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Abstract. Partial-order reduction (POR) is a well-established technique
to combat the problem of state-space explosion. We propose POR tech-
niques that are sound for parity games, a well-established formalism for
solving a variety of decision problems. As a consequence, we obtain the
first POR method that is sound for model checking for the full modal
µ-calculus. Our technique is applied to, and implemented for the fixed
point logic called parameterised Boolean equation systems, which pro-
vides a high-level representation of parity games. Experiments indicate
that substantial reductions can be achieved.

1 Introduction

In the field of formal methods, model checking [2] is a popular technique to anal-
yse the behaviour of concurrent processes. However, the arbitrary interleaving
of these parallel processes can cause an exponential blowup, which is known as
the state-space explosion problem. Several approaches have been identified to
alleviate this issue, by reducing the state space on-the-fly, i.e., while generating
it. Two established techniques are symmetry reduction [13] and partial-order re-
duction (POR) [8,26,30]. Whereas symmetry reduction can only be applied to
systems that contain several copies of a component, POR also applies to het-
erogeneous systems. However, a major drawback of POR is that most variants
at best preserve only a fragment of a given logic, such as LTL or CTL* with-
out the next operator (LTL−X/CTL∗−X) [7] or the weak modal µ-calculus [28].
Furthermore, the variants of POR that preserve a branching time logic impose
significant restrictions on the reduction by only allowing the prioritisation of
exactly one action at a time. This decreases the amount of reduction achieved.

In this paper, we address these shortcomings by applying POR on parity
games. A parity game is an infinite-duration, two-player game played on a di-
rected graph with decorations on the nodes, in which the players even (denoted
3) and odd (denoted �) strive to win the nodes of the graph. An application of
parity games is encoding a model checking question: a combination of a model,
in the form of a transition system, and a formal property, formulated in the
modal µ-calculus [16]. In such games, every node v represents the combination
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of a state s from the transition system and a (sub)formula ϕ. Under a typical
encoding, player 3 wins in v if and only if ϕ holds in s.

In the context of model checking, parity games suffer from the same state-
space explosion that models do. Exploring the state space of a parity game under
POR can be a very effective way to address this. Our contributions are as follows:
– We propose conditions (Def. 4) that ensure that the reduction function used

to reduce the parity game is correct, i.e., preserves the winning player of the
parity game (Thm. 1).

– We identify improvements for the reduction by investigating the typical
structure of a parity game that encodes a model checking question.

– We illustrate how to apply our POR technique in the context of solving
parameterised Boolean equation systems (PBESs) [10]—a fixed point logic
closely related to LFP—as a high-level representation of a parity game.

– We extend the ideas of [17] with support for non-determinism and experiment
with an implementation for solving PBESs.

Our approach has two distinct benefits over traditional POR techniques that
operate on transition systems. First, it is the first work that enables the use of
partial-order reduction for model checking for the full modal µ-calculus. Second,
the conditions that we propose are strictly weaker than those necessary to pre-
serve the branching structure of a transition system used in other approaches to
POR for branching time logics [7,28], increasing the effectiveness of POR.

The experiments with our implementation for solving PBESs are quite promis-
ing. Our results show that, in particular, those instances in which PBESs en-
code model checking problems involving large state spaces benefit from the use
of partial-order reduction. In such cases, a significant size reduction is possible,
even when checking complex µ-calculus formulae, and the time penalty of con-
ducting the static analysis is more than made up for by the speed-up in the state
space exploration phase.

Related Work There are several proposals for using partial-order reduction for
branching-time logics. Groote and Sellink [9] define several forms of confluence
reduction and prove which behavioural equivalences (and by extension, which
fragments of logics) are preserved. In confluence reduction, one tries to identify
internal transitions that can safely be prioritised, leading to a smaller state
space. Ramakrishna and Smolka [28] propose a notion that coincides with strong
confluence from [9], preserving weak bisimilarity and the corresponding logic
weak modal µ-calculus.

Similar ideas are presented by Gerth et al. in [7]. Their approach is based on
the ample set method [26] and preserves a relation they call visible bisimulation
and the associated logic CTL−X . To preserve the branching structure, they
introduce a singleton proviso which, contrary to our theory, can greatly impair
the amount of reduction that can be achieved (see our Example 3, page 7).

Valmari [33] describes the stubborn sets method for LTL−X model checking.
In general, stubborn sets allow for larger reductions than ample sets. While
investigating the use of stubborn sets for parity games, we identified a subtle issue
in one of the stubborn set conditions (called D1 in [33]). When applied to LTSs
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or KSs, this means that LTL−X is not necessarily preserved. Moreover, using
the condition in the setting of parity games may result in games with different
winners; for an example, see our technical report [24]. In [21], we further explore
the consequences of the faulty condition for stubborn-set based POR techniques
that can be found in the literature. We here resort to a strengthened version of
condition D1 that does not suffer from these issues.

Similar to our approach, Peled [27] applies POR on the product of a transition
system and a Büchi automaton, which represents an LTL−X property. It is
important to note, though, that this original theory is not sound, as discussed
in [29]. Kan et al. [14] improve on Peled’s ideas and manage to preserve all of LTL.
To achieve this, they analyse the Büchi automaton that corresponds to the LTL
formula to identify which part is stutter insensitive. With this information, they
can reduce the state space in the appropriate places and preserve the validity of
the LTL formula under consideration.

The recent work by Bønneland et al. [3] is close to ours in spirit, applying
stubborn-set based POR to reachability games. Such games can be used for
synthesis and for model checking reachability properties. Although the conditions
on reduction they propose seem unaffected by the aforementioned issue with D1,
unfortunately, their POR theory is nevertheless unsound, as we next illustrate.

In reachability games, player 1 tries to reach one of the goal states, while
player 2 tries to avoid them. Bønneland et al. propose a condition R that guar-
antees that all goal states in the full game are also reachable in the reduced game.
However, the reverse is not guaranteed: paths that do not contain a goal state
are not necessarily preserved, essentially endowing player 1 with more power.

b

a

a

b

Consider the (solitaire) reachability game depicted on the
right, in which all edges belong to player 2 and the only goal
state is indicated with grey. Player 2 wins the non-reduced
game by avoiding the goal state via the edges labelled with
a and then b. However, {b} is a stubborn set—according to
the conditions of [3]—in the initial state, and the dashed
transitions are thus eliminated in the reduced game. Hence, player 2 is forced to
move the token to the goal state and player 1 wins in the reduced game. In the
mean time, the authors of [3] confirmed and resolved the issue in [4].

Outline. We give a cursory overview of parity games in Section 2. In Section 3 we
introduce partial-order reduction for parity games, and we introduce a further
improvement in Section 3.3. Section 4 briefly introduces the PBES fixed point
logic, and in Section 5, we describe how to effectively implement parity-game
based POR for PBESs. We present the results of our experiments of using parity-
game based POR for PBESs in Section 6. We conclude in Section 7.

2 Preliminaries

Parity games are infinite-duration, two-player games played on a directed graph.
The objective of the players, called even (denoted by 3) and odd (denoted by
�), is to win nodes in the graph.
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Definition 1. A parity game is a directed graph G = (V,E,Ω,P), where

– V is a finite set of nodes, called the state space;
– E ⊆ V × V is a total edge relation;
– Ω : V → N is a function that assigns a priority to each node; and
– P : V → {3,�} is a function that assigns a player to each node.

We write s −→ t whenever (s, t) ∈ E. The set of successors of a node s is
denoted with succ(s) = {t | s→ t}. We use # to denote an arbitrary player and
#̄ to denote its opponent.

A parity game is played as follows: initially, a token is placed on some node
of the graph. The owner of the node can decide where to move the token; the
token may be moved along one of the outgoing edges. This process continues ad
infinitum, yielding an infinite path of nodes that the token moves through. Such
a path is called a play. A play π is won by player 3 if the minimal priority that
occurs infinitely often along π is even. Otherwise, it is won by player �.

To reason about moves that a player may want to take, we use the con-
cept of strategies. A strategy σ# : V + → V for player # is a partial func-
tion that determines where # moves the token next, after the token has passed
through a finite sequence of nodes. More formally, for all sequences s1 . . . sn
such that P(sn) = #, it holds that σ#(s1 . . . sn) ∈ succ(sn). If sn belongs to
#̄, σ#(s1 . . . sn) is undefined. A play s1, s2, . . . is consistent with a strategy σ if
and only if σ(s1 . . . si) = si+1 for all i such that σ(s1 . . . si) is defined. A player
# wins in a node s if and only if there is a strategy σ# such that all plays that
start in s and that are consistent with σ# are won by player #.

1s1 0 s2

1s3 2 s4

Example 1. Consider the parity game on the right. Here,
priorities are inscribed in the nodes and the nodes are
shaped according to their owner (3 or �). Let π be
an arbitrary, possibly empty, sequence of nodes. In this
game, the strategy σ3, partially defined as σ3(πs1) = s2
and σ3(πs2) = s1, is winning for 3 in s1 and s2. After
all, the minimal priority that occurs infinitely often along
(s1s2)ω is 0, which is even. Player � can win node s3 with the strategy σ�(πs3) =
s4. Note that player 3 is always forced to move the token from node s4 to s3. ut

3 Partial-Order Reduction

In model checking, arbitrary interleaving of concurrent processes can lead to
a combinatorial explosion of the state space. By extension, parity games that
encode model checking problems for concurrent processes suffer from the same
phenomenon. Partial-order reduction (POR) techniques help combat the blowup.
Several variants of POR exist, such as ample sets [26], persistent sets [8] and
stubborn sets [30,31]. The current work is based on Valmari’s stubborn set theory
as it can easily deal with nondeterminism [32].
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3.1 Weak Stubborn Sets

Partial-order reduction relies on edge labels, here referred to as events and typ-
ically denoted with the letter j, to categorise the set of edges in a graph and
determine independence of edges. In a typical application of POR, such events
and edge labellings are deduced from a high-level syntactic description of the
graph structure (see also Section 4). A reduction function subsequently uses
these events when producing an equivalent reduced graph structure from the
same high-level description. For now, we tacitly assume the existence of a set of
events and edge labellings for parity games and refer to the resulting structures
as labelled parity games.

Definition 2. A labelled parity game is a triple L = (G,S, `), where G =
(V,E,Ω,P) is a parity game, S is a non-empty set of events and ` : S → 2E is
an edge labelling.

For the remainder of this section, we fix an arbitrary labelled parity game L =
(G,S, `). We write s

j−→ t whenever s −→ t and (s, t) ∈ `(j). The same notation
extends to longer executions s

j1...jn−−−−→ t. We say an event j is enabled in a node
s, notation s

j−→, if and only if there is a transition s
j−→ t for some t. The set of all

enabled events in a node s is denoted with enabledG(s). An event j is invisible if
and only if s

j−→ t implies P(s) = P(t) and Ω(s) = Ω(t). Otherwise, j is visible.

A reduction function indicates which edges are to be explored in each node,
based on the events associated to the edges. Given some initial node ŝ, such a
function induces a unique reduced labelled parity game as follows.

Definition 3. Given a node ŝ ∈ V and a reduction function r : V → 2S . The
reduced labelled parity game induced by r and starting from ŝ is defined as
Lr = (Gr,S, `r), where `r(j) = `(j) ∩ Er and Gr = (Vr, Er, Ω,P) is such that:

– Er = {(s, t) ∈ E | ∃j ∈ r(s) : (s, t) ∈ `(j)} is the transition relation under r;
– Vr = {s | ŝE∗r s} is the set of nodes reachable with Er, where E∗r is the

reflexive transitive closure of Er.

Note that a reduced labelled parity game is only well-defined when r(s) ∩
enabledG(s) 6= ∅ for every node s ∈ Vr; if this property does not hold, Er is
not total. Even if totality of Er is guaranteed, the same node s may be won by
different players in L and Lr if no restrictions are imposed on r. The follow-
ing conditions on r, as we will show, are sufficient to ensure both. Below, we
say an event j is a key event in s iff for all executions s

j1...jn−−−−→ s′ such that
j1 /∈ r(s), . . . , jn /∈ r(s), we have s′

j−→. Key events are typically denoted jkey.

Definition 4. We say that a reduction function r : V → 2S is a weak stubborn
set iff for all nodes s ∈ V , the following conditions hold1:

1 As noted before, the condition D1 that we propose is stronger than the version in
literature [30,33] since that one suffers from the inconsistent labelling problem [21]
which also manifests itself in the parity game setting, see our technical report [24].
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D1 For all j ∈ r(s) and j1 /∈ r(s), . . . , jn /∈ r(s), if s
j1−→ s1

j2−→ · · · jn−→ sn
j−→

s′n, then there are nodes s′, s1, . . . , s
′
n−1 such that s

j−→ s′
j1−→ s′1

j2−→ · · · jn−→
s′n. Furthermore, if j is invisible, then si

j−→ s′i for every 1 ≤ i < n.
D2w r(s) contains a key event in s.
V If r(s) contains an enabled visible event, then it contains all visible events.
I If an invisible event is enabled, then r(s) contains an invisible key event.
L For every visible event j, every cycle in the reduced game contains a node

s′ such that j ∈ r(s′).

Below, we also use (weak) stubborn set to refer to the set of events r(s) in some
node s. First, note that every key event, which we typically denote by jkey, in
a node s is enabled in s, by taking n = 0 in D2w; this guarantees totality of
Er. Condition D1 ensures that whenever an enabled event is selected for the
stubborn set, it does not disable executions not in r(s). A stubborn set can
never be empty, due to D2w. In a traditional setting where POR is applied on
a transition system, the combination of D1 and D2w is sufficient to preserve
deadlocks. Condition V enforces that either all visible events are selected for the
stubborn set, or none are. Condition L prevents the so called action-ignoring
problem, where a certain event is never selected for the stubborn set and ignored
indefinitely. Combined, I and L preserve plays with invisible events only.

We use the example below to further illustrate the purpose of—and need for—
conditions V, I and L. In particular, the example illustrates that the winning
player in the original game and the reduced game might be different if one of
these conditions is not satisfied.

Example 2. See the three parity games of Figure 1. From left to right, these
games show a reduced game under a reduction function satisfying D1 and D2w
but not V, I or L, respectively. In each case, we start exploration from the node
called ŝ, using the reduction function to follow the solid edges; consequently, the
winning strategy σ3 for player 3 in the original game is lost. ut

Note that the games in Figure 1 are from a subclass of parity games called
weak solitaire, illustrating the need for the identified conditions even in restricted

1ŝ 2

3 5

k

j

l

j

k
l

σ3: klω

D1, D2w, I, L

0

ŝ

1

j

k

j

σ3: jω

D1, D2w, V, L

1

ŝ

2

j

k

j

σ3: kjω

D1, D2w, V, I

Fig. 1. Three games that show the winner is not necessarily preserved if we drop one
of the conditions V, I or L, respectively. The dashed nodes and edges are present in
the original game, but not in the reduced game. The edges taken from ŝ by the winning
strategy for player 3 in the original game are indicated below each game.
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settings. A game is weak if the priorities along all its paths are non-decreasing,
i.e., if s→ t then Ω(s) ≤ Ω(t). A game is solitaire if only one player can make
non-trivial choices. Weak solitaire games can encode the model checking of safety
properties; solitaire games can capture logics such as LTL and ACTL∗.

Before we argue for the correctness of our POR approach in the next section,
we finish with a small example that illustrates how our approach improves over
existing methods for branching time logics.

Example 3. The conditions C1-C3 of Gerth et al. [7] preserve LTL−X and are
similar in spirit to our conditions. However, to preserve the branching structure,
needed for preservation of CTL−X , the following singleton proviso is introduced:
C4 Either enabledG(s) ⊆ r(s) or |r(s)| = 1.
This extra condition can severely impact the amount of reduction achieved:
consider the following two processes, where n ≥ 1 is some large natural number.

. . .
a1

a′1

an

a′n

. . .
b1

b′1

bn

b′n

The cross product of these processes contains (n+1)2 states. In the initial state,
neither {a1, a′1} nor {b1, b′1} is a valid stubborn set, due to C4. However, the la-
belled parity game constructed using these processes and the µ-calculus formula
νX.([−]X∧µY.(〈−〉Y ∨〈an〉true)), has a very similar shape that can be reduced
by prioritising transitions that correspond to bi or b′i for some 1 ≤ i ≤ n. Note
that this formula cannot be represented in LTL; condition C4 is therefore essen-
tial for the correctness. While several optimisations for CTL−X model checking
under POR are proposed in [19], unlike our approach, those optimisations only
work for certain classes of CTL−X formulas and not in general. ut

3.2 Correctness

Condition D2w suffices, as we already argued, to preserve totality of the tran-
sition relation of the reduced labelled parity game. Hence, we are left to argue
that the reduced game preserves and reflects the winner of the nodes of the
original game; this is formally claimed in Theorem 1. We do so by constructing
a strategy in the reduced game that mimics the winning strategy in the original
game. The plays that are consistent with these two strategies are then shown to
be stutter equivalent, which suffices to preserve the winner.

Fix a labelled parity game L = (G,S, `), a node ŝ, a weak stubborn set r
and the reduced labelled parity game Lr = (Gr,S, `r) induced by r and ŝ. We
assume r and ŝ are such that Gr has a finite state space. Below, ω is the set
containing all natural numbers and the smallest infinite ordinal number.

Definition 5. Let π = s0s1s2 . . . and π′ = t0t1t2 . . . be two paths in G. We
say π and π′ are stutter equivalent, notation π , π′, if and only if one of the
following conditions holds:
– π and π′ are both finite and there exists a non-decreasing partial function
f : ω → ω, with f(0) = 0 and f(|π|−1) = |π′|−1, such that for all 0 ≤ i < |π|
and i′ ∈ [f(i), f(i+ 1)), it holds that P(si) = P(ti′) and Ω(si) = Ω(ti′).
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– π and π′ are both infinite and there exists an unbounded, non-decreasing total
function f : ω → ω, with f(0) = 0, such that for all i and i′ ∈ [f(i), f(i+1)),
it holds that P(si) = P(ti′) and Ω(si) = Ω(ti′).

Lemma 1. All infinite stutter equivalent paths have the same winner.

In the lemmata below, we write→r to stress which transition must occur in Gr.

Lemma 2. Suppose s0
j1−→ · · · jn−→ sn

j−→ s′n for j1 /∈ r(s0), . . . , jn /∈ r(s0)
and j ∈ r(s0). Then for some s′0, . . . , s

′
n, both s0

j−→r s
′
0

j1−→ · · · jn−→ s′n and
s0 . . . sns

′
n , s0s

′
0 . . . s

′
n.

Lemma 3. Suppose s0
j1−→ s1

j2−→ . . . such that ji /∈ r(s0) for every ji occurring
on this execution. Then, the following holds:
– If the execution ends in sn, there exists a key event jkey, and nodes s′0, . . . , s

′
n

such that sn
jkey−−→ s′n and s0

jkey−−→r s′0
j1−→ · · · jn−→ s′n, and s0 . . . sn ,

s0s
′
0 . . . s

′
n.

– If the execution is infinite, there exists another execution s0
jkey−−→r s

′
0

j1−→
s′1

j2−→ . . . for some key event jkey and s0s1 · · · , s0s′0s′1 . . . .

We remark that Lemma 3 also holds for reduced labelled parity games that
have an infinite state space, but where all the events are finitely branching. The
proof of correctness, viz., Theorem 1, uses the alternative executions described
by Lemma 2 and 3. For full details, we refer to [24]; we here limit ourselves to
sketching the intuition behind the application of these lemmata.

Example 4. The structure of Figure 2, in which parallel edges have the same
label, visualises part of a game in which the solid edges labelled j1j2j3 are part
of a winning play for player �. This play is mimicked by path that follows the
edges jkeyj2j1j

′
keyj3, drawn with dashes. The new play reorders the events j1, j2

and j3 according to the construction of Lemma 2 and introduces the key events
jkey and j′key according to the construction of Lemma 3. ut

The following theorem shows that partial-order reduction preserves the winning
player in all nodes of the reduced game. Its proof is inspired by [30] and [2,
Lemma 8.21], and uses the aforementioned lemmata.

j1

j2

j3

jkey

j′key

Fig. 2. Example of how j1, j2, j3 is mimicked by introducing jkey and j′key and moving
j2 to the front (dashed trace). Transitions that are drawn in parallel have the same
label.
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Theorem 1. If Gr has a finite state space then it holds that for every node s
in Gr, the winner of s in Gr is equal to the winner of s in G.

3.3 Optimising D2w

The theory we have introduced identifies and exploits rectangular structures in
the parity game. This is especially apparent in condition D1. However, par-
ity games obtained from model checking problems also often contain triangular
structures, due to the (sometimes implicit) nesting of conjunctions and disjunc-
tions, as the following example demonstrates.

Example 5. Consider the process (a ‖ b)·c, in which actions a and b are executed
in (interleaved) parallel, and action c is executed upon termination of both a and
b. The µ-calculus property µX.([a]X ∧ [b]X ∧ 〈−〉true), also expressible in LTL,
expresses that the action c must unavoidably be done within a finite number of
steps; clearly this property holds true of the process. Below, the LTS is depicted
on the left and a possible parity game encoding of our liveness property on this
state space is depicted on the right. The edges in the labelled parity game that
originate from the subformula 〈−〉true are labelled with d.

a

a

b b

c

1 1

1 1

0

a

a

b
b

d d

d d

d

Whereas the state space of the process can be reduced by prioritising a or b, the
labelled parity game cannot be reduced due to the presence of a d-labelled edge
in every node. For example, if s is the top-left node in the labelled parity game,
then r(s) = {a, d} violates condition D1, since the execution s bd−→ exists, but
s db−→ does not. ut

In order to deal with games that contain triangular structures, we propose a
condition that is weaker than D2w.

D2t There is an event j ∈ r(s) such that for all j1 /∈ r(s), . . . , jn /∈ r(s), if
s

j1−→ s1
j2−→ · · · jn−→ sn, then either sn

j−→ or there are nodes s′, s′1, . . . , s
′
n

such that s
j−→ s′

j1−→ s′1
j2−→ · · · jn−→ s′n and for all i, si = s′i or si

j−→ s′i.

Theorem 1 holds even for reduction functions satisfying the weak stubborn set
conditions in which condition D2t is used instead of condition D2w. The proof
thereof resorts to a modified construction of a mimicking winning strategy that
is based on Lemma 4, described below, instead of Lemma 3.

Lemma 4. Let r be a reduction function satisfying conditions D1, D2t, V, I
and L. Suppose s0

j1−→ s1
j2−→ . . . such that ji /∈ r(s0) for every ji occurring on

this execution. Then, the following holds:
– If the execution ends in sn, there exist a key event jkey and nodes s′0, . . . , s

′
n

such that:
• sn

jkey−−→ s′n or sn = s′n; and
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• s0
jkey−−→r s

′
0
j1−→ · · · jn−→ s′n and s0 . . . sn , s0s′0 . . . s

′
n.

– If the execution is infinite, there exists another execution s0
jkey−−→r s

′
0

j1−→
s′1

j2−→ . . . and s0s1 · · · , s0s′0s′1 . . . .

We remark that the concepts of triangular and rectangular structures bear sim-
ilarities to the concept of weak confluence from [9].

4 Parameterised Boolean Equation Systems

Parity games are used, among others, to solve parameterised Boolean equation
systems (PBESs) [10], which, in turn, are used to answer, e.g., first-order modal
µ-calculus model checking problems [5]. In the remainder of this paper, we show
how to apply POR in the context of solving a PBES (and, hence, the encoded
decision problem). We first introduce PBESs and show how they induce labelled
parity games.

Parameterised Boolean equation systems are sequences of fixed point equa-
tions over predicate formulae, i.e., first-order logic formulae with second order
variables. A PBES is given in the context of an abstract data type, which is used
to reason about data. Non-empty data sorts of the abstract data type are typ-
ically denoted with the letters D and E. The corresponding semantic domains
are D and E. We assume that sorts B and N represent the Booleans and the
natural numbers respectively, and have B and N as semantic counterpart. The
set of data variables is V, and its elements are usually denoted with d and e. To
interpret expressions with variables, we use a data environment δ, which maps
every variable in V to an element of the corresponding sort. The semantics of an
expression f in the context of such an environment is denoted JfKδ. For instance,
Jx < 2 + yKδ holds true iff δ(x) < 2 + δ(y). To update an environment, we use
the notation δ[v/d], which is defined as δ[v/d](d) = v and δ[v/d](d′) = δ(d′) for
all variables d 6= d′.

For lack of space, we only consider PBESs in standard recursive form [22,23],
a normal form in which each right-hand side of an equation is a guarded formula
instead of an arbitrary (monotone) predicate formula. We remark that a PBES
can be rewritten to SRF in linear time, while the number of equations grows
linearly in the worst case [23, Proposition 2].

Let X be a countable set of predicate variables. In the exposition that follows
we assume for the sake of simplicity (but without loss of generality) that all
predicate variables X ∈ X are of type D. We permit ourselves the use of non-
uniformly typed predicate variables in our example.

Definition 6. A guarded formula φ is a disjunctive or conjunctive formula of
the form: ∨

j∈J
∃ej :Ej . fj ∧Xj(gj) or

∧
j∈J
∀ej :Ej . fj ⇒ Xj(gj)

where J is an index set, each fj is a Boolean expression, referred to as guard,
every ej is a (bound) variable of sort Ej, each gj is an expression of type D and
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each Xj is a predicate variable of type D. A guarded formula φ is said to be total
if for each data environment δ, there is a j ∈ J and v ∈ Ej such that JfjKδ[v/ej ]
holds true.

The denotational semantics of a guarded formula is given in the context of a
data environment δ for interpreting data expressions and a predicate environment
η : X → 2D, yielding an interpretation ofXj(gj) as the truth value JgjKδ ∈ η(Xj).
Given a predicate environment and a data environment, a guarded formula in-
duces a monotone operator on the complete lattice (2D,⊆). By Tarski’s theorem,
least (µ) and greatest (ν) fixed points of such operators are guaranteed to exist.

Definition 7. A parameterised Boolean equation in SRF is an equation that
has the shape (µX(d:D) = φ(d)) or (νX(d:D) = φ(d)), where φ(d) is a to-
tal guarded formula in which d is the only free data variable. A parameterised
Boolean equation system in SRF is a sequence of parameterised Boolean equa-
tions in SRF, in which no two equations have the same left-hand side variable.

Henceforward, let E = (σ1X1(d:D) = ϕ1(d)) . . . (σnXn(d:D) = ϕn(d)) be a fixed,
arbitrary PBES in SRF, where σi ∈ {µ, ν}. The set of bound predicate variables of
E , denoted bnd(E), is the set {X1, . . . , Xn}. If the predicate variables occurring
in the guarded formulae ϕi(d) of E are taken from bnd(E), then E is said to
be closed ; we only consider closed PBESs. Every bound predicate variable is
assigned a rank, where rankE(Xi) is the number of alternations in the sequence
of fixpoint symbols νσ1σ2 . . . σi. Observe that rankE(Xi) is even iff σi = ν. We
use the function opE : bnd(E)→ {∨,∧} to indicate for each predicate variable in
E whether the associated equation is disjunctive or conjunctive. As a notational
convenience, we write Ji to refer to the index set of the guarded formula ϕi(d),
and we assume that the index sets are disjoint for different equations.

The standard denotational fixed point semantics of a closed PBES associates
a subset of D to each bound predicate variable (i.e., their meaning is independent
of the predicate environment used to interpret guarded formulae). For details of
the standard denotational fixed point semantics of a PBES we refer to [10]. We
forego the denotational semantics and instead focus on the (provably equivalent,
see e.g. [23,6]) game semantics of a PBES in SRF.

Definition 8. The solution to E is a mapping JEK : bnd(E) → 2D, defined as
JEK(Xi) = {v ∈ D | (Xi, v) is won by 3 in GE}, where Xi ∈ bnd(E) and GE is
the parity game associated to E. The game GE = (V,E,Ω,P) is defined as:
– V = bnd(E)× D is the set of nodes;
– E is the edge relation, satisfying (Xi, v) → (Xj , w) for given Xi, j ∈ Ji, v

and w if and only if for some δ, both JfjKδ[v/d] and w = JgjKδ[v/d] hold;
– Ω((Xi, v)) = rankE(Xi); and
– P((Xi, v)) = 3 iff opE(Xi) = ∨.

Note that the parity game GE may have an infinite state space when D is in-
finite. In practice, we are often interested in the part of the parity game that
is reachable from some initial node (X, v); this is often (but not always) finite.
This is illustrated by the following example.
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Example 6. Consider the following PBES in SRF:

(νX(b:B) = (b ∧X(false)) ∨ ∃n:N.n ≤ 2 ∧ Y (b, if (b, n, 0)))

(µY (b:B,n:N) = true ⇒ Y (false, 0))

The six nodes in the parity game which are reachable from (X, true) are depicted
in Figure 3. The horizontally drawn edges all stem from the clause ∃n:N.n ≤
2∧Y (b, if (b, n, 0)). Vertical edges stem from the clause b∧X(false) (on the left)
or the clause true ⇒ Y (false, 0) (on the right). The selfloop also stems from
the clause true ⇒ Y (false, 0). Player � wins all nodes in this game, and thus
true /∈ JEK(X). ut

0(X, true)

0(X, false)

11
1

(Y, true, 0)
(Y, true, 1)
(Y, true, 2)

1 (Y, false, 0)

Fig. 3. Reachable part of the parity
game underlying the PBES of Exam-
ple 6, when starting from node (X, true).

As suggested by the above example,
each edge is associated to (at least) one
clause in E . Consequently, we can use
the index sets Ji to event-label the edges
emanating from nodes associated with
the equation for Xi. We denote the set
of all events in E by evt(E), defined as
evt(E) =

⋃
Xi∈bnd(E) Ji. Event j ∈ Ji is

invisible if rankE(Xi) = rankE(Xj) and
opE(Xi) = opE(Xj), and visible other-
wise.

Definition 9. Let GE be the parity game associated to E. The labelled parity
game associated to E is the structure (GE , evt(E), `), where GE is as defined
in Def. 8, and, for j ∈ Ji, `(j) is defined as the set {〈(Xi, v), (Xj , w)〉 ∈ E |
JfjKδ[v/d] holds true and w = JgjKδ[v/d] for some δ}.

5 PBES Solving Using POR

A consequence of the partial-order reduction theorem is that a reduced parity
game suffices for computing the truth value to X(e) for a given PBES E with X ∈
bnd(E). However, D1, D2w/D2t and L are conditions on the (reduced) state
space as a whole and, hence, hard to check locally. We therefore approximate
these conditions in such a way that we can construct a stubborn set on-the-fly.

From hereon, let E be a PBES in SRF and (G,S, `), with G = (V,E,Ω,P),
its labelled parity game. The most common local condition for L is the stack
proviso LS [26]. This proviso assumes that the state space is explored with
depth-first search (DFS), and it uses the Stack that stores unexplored nodes to
determine whether a cycle is being closed. If so, the node will be fully expanded,
i.e., r(s) = S.
LS For all nodes s ∈ Vr, either succGr (s) ∩ Stack = ∅ or r(s) = S.

Locally approximating conditions D1 and D2w requires a static analysis of
the PBES. For this, we draw upon ideas from [17] and extend these to properly
deal with non-determinism. To reason about which events are independent, we
rely on the idea of accordance.
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Definition 10. Let j, j′ ∈ S. We define the accordance relations DNL, DNS,
DNT and DNA on S as follows:
– j left-accords with j′ if for all nodes s, s′ ∈ V , if s

j′j−−→ s′, then also s
jj′−−→ s′.

If j does not left-accord with j′, we write (j, j′) ∈ DNL.
– j square-accords with j′ if for all nodes s, s1, s2 ∈ V , if s

j−→ s1 and s
j′−→ s2,

then for some s′ ∈ V , s1
j′−→ s′ and s2

j−→ s′. If j does not square-accord with
j′ we write (j, j′) ∈ DNS.

– j triangle-accords with j′ if for all nodes s, s1, s2 ∈ V , if s
j′−→ s1 and s

j−→ s2,
then s2

j′−→ s1. If j does not triangle-accord with j′ we write (j, j′) ∈ DNT .
– j accords with j′ if j square-accords or triangle-accords with j′. If j does not

accord with j′ we write (j, j′) ∈ DNA.

Note that DNL and DNT are not necessarily symmetric. An illustration of the
left-according, square-according and triangle-according conditions is given below.

s s1

s′

j

j′

⇒

s

s2

s1

s′

j

j′

j′

j

s

s2

s1

j

j′

⇒

s

s2

s1

s′

j

j′

j′

j

s

s2

s1

j

j′

⇒

s

s2

s1

j

j′

j′

s′
j′

Accordance relations safely approximate the independence of events. The depen-
dence of events, required for satisfying D2w can be approximated using Gode-
froid’s necessary enabling sets [8].

Definition 11. Let j be an event that is disabled in some node s. A necessary-
enabling set (NES) for j in s is any set NES s(j) ⊆ S such that for every
execution s

j1...jnj−−−−−→ there is at least one ji such that ji ∈ NES s(j).

For every node and event there might be more than one NES. In particular, every
superset of a NES is also a NES. A larger-than-needed NES may, however, have a
negative impact on the reduction that can be achieved. In a PBES with multiple
parameters per predicate variable, computing a NES can be done by determining
which parameters influence the validity of guards fj and which parameters are
changed in the update functions gj . A more accurate NES may be computed
using techniques to extract a control flow from a PBES [15].

The following lemmata show how the accordance relations and necessary-
enabling set can be used to implement conditions D1, D2w and D2t, respec-
tively. A combination of Lemma 5 and 6 in a deterministic setting appeared as
Lemma 1 in [17]. Note that as a notational convention we write R(j) to denote
the projection {j′ | (j, j′) ∈ R} of a binary relation.

Lemma 5. A reduction function r satisfies D1 in node s ∈ V if for all j ∈ r(s):
– if j is disabled in s, then NES s(j) ⊆ r(s) for some NES s; and
– if j is enabled in s, then DNL(j) ⊆ r(s).

Lemma 6. A reduction function r satisfies D2w in a node s ∈ V if there is an
enabled event j ∈ r(s) such that DNS (j) ⊆ r(s).

Lemma 7. A reduction function r satisfies D2t in a node s if there is an enabled
event j ∈ r(s) such that DNA(j) ⊆ r(s).
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More reduction can be achieved if a PBES is partly or completely ‘deterministic’,
in which case some of the conditions can be relaxed. We say that an event j is
deterministic, denoted by det(j), if for all nodes t, t′, t′′ ∈ V , if t

j−→ t′ and t
j−→ t′′,

then also t′ = t′′. This means event-determinism can be characterised as follows:

det(j) iff JfjKδ and JfjKδ′ implies JgjKδ = JgjKδ′ for all δ, δ′ with δ(d) = δ′(d).

The following lemma specialises Lemma 5 and shows how knowledge of de-
terministic events can be applied to potentially improve the reduction.

Lemma 8. A reduction function r satisfies D1 in a node s if for all j ∈ r(s):
– if j is disabled in s, then NES s(j) ⊆ r(s) for some NES s; and
– if det(j) and j is enabled in s, then DNS (j) ⊆ r(s) or DNL(j) ⊆ r(s).
– if ¬det(j) and j is enabled in s, then DNL(j) ⊆ r(s).

Since relations DNS and DNL are incomparable we cannot decide a priori which
should be used for deterministic events. However, Lemma 8 permits choosing one
of the accordance sets on-the-fly. This choice can be made based on a heuristic
function, similar to the function for NESs proposed in [17].

6 Experiments

We implemented the ideas from the previous section in a prototype tool, called
pbespor, as part of the mCRL2 toolset [5]; it is written in C++. Our tool
converts a given input PBES to a PBES in SRF, runs a static analysis to compute
the accordance relations (see Section 5), and uses a depth-first exploration to
compute the parity game underlying the PBES in SRF. The static analysis relies
on an external SMT solver (we use Z3 in our experiments). To limit the amount
of static analysis required and to improve the reduction, the implementation
contains a rudimentary way of identifying whether the same event occurs in
multiple PBES equations. Experiments are conducted on a machine with an Intel
Xeon 6136 CPU @ 3 GHz, running mCRL2 with Git commit hash dd36f98875.

To measure the effectiveness of our implementation, we analysed the following
mCRL2 models2: Anderson’s mutual exclusion protocol [1], the dining philoso-
phers problem, the gas station problem [11], Hesselink’s handshake register [12],
Le Lann’s leader election protocol [18], Milner’s Scheduler [20] and the Krebs
cycle of ATP production in biological cells (model inspired by [25]). Most of
these models are scalable. Each model is subjected to one or more requirements
phrased as mCRL2’s first-order modal µ-calculus formulae. Where possible, Ta-
ble 1 provides a CTL∗ formula that captures the essence of the requirement.

We analyse the effectiveness of our partial-order reduction technique by mea-
suring the reduction of the size of the state space, and the time that is required to
generate the state space. Since the static analysis that is conducted can require
a non-neglible amount of time, we pay close attention to the various forms of
static analysis that can be conducted. In particular, we compare the total time
and effectiveness (in terms of reduction) of running the following static analysis:

2 The models are archived online at https://doi.org/10.5281/zenodo.3602969.

https://doi.org/10.5281/zenodo.3602969
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Table 1. Runtime (analysis + exploration; in seconds) and number of states when
exploring either the full state space or the reduced state space, for four different static
analysis approaches. Figures printed in boldface indicate which of the additional static
analyses is able to achieve the largest reduction over ‘basic’ (if any).

full basic +DNL +NES +D2t

model property nodes time nodes time nodes time nodes time nodes time

gas station.c3 ∃3accept 1 197 0.14 1 077 0.98 1 077 2.48 1 077 1.87 735 1.62
gas station.c3 ∃�∃3pumping 1 261 0.15 967 0.98 967 2.61 967 1.99 967 1.72
gas station.c3 no deadlock 1 197 0.18 735 0.95 735 2.52 735 2.04 735 1.52
scheduler8 no deadlock 3 073 0.29 34 0.19 34 0.70 34 0.51 34 0.35
scheduler10 no deadlock 15 361 1.65 42 0.25 42 0.90 42 0.65 42 0.42
anderson.5 ∀3cs 23 597 4.59 2 957 2.85 2 957 6.47 2 957 3.89 2 957 4.61
hesselink cache consistency 91 009 5.28 82 602 8.19 83 602 12.12 81 988 9.00 71 911 8.51
dining10 no deadlock 154 451 17.90 4 743 0.76 4 743 1.61 4 743 1.42 4 743 1.02
krebs.3 ∀3energy 238 877 24.38 232 273 24.59 232 273 25.62 209 345 21.73 232 273 24.42
gas station.c6 ∃3accept 186 381 38.00 150 741 40.55 150 741 45.50 150 741 43.16 75 411 21.40
gas station.c6 ∃�∃3pumping 192 700 38.63 114 130 27.35 114 130 31.42 114 130 30.49 114 130 29.74
gas station.c6 no deadlock 186 381 42.50 75 411 21.03 75 411 24.88 75 411 24.01 75 411 23.02
scheduler14 no deadlock 344 065 53.14 58 0.37 58 1.31 58 0.97 58 0.61
hesselink ∀�(wr ⇒ ∃3fin) 1 047 233 61.02 1 013 441 82.44 1 013 441 86.49 1 013 441 84.59 791 273 61.56
hesselink ∀�(wr ⇒ ∀3fin) 1 047 232 70.14 791 320 64.05 791 374 66.53 749 936 62.98 791 268 67.59
krebs.4 ∀3energy 1 047 406 124.30 971 128 117.38 971 128 117.41 843 349 101.51 971 128 117.41
lann.5 consistent data 818 104 142.38 818 104 170.18 818 104 175.87 818 104 177.78 761 239 155.22
anderson.5 no deadlock 689 901 142.63 257 944 73.62 257 672 79.91 257 711 78.67 257 918 76.47
lann.5 no data loss 1 286 452 199.74 453 130 73.28 453 130 77.31 453 130 74.40 453 130 75.52
dining10 ∀�∀3eat 1 698 951 225.10 101 185 12.37 101 056 13.55 101 238 13.01 101 022 12.69
anderson.7 ∀3cs 3 964 599 1 331.91 124 707 63.83 124 707 73.87 124 707 68.67 124 707 69.68

– computing left-accordance (DNL) vs. over-approximating it with all events.
– computing a NES vs. over-approximating it with the set of all events S.
– using D2w vs. the use of D2t (i.e., use Lemma 6 vs. Lemma 7);

As a baseline for comparisons, we take a basic static analysis (over-approximated
DNL, over-approximated NES, D2w), see column ‘basic’ in Table 1. In order to
guarantee termination of the static analysis phase, we set a timeout of 200ms per
formula that is sent to the solver. Table 1 reports on the statistics we obtained for
exploring the full state space and the four possible POR configurations described
above; the table is sorted with respect to the time needed for a full exploration.
The time we list consists of the time needed to conduct the analysis plus the
time needed for the exploration.

For most small instances, the time required for static analysis dominates any
speed-up gained by the state space reduction. When the state spaces are larger,
achieving a speed-up becomes more likely, while the highest overhead suffered
by ‘basic’ is 55% (Hesselink, cache consistency). Significant reduction can be
achieved even for non-trivial properties, such as ‘lann.5’ with ‘no data loss’.
Scheduler is an extreme case: its processes have very few dependencies, leading
to an exponential reduction, both in terms of the state space size and in terms
of time. In several cases, the use of a NES or D2t brings extra reduction (high-
lighted in bold). Moreover, the extra time required to conduct the additional
analysis seems limited. The use of DNL, on the other hand, never pays off in our
experiments; it even results in a slightly larger state space in two cases.
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We note that there are also models, not listed in Table 1, where our static
analysis does not yield any useful results and no reduction is achieved. Even if
in such cases a reduction would be possible in theory, the current static analysis
engines are unable to deal with the more complex data types often used in such
models; e.g., recursively defined lists or infinite sets, represented symbolically
with higher-order constructions. This calls for further investigations into static
analysis theories that can effectively deal with complex data.

Finally, we point out that in the case of, e.g., the dining philosophers problem,
the relative reduction under the ‘no deadlock’ property is much better than
under the ‘∀�∀3eat ’ property. This demonstrates the impact properties can
have on the reductions achievable, and it also points at a phenomenon we have
not stressed in the current work, viz., the impact of identifying events on the
reductions achievable. We explain the phenomenon in the following example.
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1 1

1 1

1 1
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Example 7. Consider the LTS and the parity game on
the right. The parity game encodes the property
νX.([−]X ∧ ∀i. µY.([ai]Y ∧ 〈−〉true)), which is equiva-
lent to ∀�3ai, on this LTS. The event xy represents
the transition from fixpoint X into Y , which does not
involve an action from the LTS. Note that the com-
plete state space is encoded in the fixpoint X. Due to
the absence of some transitions in the part of the state
space encoded in fixpoint Y , neither a1 nor a2 is accord-
ing with xy. Hence, the only stubborn set in the initial
node is {a1, a2, xy}, which yields no reduction. ut

Improving the event identification procedure can yield more reduction. For
instance, if, for each i (bound in the universal quantifier), a different event xyi
is created, then both a1, xy2 and a2, xy1 will be according. If we disregard the
visibility of xy1 and xy2, four nodes can be eliminated.

7 Conclusion

We have presented an approach for applying partial-order reduction on parity
games. This has two main advantages over POR applied on LTSs or Kripke
structures: our approach supports the full modal µ-calculus, not just a fragment
thereof, and the potential for reduction is greater, because we do not require
a singleton proviso. Furthermore, we have shown how the ideas can be imple-
mented with PBESs as a high-level representation. In future work, we aim to
gain more insight into the effect of identifying events across PBES equations in
several ways. We also want to investigate the possibility of solving a reduced
parity game while is it being constructed. In certain cases, one may be able to
decide the winner of the original game from this partial solution.
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