5 produces a correct ample set that satisfies the cycle proviso
when run on multiple blocks.

Proof. Let s0
α0−→ s1

α1−→ . . .
αn−2−−−→ sn−1

αn−1−−−→ s0 be a cycle in the reduced state space.
In case α0 is dependent on all other enabled actions in s0, there is no action to be
ignored and C2ai is satisfied.

In case there is an action in s0 that is independent of α0, this action is prone
to ignoring. Let us call this action β. Because condition C1 is satisfied, β is also
enabled in the other states of the cycle: β ∈ enabled(si) for all 0 ≤ i < n.

We now consider the order in which states on the cycle can be explored by multiple
blocks. Let si be one of the states of this cycle that is gathered from Open first (line
4, Algorithm 2). There are two possibilities regarding the processing of state si−1:

• It is gathered from Open at exactly the same time as si. When the processing
for si−1 arrives at line 10 of Algorithm 5, it will find si in Closed.

• It is gathered later than si. Again, si will be in Closed.

Since si is in Closed in both cases, at least one other action will be selected for
r(si−1). If all successors of si−1 are in Closed, then β has to be selected. Otherwise,
at least one transition to a state that is not in Closed will be selected. Now we can
apply Lemma 2.

Combining the obtained results gives us the following corollary:

Corollary 1. Algorithms 5, 7 and 8 produce a correct persistent set that satisfies
the cycle proviso when run with multiple vector groups on multiple blocks.

Proof. By combining the results of Theorem 4 and Theorem 5, we can deduce that
the algorithms produce a correct persistent set when run with any number of vector
groups distributed over any number of blocks. The generated persistent set satisfies
the action-ignoring proviso.
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Chapter 5

Experiments

This chapter presents the results of several experiments. First, it shows the speed-up
gained by the optimizations proposed in Chapter 3. Second, the performance of the
proposed POR algorithms is determined.

5.1 Speed-up of Optimizations

The optimizations that we proposed in Chapter 3 have been implemented in GPUexplore.
We call this version GPUexplore 2.01. We want to determine the speed-up offered by
the optimizations over the original version from [42]. Additionally, we will compare
the performance with a traditional sequential model checker.

The models that were used as benchmarks (22 in total) have different origins.
Cache, sieve, odp, transit, asyn3 and des are all EXP models from the examples
included in the CADP toolkit [20]. The leader election, anderson, lamport,
lann, peterson and szymanski models come from the BEEM database2 and have
been translated from DVE to EXP. 1394, acs and wafer stepper are originally
mCRL2 [15] models and have also been translated by hand to EXP. broadcast has
been created by Wijs and Bošnački [42]. The models with a .1-suffix are enlarged
versions of the original models [42]. The details of the models can be found in
Table 5.1. ‘stub. set size’ indicates the maximum size of the stubborn set, which is
relevant for the POR experiments. Since the stubborn set size mainly depends on the
synchronization rules, it also gives an indication of the amount of synchronization
rules in the network.

1Sources are available from https://github.com/ThomasNeele/GPUexplore
2http://paradise.fi.muni.cz/beem/
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Table 5.1: Overview of the models used in the benchmarks

model #states #transitions stub. set size

cache 616 4,631 222
leader election1 4,261 12,653 4,712
acs 4,764 14,760 134
sieve 10 23,627 84,707 941
odp 91,394 641,226 464
1394 198,692 355,338 301
acs.1 200,317 895,004 139
transit 3,763,192 39,925,524 73
wafer stepper.1 3,772,753 19,028,708 880
odp.1 7,699,456 31,091,554 556
1394.1 10,138,812 96,553,318 300
asyn3 15,688,570 86,458,183 1,315
anderson6 18,206,917 86,996,322 786
lamport8 62,669,317 304,202,665 305
des 64,498,297 518,438,860 12
szymanski5 79,518,740 922,428,824 481
broadcast 105,413,504 1,264,962,048 70
peterson7 142,471,098 626,952,200 2,880
lann6 144,151,629 648,779,852 48
lann7 160,025,986 944,322,648 48
asyn3.1 190,208,728 876,008,628 1,363

For all our experiments with GPUexplore 2.0, we use an NVIDIA Titan X, which
was released in 2015. The Titan X has 24 SMs each with 128 CUDA cores, giving
a total of 3072 CUDA cores. Each SM has 96KB of shared memory and the global
memory has a size of 12GB. We allocate 5GB of the global memory for the hash
table.

Before we compare our implementation to other implementations, we have to
determine which parameter values give the best performance. There are two param-
eters that can be tuned for optimal performance: the amount of iterations per kernel
launch (K) and the amount of blocks (B). We fix the amount of threads per block
(T) to 512, since any other value reduces the occupancy of the GPU.

We start by determining the optimal number of iterations per kernel launch. We
run GPUexplore with 6144 blocks and 5GB allocated for the hash table and vary K
between 1 and 32. The results can be found in Figure 5.1. When varying K between
1 and 4, the runtime for the majority of models does not change significantly. For
higher K up to 32, a clear upward trend in runtime is visible. Only odp.1 and des

gain a significant speed-up with K around 8. des is structurally different from the
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Figure 5.1: Runtime while varying the amount of kernel iterations (6144 blocks)

other models: it contains one very large process and several smaller ones. For the
following experiments, we will fix K to one, since it gives the best performance for
most of the models.

The fact that a high value for K causes a high runtime can be explained by the
synchronizing effect of a kernel launch: at the end of a launch, the CPU waits until
all GPU blocks are finished executing. At the beginning of the next launch, all
memory writes from previous launches are guaranteed to be visible. This reduces
the amount of work scanning needed. There is no function available in the CUDA
API to replace the synchronization offered by a kernel launch. In [42], ten iterations
per kernel launch yielded optimal performance. Since we have reduced the overhead
of a kernel launch by temporarily storing the work tile in global memory (cf. section
3.2), the performance can be increased by performing a kernel launch more often,
and thus synchronize the blocks more often.

Next, we will optimize the amount of blocks that the kernel runs on. With our
kernel, an SM requires two blocks to be fully occupied and since the Titan X has 24
SMs, we vary B from 48 to 49152. The results are plotted in Figure 5.2.

It is clear from the data that 48 blocks are not enough to fully use the processing
power of the GPU. More blocks are needed to hide the memory latency. An additional
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Figure 5.2: Runtime while varying the amount of blocks (1 kernel iteration)

factor influencing the speed-up, is the fact that the availability of work is tracked
on a per-block basis. As we increase the amount of blocks, each work available flag
covers a smaller part of the hash table. Fine-grained work available flags help to
prevent more unnecessary work scanning. When the amount of blocks is very high,
the distribution of work between blocks becomes uneven. This especially affects the
small models. Only the broadcast model benefits from a high amount of blocks.
From these results, we can conclude that 6144 blocks and one iteration per kernel
launch are the parameters that give the best performance.

Since the odp.1 and des model show different behaviour from the other models
when varying either parameter, we will further study the parameter space for those
models. The results are displayed in Figure 5.3. The best result for odp.1 (1.36
seconds) is achieved with 6144 blocks and eight kernel iterations. This is 37% faster
than the result with our standard parameters (B=6144, K=1). For the des model,
GPUexplore performs best when running on 12288 blocks and eight kernel iterations
per launch. The runtime is 11.82 seconds, which is 51% less than the runtime with
standard parameters.

We compare our implementation directly with the implementation presented
in [42]. We also compare with the combination of the EXP.OPEN and Generator
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Figure 5.3: Runtime of odp.1 and des for all combinations of K and B

tools from CADP [20]. These tools run on a single thread. Since the EXP language
originates from CADP, it is the preferred tool to compare with. We also considered
comparing our implementation to the tool from [44]. However, their tool does not
use a standardized input language. We were unable to convert our models to their
input format.

CADP is run on an Intel Core i5 3350P with 8GB of RAM. For reference, we
also include the original results of GPUexplore from [42], that were obtained with
a NVIDIA K20m (released in 2012). This GPU has 13 SMs and 5GB of global
memory. Since it is not possible to measure the runtime of only the state-space
exploration for CADP, we measure the total runtime of each program (initialization
and exploration). For the original version of GPUexplore, we run the kernel on
3120 blocks of 512 threads and perform ten iterations per kernel launch, since this
gives the best performance [42]. For GPUexplore 2.0, we assign 6144 blocks of 512
threads and perform only one iteration per kernel launch. All GPU experiments are
repeated five times. The CPU experiments are run a single time. The results are
presented in Table 5.2. Runtimes are reported in seconds. The two columns under
’speed-up’ indicate the speed-up of GPUexplore 2.0 over CADP and GPUexplore on
the Titan X respectively.

GPUexplore 2.0 manages to bring all runtimes down to under 37 seconds, whereas
CADP takes around an hour for several models. On average, GPUexplore 2.0 is 70
times faster than CADP and 7.8 times faster than the original GPUexplore. The new
hardware brings a considerable speed-up over the K20m: on average the Titan X is
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Table 5.2: Runtime in seconds for CADP, the original GPUexplore and GPUexplore
2.0.

CADP GPUexplore-original GPUexplore 2.0 speed-up

model CPU K20m Titan X Titan X seq. orig

acs 2.25 10.51 2.26 0.33 6.9 6.9
odp 2.03 8.63 2.19 0.34 5.9 6.4
1394 2.10 23.10 3.85 0.51 4.1 7.6
acs.1 3.58 15.06 2.77 0.46 7.8 6.0
transit 37.79 26.20 4.54 1.21 31.3 3.8
wafer stepper.1 22.25 47.25 7.33 1.42 15.7 5.2
odp.1 76.73 29.78 5.78 1.84 41.8 3.1
1394.1 66.33 61.40 8.44 1.90 34.8 4.4
asyn3 352.56 273.41 37.97 3.87 91.2 9.8
lamport8 944.80 221.80 41.30 6.91 136.7 6.0
des 468.51 107.22 25.42 18.64 25.1 1.4
szymanski5 1393.35 512.13 86.17 8.93 156.0 9.6
peterson7 3463.06 4337.41 1004.07 36.42 95.1 27.6
lann6 2377.73 492.70 94.85 12.52 189.9 7.6
lann7 3035.55 877.74 164.90 19.83 153.1 8.3
asyn3.1 4360.00 2703.61 421.87 36.61 119.1 11.5

average 69.7 7.8

5.4 times faster.
For the smaller models, the speed-up that can be gained by the parallel power

of thousands of threads is limited. If the number of state in a frontier (BFS-like
search layer) is smaller than the number of states that can be processed in parallel,
then not all threads are occupied and the efficiency drops. Therefore, GPUexplore
achieves a relatively small speed-up over CADP of less than ten for acs, odp, 1394
and acs.1. For larger models, GPUexplore can achieve a speed-up of two orders of
magnitude or more.

The least amount of speed-up, relative to the original GPUexplore, is gained for
the des model. That has two reasons: (i) the parameters we selected are not optimal
for des, as shown above, and (ii) des consists of many local transitions, while most
of our optimizations are aimed at speeding-up the computation of synchronizing
transitions. In contrast, peterson7 contains many synchronization rules. Therefore,
GPUexplore 2.0 achieves the largest speed-up over the original GPUexplore for this
model. It should be noted that, for peterson7, the original GPUexplore on a K20m
is even slower than CADP.

Despite the improvements, CADP scales better with the amount of synchroniza-
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Table 5.3: Time (in seconds) required for state-space exploration (not including
initialization phase).

model GPUexplore-original GPUexplore 2.0 speed-up

acs 2.04 0.06 33.6
odp 1.97 0.09 21.2
1394 3.61 0.25 14.5
acs.1 2.54 0.21 12.2
transit 4.30 0.94 4.6
wafer stepper.1 7.10 1.16 6.1
odp.1 5.54 1.58 3.5
1394.1 8.16 1.60 5.1
asyn3 37.73 3.61 10.4

tion rules. peterson7 and asyn3.1, both large models with many synchronization
rules, show a smaller speed-up than either lann model, which have a very small
amount of synchronization rules.

The speed-up measurements are skewed for the smaller models, since, when the
state space is small, most of the runtime for GPUexplore 2.0 is spent on initial-
ization. Therefore, we have repeated the experiments, but now we only measure
the time required for state-space exploration on the Titan X. Any time required for
initialization is excluded. Table 5.3 shows the runtime for the models where the
initialization significantly influences the measured speed-up. The average speed-up
over all models is now 11.5 times. These results show that our improvements in the
area of work scanning pay off most when the model is small and the hash table is
sparsely filled with states.

5.2 POR Experiments

We want to determine the potential of applying POR in GPU model checking and
how it compares to POR on a multi-core platform. Additionally, we want to deter-
mine which POR approach is best suited to GPUs. We will focus on measuring the
reduction and overhead of each implementation.

We implemented the proposed algorithms in GPUexplore 2.0. Since GPUexplore
only accepts EXP models as input, we added an EXP language front-end to LTSmin [27]
to make a comparison with a state-of-the-art multi-core model checker possible. We
remark that it is out of the scope of this paper to make an absolute speed comparison
between a CPU and a GPU, since it is hard to compare completely different hardware
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Figure 5.4: State space of POR implementations relative to the full state space.

and tools. Moreover, speed comparisons have already been done before [7, 42, 44].
For these experiments, we used a representative subset of the models from the

previous section. For the GPU experiments, we again used the Titan X. GPUexplore
was executed on 6144 blocks of 512 threads and performed one iteration per kernel
launch, which gives the best performance (cf. section 5.1). LTSmin was benchmarked
on a machine with 24GB of memory and two Intel Xeon E5520 processors, giving a
total of 16 threads. We used BFS as search order. The stubborn sets were generated
by the closure algorithm with a heuristic function to find the best NES [30].

For the first experiment, we disabled the cycle proviso, which is not needed when
checking for deadlocks. For each model and for each POR approach, we executed the
exploration algorithm 10 times. The average size of the reduced state space relative
to the full state space is plotted in the first chart of Figure 5.4 (the full state space
has a size of 100% for each model). The error margins are not depicted because they
are very small.

The first thing to note is that the state spaces of the leader election1 and
peterson7 models cannot be computed under the stubborn-set approach. The reason
is that the amount of synchronization rules is very high, so the amount of shared
memory required to compute a stubborn set exceeds the amount of shared memory
available.

On average, the stubborn-set approach offers the best reduction, followed by
the cample-set approach. Only for the wafer stepper.1 model, the stubborn-set
approach offers a significantly worse reduction. As expected, the cample-set approach
always offers roughly similar or better reduction than the ample-set approach, since
it is a generalization of the ample-set approach. Overall, the reduction achieved by
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Figure 5.5: Runtime of POR implementations relative to the runtime of full state-
space exploration.

GPUexplore and LTSmin is comparable. Note that for GPUexplore, any reduction
directly translates into memory saving. For LTSmin, this may not be the case, since
its database applies tree compression [31].

Additionally, we measured the time it took to generate the full and the reduced
state space. To get a good overview of the overhead resulting from POR, the relative
performance is plotted in Figure 5.5. For each platform, the runtime of full state-
space exploration is set to 100% and is indicated by a red line. Again, the error
margins are small, so we do not depict them.

These results show that the ample-set approach induces no significant overhead.
For models where good reduction is achieved, it can speed-up the exploration process
by up to 3.6 times for the acs.1 model. On the other hand, the cample and stubborn-
set approach suffer from significant overhead. When no or little reduction is possible,
this slows down the exploration process by 2.7 times and 8.5 times respectively for
the asyn3 model. This model has the largest amount of synchronization rules after
the leader election1 and peterson7 models.

As explained in the previous section, the GPU is not fully occupied when process-
ing small models. Since this problem is only worse under POR, little to no speed-up
can be gained when applying POR to small models. When looking at the largest
models, the overhead for LTSmin is more that two times lower than for GPUexplore’s
stubborn-set approach. This shows that our implementation not only has overhead
from generating all successors twice, but also from the stubborn-set computation.

In the second experiment, we used POR with cycle proviso. Figure 5.6 shows
the relative size of the state space and the relative runtime required. As expected,
less reduction is achieved. The checking of the cycle proviso induces only a little
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Figure 5.6: State space and runtime of POR implementations with cycle proviso
relative to the full state-space exploration.

extra overhead for the ample-set and cample-set approach (not more that 8% and
12% respectively). The extra runtime overhead for the stubborn-set approach can
be significant, however: up to 43% for the transit model (comparing the amount of
states visited per second). When applying the cycle proviso, the reduction achieved
by LTSmin is significantly worse. This is due to the fact that LTSmin checks the
cycle proviso after generating the smallest stubborn set. If that set does not satisfy
the proviso, then the set of all actions is returned. The approach of GPUexplore,
where the initial action satisfies the cycle proviso, often finds a smaller stubborn set
than LTSmin. Therefore, GPUexplore achieves a higher amount of reduction when
applying the cycle proviso.
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Table 5.4: Average size of the reduced state space (%)

average size Tr (%) ample cample stubborn ltsmin

no proviso 60.26 43.21 42.91 42.26
cycle proviso 71.26 56.84 52.01 71.88

Table 5.4 shows the average size of the reduced state space for each implemen-
tation. Since GPUexplore’s stubborn-set implementation cannot compute Tr for
leader election1 and peterson7, those models have been excluded. The perfor-
mance of the cample-set and stubborn-set implementations is very close to LTSmin.
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Chapter 6

Conclusion

In this thesis, we showed that partial-order reduction on a many-core platform can
achieve a reduction similar to or better than POR on a multi-core platform. When
the cycle proviso is applied, the reduction of our approach is better than the reduction
of LTSmin. Our three POR implementations suffer an acceptable amount of runtime
overhead, which is mainly caused by the limitations of shared memory.

We proposed an improvement for cluster-based POR, namely dynamic clusters.
The benchmarks show that computing clusters on-the-fly imposes barely any runtime
overhead, while yielding a reduction similar to the stubborn-set approach. With this
improvement, the cample-set approach best suits our goal of reducing memory usage
with minimal runtime overhead. Whereas the stubborn-set approach can cause a high
amount of runtime overhead, the overhead for the cample-set approach is limited to
roughly 100%. In addition, it can be applied to all models and does not require
additional preprocessing of the model.

In addition to saving memory with POR, we also proposed several optimizations
to save runtime, which together give an average speed-up of 7.8 times over the original
version of GPUexplore. Combined with the latest hardware improvements of GPUs,
this gives us a total speed-up of 70 times over sequential CADP. For the largest
models, the speed-up can exceed two orders of magnitude. Thus, we can bring
sequential runtimes of more than one hour down to less than 37 seconds.

Further research into the memory limitations of GPU model checking is necessary.
One approach to this problem may be employing multiple GPUs to run the explo-
ration algorithm. This will raise new challenges regarding the implementation of the
hash table. It also raises the question how scalable such a multi-GPU implementa-
tion is. Another possibility for further study is improving the POR implementation
to preserve liveness properties, since checking such properties is supported by the lat-
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est version of GPUexplore [39]. Preserving liveness properties under POR requires
a stronger version of the cycle proviso and an additional visibility condition. We
expect that implementing these conditions is straightforward.
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algorithms for many-core GPUs. Journal of Parallel and Distributed Computing,
72(9):1083–1097, sep 2012.

[4] J. Barnat, L. Brim, M. Češka, and T. Lamr. CUDA Accelerated LTL Model
Checking. In ICPADS 2009, Proceedings, number 201, pages 34–41, Shenzhen,
China, 2009.
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[10] D. Bošnački, S. Edelkamp, D. Sulewski, and A. Wijs. Parallel probabilistic
model checking on general purpose graphics processors. STTT, 13(1):21–35,
2010.

50
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