
Theoretical Computer Science 1038 (2025) 115181

Available online 13 March 2025
0304-3975/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Unfolding state variables improves model checking performance ✩

Anna Stramaglia, Jeroen J.A. Keiren ,∗, Thomas Neele
Eindhoven University of Technology, the Netherlands

A R T I C L E I N F O A B S T R A C T

Keywords:

Model checking

Algebraic data types

Static analysis

Process algebra

When describing the behavior of systems, state variables are typically modeled using complex
data types. This use of data types allows for concise models that are easy to read. However,
model checking tools that aim to automatically establish the correctness of such models use static
analyses of state variables to improve their performance. Therefore, the use of complex data types
in behavioral models negatively affects the performance of model checking tools. To address this,
in this article we revisit a technique by Groote and Lisser that can be used to replace a single state
variable of a complex data type by multiple state variables of simpler data types. We introduce and
study several extensions in the context of the process algebraic specification language mCRL2, and
establish their correctness. We demonstrate that our technique typically reduces the verification
times when using symbolic model checking, and show that sometimes it enables static analysis to
reduce the underlying state space from infinite to finite.

1. Introduction

Most modern software is inherently concurrent. Concurrent systems consist of components that perform local computations, and
that use protocols to communicate (or interact) with other components and the environment. As users, we expect the software to
work correctly in all circumstances. However, in practice, this is generally not the case. This is due to the inherent difficulty in the
development of concurrent systems: corner cases are easily overlooked, resulting in subtle errors during the use of the software.

Several solutions have been developed to improve the quality of software. One can, for instance, prove the correctness of software
using techniques such as Hoare logic [1], separation logic [2,3] and process algebra [4]. These typically involve a significant manual
verification effort. Dataflow analysis (see, e.g., [5]) can be used as a fully automated, abstract, but imprecise interpretation of
programs. Model checking [6,7] aims to provide a precise, fully automated analysis of a (model of) a program.

Although there are model checkers that directly deal with implementations in high-level programming languages such as C or
C + + , e.g., Spin [8], DIVINE 4 [9], and LLBMC [10], most model checkers use abstract models of concurrent systems. Model checking
abstract models is one of the few instruments that can be used to formally verify designs when the code is not (yet) available. Examples
of model checkers that use this approach are CADP [11], Dezyne [12], FDR [13], and mCRL2 [14]. The modeling languages of these
tools differ, but in essence, all of these tools describe states of the model using state variables. These state variables have means to
describe the states of the model, in the form of variable declarations, and a way to describe transitions between states. State variables
are used in expressions that appear, e.g., in conditions that control whether a given transition is enabled, as parameters to actions
that label a transition, and they can be assigned a new value to describe the effect of a transition.

✩ This article belongs to Section B: Logic, semantics and theory of programming, Edited by Don Sannella.

* Corresponding author.

E-mail addresses: a.stramaglia@tue.nl (A. Stramaglia), j.j.a.keiren@tue.nl (J.J.A. Keiren), t.s.neele@tue.nl (T. Neele).

https://doi.org/10.1016/j.tcs.2025.115181

Received 12 July 2024; Received in revised form 14 February 2025; Accepted 10 March 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://orcid.org/0000-0002-5772-9527
http://orcid.org/0000-0001-6117-9129
mailto:a.stramaglia@tue.nl
mailto:j.j.a.keiren@tue.nl
mailto:t.s.neele@tue.nl
https://doi.org/10.1016/j.tcs.2025.115181
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2025.115181&domain=pdf
https://doi.org/10.1016/j.tcs.2025.115181
http://creativecommons.org/licenses/by/4.0/

Theoretical Computer Science 1038 (2025) 115181

2

A. Stramaglia, J.J.A. Keiren and T. Neele

Model checking suffers from the infamous state space explosion problem [15]. There are two key contributing factors to the large
number of states in the state space of a system. First, concurrency results in the exponential growth of the state space. For instance,
a system consisting of three components of ten states each can potentially be in 103 = 1000 different states. The second factor is the
use of data in the model. For instance, a controller that tracks 𝑛 bits of information can already be in 2𝑛 different states, due to the
data alone. Together these result in state spaces easily exceeding 10100 states in practice [16].

Many techniques have been developed to counteract the state space explosion problem [17]. For instance, partial-order reduc

tion [18,19] reduces the number of different interleavings that must be considered. Symbolic model checking [20,21] uses symbolic
representations such as binary decision diagrams to store states and transition relations. Most model checkers furthermore use static
analysis techniques such as constant propagation and dead variable analysis to reduce the data [22,23].

Both static analysis and modern symbolic model checkers such as LTSmin [24] analyze state variables and their dependencies. As
such, they benefit from models in which state variables are fine grained. On the other hand, to facilitate modeling of realistic systems,
modeling languages often allow the use of data types such as structures, records and lists. Their use leads to specifications that are
easy to construct and understand for the modeler.

Contributions In this paper, we describe a general approach that allows to unfold state variables in a specification of a distributed
system, a basic version of which was described by Groote and Lisser [22]. We assume that the description of the behavior uses state
variables and updates their value. We use algebraic data types to characterize the data. By unfolding state variables, we retain the
possibility for the modeler to construct high-level specifications, while also automatically generating a fine-grained model that is
more amenable to static analysis and symbolic model checking.

More concretely, our approach consists of the following steps:

• Replacing a single state variable 𝑠 by a number of variables 𝑠1,… , 𝑠𝑛.

• Replacing a term using state variable 𝑠 by an equivalent term using the newly introduced state variables 𝑠1,… , 𝑠𝑛. We describe
and compare two alternatives for this, referred to as case placement and alternative case placement.

• Replacing an update of a single state variable 𝑠 by the corresponding updates to the new state variables 𝑠1,… , 𝑠𝑛. We simplify
complex state updates by locally eliminating functions that are defined using pattern matching. We refer to this as pattern match
unfolding.

• Extending the algebraic data types with the functions needed to facilitate these replacements.

To study the effect of the unfolding of state variables, we consider the mCRL2 language [25]. This is a process algebraic specifi

cation language where processes can be parameterized with data specified using algebraic data types. The language comes with an
associated toolset to model, validate and verify complex systems [14]. Models in mCRL2 consist of a number of (communicating)
parallel processes that are parameterized with data. As preprocessing for further analysis, the mCRL2 toolset transforms specifications
into linear process equations (LPEs). In this step, parallelism and communication are removed from the process definition. Therefore,
an LPE consists of a single (recursive) process definition, parameterized with variables, and a number of condition-action-effect rules
referred to as summands, in which the variables are used and updated in a manner that closely matches the previous high-level
description.

Prior to the research presented in this article, the tool lpsparunfold in the mCRL2 toolset already implemented Groote and Lis

ser’s parameter unfolding [22]. We have extended this implementation with alternative case placement and pattern match unfolding.
In addition, mCRL2 allows the use of global variables; we extend the unfolding technique and its implementation to take into account
such global variables. We prove that each of the transformations preserves strong bisimilarity of LPEs. This establishes correctness.
Using experiments, we show that parameter unfolding typically speeds up symbolic model checking. Pattern match unfolding and the
unfolding of global variables typically have a positive effect on the performance. Although theoretically alternative case placement
can lead to an exponential blow-up of terms to which it is applied, this effect is not observed in our experiments: the performance of
case placement and alternative case placement is comparable most of the time. On our running example alternative case placement
is essential in order to transform an infinite state space into an equivalent but finite one.

This article is an extended version of [26]. Compared to [26] we have separated the presentation of the unfolding of state variables
from the setting of mCRL2, emphasizing that this is a technique that is more generally applicable. Equivalence of terms and their
unfolding is proven in this general setting. For correctness of the unfolding in the setting of mCRL2, we include a detailed discussion
of the unfolding using global variables. Moreover, we present full proofs that show that strong bisimulation is preserved. We have
also extended the experiments and present the results in more detail.

Related work The algebraic data types used in mCRL2 [25] and assumed in this article, have a model-class semantics [27]. In this
semantic approach, the class consists of all algebras that satisfy the axioms, in contrast to the more common initial algebra semantics
that is restricted to the isomorphism class of initial algebras. This approach is sometimes referred to as loose semantics [28,29]. Without
further assumptions, the loose semantics allows for certain degenerate models, such as the one where every element is mapped to
the same value in the domain. Such degenerate models can be excluded by taking the non-degenerate loose semantics, in which models
satisfying true = false are excluded. We refer to [30] for an accessible introduction to algebraic data types.

Our unfolding of state variables is most closely related to various analysis and transformation techniques for LPEs that have
been developed in the setting of μCRL [31] and mCRL2 [14] over the years. Groote and Lisser [22] introduced static analysis for
μCRL specifications, including a technique for flattening the structure of process parameters and implemented these in μCRL [31].

Theoretical Computer Science 1038 (2025) 115181

3

A. Stramaglia, J.J.A. Keiren and T. Neele

The latter technique is the core of our unfolding of state variables. However, in [22] alternatives for reconstructing parameters and
pattern match unfolding are not considered, and global variables are not taken into account. Furthermore, no correctness proof is
presented. A more advanced algorithm is liveness analysis [23], which reconstructs a controlflow graph from a given LPE and uses
knowledge of relevant data parameters to reduce the size of the underlying state space.

Similar analysis and transformation techniques have been developed for Parameterized Boolean Equation Systems (PBES) [32]. For
example, redundant and constant parameter elimination for PBES is presented in [33], liveness analysis in [34]; a generalization of
constant elimination occurs in [35].

The use of data flow analysis techniques to reduce the state space or improve the performance of model checking is not limited to
mCRL2. For instance, manually resetting variables when they are no longer needed is supported through a dedicated keyword (clear)
by Murphi [36]. Automated dead variable analysis has been studied for model checkers such as CADP [37] and UPPAAL [38]. Data
flow analysis has also been studied for probabilistic models [39]. All of these analyses potentially benefit from a more fine-grained
representation of variables, e.g., when only part of a more complex variable is dead.

Parameter unfolding could be beneficial for other techniques used in model checking as well. For instance, symmetry reduc

tion [40], which is implemented in model checkers such as FDR [41], depends on an analysis of shared variables. Unfolding parameters
can lead to more fine-grained information regarding such shared variables. Furthermore, symbolic model checkers use representa

tions such as list decision diagrams (LDDs, a generalization of binary decision diagrams) [42], in which each variable is represented by
a layer in the LDD. Parameter unfolding could change the LDD structure by having multiple simpler layers instead of a single more
complex layer. This potentially reduces the size of the LDD representation. The implementation of symbolic reachability used in our
experiments is based on the techniques from [43,44], and uses the list decision diagrams from Sylvan [45].

Instead of using data flow analysis to improve model checking, model checking has also been used to perform data flow analysis.
For instance, Steffen uses a model checker to compute optimal placement of computations within a program [46]. Del Mar Gallardo
et al. used model checkers as generic, on-thefly data flow analyzers [47]. Data flow analysis for programming languages in general
has been studied extensively in the literature. We refer to standard textbooks such as [5] for an in-depth description of data flow
analysis of programming languages.

Structure Section 2 introduces a running example that is used throughout the paper. Next, an introduction to algebraic data types is
provided in Section 3. In Section 4 we introduce the unfolding of state variables, and describe alternative case placement and pattern
match unfolding. We describe how this can be used in mCRL2 in Section 5, and prove that unfolding preserves strong bisimilarity.
Finally, we evaluate the approach using experiments in Section 6 and conclude in Section 7.

2. Motivating example

We first present a motivating example. To facilitate consistent use of syntax throughout the paper, we present the motivating
example using the mCRL2 specification language. The techniques introduced in this paper are, however, generally applicable to
specification languages that: (1) use algebraic data types for the specification of the data used, and (2) declare state variables, use
them in terms, and update their value. Note that mCRL2 has standard data types for, e.g., Booleans and numeric data types. To present
the motivating example independently from mCRL2, we here choose to give our own specification of all the relevant data types. In
Section 5 we update the example to instead use the full power of mCRL2.

Our motivating example is a specification of a simple system inspired by the mCRL2 models generated from Open Interaction
Language (OIL) specifications [48]. It describes a system that starts out uninitialized. If it is uninitialized, it can be initialized using
a transition labelled initialize. The initialized system can be in either of two states: off or on, and can be toggled between these two
states. Moreover, the initialized system has an IP address, which we model abstractly as a natural number. The IP address is only
relevant when the state is on, and whenever the system switches from off to on, it gets assigned an arbitrary number as IP address.

sort 𝐵;
cons true, false∶ 𝐵;
map ≈,≉ ∶ 𝐵 ×𝐵→𝐵;

¬ ∶ 𝐵→𝐵;
∧,∨ ∶ 𝐵 ×𝐵→𝐵;

var 𝑥, 𝑦 ∶ 𝐵;
eqn 𝑥 ≈ 𝑥 = true;

true ≈ false = false;
false ≈ true = false;
𝑥 ≉ 𝑦 = ¬(𝑥 ≈ 𝑦);
¬true = false;
¬false = true;
𝑥 ∧ true = 𝑥;
true ∧ 𝑥 = 𝑥;
𝑥 ∧ false = false;
false ∧ 𝑥 = false;
𝑥 ∨ true = true;
true ∨ 𝑥 = true;
𝑥 ∨ false = 𝑥;
false ∨ 𝑥 = 𝑥;

sort 𝑁 ;
cons zero∶ 𝑁 ;

succ∶ 𝑁 →𝑁 ;
map ≈,≉ ∶ 𝑁 ×𝑁 →𝐵;

+ ∶ 𝑁 ×𝑁 →𝑁 ;
var 𝑛,𝑚 ∶ 𝑁 ;
eqn zero ≈ zero = true;

zero ≈ succ(𝑛) = false;
succ(𝑛) ≈ zero = false;
succ(𝑛) ≈ succ(𝑚) = 𝑛 ≈𝑚;
𝑛 ≉𝑚 = ¬(𝑛 ≈𝑚);
zero + 𝑛 = 𝑛;
𝑛+ zero = 𝑛;
succ(𝑛) +𝑚 = succ(𝑛+𝑚);
𝑛+ succ(𝑚) = succ(𝑛+𝑚);

Fig. 1. Specification of the data types for Booleans and natural numbers.

Theoretical Computer Science 1038 (2025) 115181

4

A. Stramaglia, J.J.A. Keiren and T. Neele

sort State;
cons p_on,p_off ∶ State;
map ≈,≉ ∶ State × State →𝐵;
var 𝑥, 𝑦 ∶ State;
eqn 𝑥 ≈ 𝑥 = true;

p_on ≈ p_off = false;
p_off ≈ p_on = false;
𝑥 ≉ 𝑦 = ¬(𝑥 ≈ 𝑦);

sort Sys;
cons uninit∶ Sys;

sys∶ State ×𝑁 → Sys;
map ≈,≉ ∶ Sys × Sys →𝐵;

get_state∶ Sys → State;
get_ip∶ Sys →𝑁 ;
set_state∶ Sys × State → Sys;
set_ip∶ Sys ×𝑁 → Sys;

var 𝑠, 𝑡 ∶ Sys;𝑝1, 𝑝2 ∶ State;𝑛,𝑚 ∶ 𝑁 ;
eqn 𝑠 ≈ 𝑠 = true;

uninit ≈ sys(𝑝1, 𝑛) = false;
sys(𝑝1, 𝑛) ≈ uninit = false;
sys(𝑝1, 𝑛) ≈ sys(𝑝2,𝑚) = 𝑝1 ≈ 𝑝2 ∧ 𝑛 ≈𝑚;
𝑠 ≉ 𝑡 = ¬(𝑠 ≈ 𝑡);
get_state(sys(𝑝1, 𝑛)) = 𝑝1;
get_ip(sys(𝑝1, 𝑛)) = 𝑛;
set_state(sys(𝑝1, 𝑛), 𝑝2) = sys(𝑝2, 𝑛);
set_ip(sys(𝑝1, 𝑛),𝑚) = sys(𝑝1,𝑚);

Fig. 2. Specification of the data types State and Sys.

The specification uses four data types, see Figs. 1 and 2. The Booleans are described using sort 𝐵 with constructors true and false.
Standard operations such as equality ≈, negation ¬ as well as conjunction and disjunction ∧∕∨ are defined. The operations are defined
in an equational manner. In a similar way, natural numbers, represented using sort 𝑁 , can be defined using zero and successor (succ).
We restrict the definitions to the operators used in our specifications, and we illustrate the definition of +. They can be extended
with additional operations such as multiplication in the obvious way.

The sort State represents the status of the system which can be set to p_on or p_off , see Fig. 2. They are defined to be distinct using
a definition of ≈.

Finally, sort Sys has two constructors, uninit∶ Sys and sys∶ State×𝑁 → Sys. For this, operations such as equality (≈) and inequality
(≉) are defined, to ensure that, e.g., sys(𝑝, 𝑛) ≉ uninit for all 𝑝 ∶ State, 𝑛 ∶ 𝑁 . Also, the projection functions get_state∶ Sys → State and
get_ip∶ Sys →𝑁 are defined such that, get_state(sys(𝑝, 𝑛)) = 𝑝 and get_ip(sys(𝑝, 𝑛)) = 𝑛. Similarly, we define functions set_state and set_ip
to set the state and IP address. Note that these four functions are partially defined.

The behavior of our example is defined abstractly as a process 𝑃 , parameterized with a single state variable 𝑠 of sort Sys. The
definition uses actions on, off , and initialize. The behavior is defined using a set of (recursive) condition-action-effect rules. A condition

action-effect rule is of the shape ‘(condition) → action-effect’ which can be read as ‘if condition is true then do action and update
the state with effect’. The operator + denotes a nondeterministic choice among the different rules. Operator

∑
, parameterized with

a local variable, denotes a generalized nondeterministic choice over rules parameterized with that variable.

𝑃 (s ∶ Sys) = (s ≈ uninit)→ initialize ⋅ 𝑃 (sys(p_off , zero))

+
∑
𝑛 ∶ 𝑁

(s ≉ uninit ∧ get_state(s) ≈ p_off)→ on ⋅ 𝑃 (set_state(set_ip(s, 𝑛),p_on))

+ (s ≉ uninit ∧ get_state(s) ≈ p_on)→ off ⋅ 𝑃 (set_state(set_ip(s, zero),p_off))

The process 𝑃 describes that when the system is uninitialized, captured using condition 𝑠 ≈ uninit, a transition labelled with action
initialize is taken, and the value of variable 𝑠 is updated to be sys(p_off , zero). For any natural number 𝑛, when the system is off, denoted
by 𝑠 ≉ uninit ∧ get_state(𝑠) ≈ p_off , the transition labelled on can be taken, and in the next state, the IP address component of the state
becomes 𝑛, and the state-component becomes p_on; this is denoted using set_state(set_ip(𝑠, 𝑛),p_on). When the system is on, it can take
a transition labelled off , and similar to the previous case, the IP address is set to zero, and the state component is updated to p_off .

Note that equivalently, in the second condition-action-effect rule, we could have set 𝑠 in the next state to sys(p_on, 𝑛). In the same
rule, the use of

∑
𝑛 ∶ 𝑁 is shorthand for the following nondeterministic choice between infinitely many transitions:

+ (s ≉ uninit ∧ get_state(s) ≈ p_off)→ on ⋅ 𝑃 (set_state(set_ip(s, zero),p_on))

+ (s ≉ uninit ∧ get_state(s) ≈ p_off)→ on ⋅ 𝑃 (set_state(set_ip(s, succ(zero)),p_on))

+…

The above process serves as a compact description of a labelled transition system (LTS). The LTS for 𝑃 (uninit) is shown in Fig. 3.
Note that this LTS has an infinite state space due to the use of natural numbers for IP addresses. However, this parameter does not
affect the behavior of the system: the behavior when it is on, i.e., it is in a state sys(p_on, 𝑛), is bisimilar for all values of 𝑛. Since the
state contained in state variable 𝑠 is used in the process, for instance to determine whether a transition is enabled, static analysis
techniques that consider 𝑠 as a single entity are not able to simplify the description. Yet, intuitively, as the IP address contained in
𝑠 is not used significantly, it is desirable for static analysis to detect this, and remove this component altogether, leading to a finite,
bisimilar description. To enable such static analyses, it is beneficial to split parameter 𝑠 into multiple parameters, e.g., 𝑒𝑠, denoting
whether the value of 𝑠 is uninit or sys(𝑝, 𝑛) for some 𝑝 and 𝑛, encoded as 𝑐uninit and 𝑐sys, respectively, and parameters 𝑠1sys and 𝑠2sys
storing the parameters 𝑝 and 𝑛 in case 𝑠 is sys(𝑝, 𝑛). Such a process could look as follows. Note that we omit the details of the data
types. These are discussed in more detail later in the paper.

𝑃 (𝑒𝑠 ∶ 𝑈Sys, 𝑠
1
sys ∶ State, 𝑠2sys ∶ 𝑁) = (𝑒𝑠 ≈ 𝑐uninit)→ initialize ⋅ 𝑃 (𝑐sys,p_off , zero)

+
∑
𝑛 ∶ 𝑁

(𝑒𝑠 ≉ 𝑐uninit ∧ 𝑝 ≈ p_off)→ on ⋅ 𝑃 (𝑒𝑠,p_on, 𝑛)

+ (es ≉ 𝑐uninit ∧ 𝑝 ≈ p_on)→ off ⋅ 𝑃 (𝑒𝑠,p_off , zero)

Theoretical Computer Science 1038 (2025) 115181

5

A. Stramaglia, J.J.A. Keiren and T. Neele

𝑠 ≈ uninit

𝑠 ≈ sys(p_off , zero)

𝑠 ≈ sys(p_on, zero) 𝑠 ≈ sys(p_on, succ(zero))
…

initialize

on

off
on off

Fig. 3. LTS for process 𝑃 (init) of the running example.

The transformation we present in this paper produces a description similar to the process described above, obtained from our running
example. The reader should note that 𝑠2sys is not used significantly in this description, so it (and as result also the locally bound
variable 𝑛) can be removed using for instance the parameter elimination technique from [22]. This reduced description has an
underlying LTS of only 3 states.

3. Algebraic data types

In this paper we work in a setting where data is defined using algebraic data types. We give a brief overview of the concepts
relevant to this paper. A good textbook introduction to algebraic data types can be found in [30]. For detailed definitions of the data
types used in mCRL2 we refer to [25].

We use many-sorted algebras to allow for the definition of several sorts of data. A signature is a triple Σ = ( , ,) where 
is the set of sorts,  and  are disjoint sets of function symbols over  , called value constructors, and mappings, respectively. We
typically write constructors instead of value constructors. The set of sorts  consists of sort names and function sorts. Function sorts are
of the form 𝐷0 ×⋯ ×𝐷𝑛 →𝐷, for 𝐷𝑖,𝐷 ∈  for 0 ≤ 𝑖 ≤ 𝑛; sorts that are not function sorts are sort names. If 𝐷 =𝐷1 ×⋯ ×𝐷𝑛 →𝐷′

we write range(𝐷) for its range 𝐷′. Function symbols in  ∪ are of the form 𝑓 ∶ 𝐷1 ×⋯ ×𝐷𝑛 → 𝐷. If 𝑛 = 0, we say 𝑓 is a
constant. We assume every signature has a sort name 𝐵 representing the Booleans.

Although they are syntactically not distinguished, the role of constructors and mappings is subtly different. Constructors are used
to inductively define the elements of a sort, and introduce a means for pattern matching. Mappings define any other operation on
an algebraic data type. As such, constructors play a crucial role when unfolding state variables in the technique that we propose.
Note that not every sort is defined using constructors, the real numbers are an example of such a sort. We write  (𝐷) = {𝑓 ∶ 𝐷1 ×
⋯ ×𝐷𝑛 →𝐷′ ∈  ∣𝐷′ =𝐷} for the constructors of sort 𝐷. We assume a bijection 𝜄𝐷 between  (𝐷) and 0..| (𝐷)| − 1 ordering
the constructors, and write 𝜄 if 𝐷 is clear from the context. For our examples we assume that 𝜄 is consistent with the order in which
the constructors appear in the specification, and we leave its definition implicit. We say that 𝐷 is a constructor sort if, and only
if,  (𝐷) ≠ ∅. A constructor sort 𝐷 is syntactically non-empty if there is a constructor 𝑓 ∶ 𝐷1 ×⋯ × 𝐷𝑛 → 𝐷 such that if 𝐷𝑖 is a
constructor sort, then 𝐷𝑖 is syntactically non-empty, for 1 ≤ 𝑖 ≤ 𝑛. We require all constructor sorts to be syntactically non-empty, and
for 𝑓 ∶ 𝐷 ∈  , range(𝐷) must not be a function sort. With every constructor sort 𝐷, we associate a unique default term, 𝖽𝖾𝖿𝐷 . Such
a term exists due to syntactic non-emptiness.

Example 1. The sort 𝐵, representing the Booleans, from the previous section has two constructors, true and false that together allow
us to describe all Booleans. Formally  (𝐵) = {true∶ 𝐵, false∶ 𝐵}. Likewise, sort 𝑁 with constructors zero and succ allows to describe
all natural numbers. Similar as before, we have  (𝑁) = {zero∶ 𝑁, succ∶ 𝑁 →𝑁}. Note that sorts 𝐵 and 𝑁 are sort names, and sort
𝑁 →𝑁 is a function sort. Both 𝐵 and 𝑁 are constructor sorts.

Given a set  of  -sorted variables, where 𝑥 ∈ 𝑆 for 𝑆 ∈  denotes that 𝑥 is a variable of sort 𝑆 , we can construct terms. Terms
are syntactically described by the following grammar:

𝑡 ∶∶= 𝑥 ∣ 𝑓 ∣ 𝑡(𝑡,… , 𝑡)

where 𝑥 ∈  are variables, 𝑓 ∈  ∪ are sorted function symbols, where we sometimes write 𝑓 ∶ 𝐷1 ×⋯×𝐷𝑛 →𝐷 ∈  if the
sort of 𝑓 is important, and 𝑡(𝑡,… , 𝑡) describes the application of a term to its arguments. For term 𝑡(𝑡1,… , 𝑡𝑛), 𝑡 is the head term and
𝑡1,… , 𝑡𝑛 are the arguments; if 𝑡 is a function symbol, we typically refer to it as the head symbol. We use fv(𝑡) to denote the set of
variables occurring in 𝑡, and we write 𝑒[𝑥 ∶= 𝑒′] for the syntactic substitution of 𝑥 with 𝑒′ in 𝑒.

Theoretical Computer Science 1038 (2025) 115181

6

A. Stramaglia, J.J.A. Keiren and T. Neele

Equality of terms is defined using an equational specification  = (Σ,𝐸), where Σ is a signature and 𝐸 is a set of conditional
equations of the form ⟨𝑐 → 𝑡 = 𝑢⟩, where 𝑐, 𝑡, 𝑢 are terms over  . We typically write ⟨𝑡 = 𝑢⟩, when 𝑐 = true. Note that the mCRL2
toolset uses term rewriting, interpreting the equations in a strictly left to right fashion, to simplify terms.

The core ideas of our technique are independent of the precise semantics of the data types. For the sake of conciseness we use the
model class semantics of the data types in mCRL2 [25]. The results carry over straightforwardly when using different semantics.

Sorts are mapped into their semantic counterpart using applicative structures. A set {𝑀𝐷 ∣𝐷 ∈ } is an applicative structure if, and
only if, 𝑀𝐵 = {𝐭𝐫𝐮𝐞, 𝐟𝐚𝐥𝐬𝐞}, and if 𝐷 =𝐷1 ×⋯×𝐷𝑛 →𝐷′, then 𝑀𝐷 contains all (semantic) functions from 𝑀𝐷1

×⋯×𝑀𝐷𝑛
→𝑀𝐷′ .

Function �−� maps every function symbol in the equational specification into its semantic counterpart, that is, for all 𝑓 ∈  ∪

of sort 𝐷, �𝑓� ∈𝑀𝐷 . This is generalized to arbitrary terms as follows:

�𝑥�𝜎 = 𝜎(𝑥) if 𝑥 ∈ 

�𝑓�𝜎 = �𝑓� if 𝑓 ∈  ∪

�𝑡(𝑡1,… , 𝑡𝑛)�𝜎 = �𝑡�𝜎(�𝑡1�𝜎,… , �𝑡𝑛�
𝜎)

where 𝜎 ∶  →
⋃
𝐷∈𝑀𝐷 is a valuation that ensures that 𝜎(𝑥) ∈𝑀𝐷 for all 𝑥 ∶ 𝐷. We write 𝜎[𝑣∕𝑑] for the valuation that assigns 𝑣

to 𝑑 and otherwise behaves as 𝜎. The model 𝕄 of a equational specification is an applicative structure together with an interpretation
function, that in addition ensures that for equations ⟨ , 𝑐→ 𝑡 = 𝑢⟩ ∈𝐸 and valuations 𝜎, if �𝑐�𝜎 = 𝐭𝐫𝐮𝐞 then �𝑡�𝜎 = �𝑢�𝜎 ; �true�𝜎 = 𝐭𝐫𝐮𝐞,
�false�𝜎 = 𝐟𝐚𝐥𝐬𝐞, for all valuations 𝜎; and if 𝐷 is a constructor sort, then every 𝑣 ∈𝑀𝐷 is a constructor element. Element 𝑣 ∈𝑀𝐷 is a
constructor element if a constructor function 𝑓 ∈  of sort 𝐷1 ×⋯×𝐷𝑛 →𝐷 exists such that 𝑣 = �𝑓�(𝑣1,… , 𝑣𝑛) where 𝑣𝑖 is either a
constructor element of sort 𝐷𝑖 , or sort 𝐷𝑖 is not a constructor sort. We write 𝑡 ≡ 𝑡′ for terms 𝑡 and 𝑡′ if for all models, �𝑡�𝜎 = �𝑡′�𝜎 for
all valuations 𝜎.

In the remainder, we use some (standard) properties of the semantics of algebraic data types. The first property states that the
valuation of variables that do not appear in a term do not affect the semantics of the term.

Lemma 1. For all terms 𝑡, and variables 𝑦 such that 𝑦∉ fv(𝑡), for all values 𝑣, and valuations 𝜎

�𝑡�𝜎[𝑣∕𝑦] = �𝑡�𝜎 .

In case 𝑡 is closed, that is fv(𝑡) = ∅, we have �𝑡�𝜎 = �𝑡�𝜎
′

for all 𝜎,𝜎′, and we sometimes write �𝑡�.
Also, syntactic substitutions can be moved into the valuation by evaluating the right hand side in the context of the same valuation.

Lemma 2. For all terms 𝑡 and 𝑒, variables 𝑑 and valuations 𝜎

�𝑡[𝑑 ∶= 𝑒]�𝜎 = �𝑡�𝜎[�𝑒�
𝜎∕𝑑].

Finally, we remark on the fact that, if 𝐷 is a constructor sort, every term 𝑡 of sort 𝐷 can be written in terms of a constructor
application.

Lemma 3. Let 𝐷 be a constructor sort. Then for every term 𝑡 of sort 𝐷, and valuation 𝜎, we have

�𝑡�𝜎 = �𝑓𝑖(𝑥𝑖,… , 𝑥𝑚𝑖)�
𝜎[𝑣1∕𝑥𝑖,…,𝑣𝑚𝑖 ∕𝑥𝑚𝑖]

for some constructor 𝑓𝑖 ∶ 𝐷1 ×⋯ ×𝐷𝑚𝑖 →𝐷 ∈  , variables 𝑥𝑖 of sort 𝐷𝑖 and 𝑣𝑖 ∈𝑀𝐷𝑖
.

Proof. Fix 𝐷, 𝑡 and 𝜎 as above. Note that �𝑡�𝜎 = 𝑣 for some 𝑣 ∈𝑀𝐷 . As 𝐷 is a constructor sort, 𝑣 is a constructor element, hence
a constructor function 𝑓𝑖 ∈  exists of sort 𝐷1 ×⋯ ×𝐷𝑚𝑖 →𝐷 such that 𝑣 = �𝑓𝑖�(𝑣1,… , 𝑣𝑚𝑖). Now, choose 𝑥1,… , 𝑥𝑚𝑖 ∈  fresh,
then according to the semantics, �𝑓𝑖�(𝑣1,… , 𝑣𝑚𝑖) = �𝑓𝑖(𝑥1,… , 𝑥𝑚𝑖)�

𝜎[𝑣1∕𝑥1 ,…,𝑣𝑚𝑖 ∕𝑥𝑚𝑖]. □

4. Unfolding state variables

The unfolding of state variables was introduced in the context of μCRL by Groote and Lisser under the name structelm [22], and
has later been implemented in the mCRL2 toolset in a tool called lpsparunfold. The main idea is that a term from a constructor
sort whose head symbol is a constructor can be replaced by separate terms for the name of the constructor and each of the arguments.

More concretely, if we look at the description of our running example, there are three different ways in which a state variable
appears, and that therefore need to be taken into account when unfolding:

1. The variable is declared, and this declaration must be split into multiple declarations. This is formalized in Section 4.2.

2. A variable can be used in a term. The term must be replaced by an equivalent term using the newly declared variables instead
of the variable that is replaced. This is formalized in Section 4.3.

Theoretical Computer Science 1038 (2025) 115181

7

A. Stramaglia, J.J.A. Keiren and T. Neele

3. A variable can be assigned to. This variable assignment must be split into assignments to the variables that it is replaced by. This
is formalized in Section 4.4.

Example 2. Recall our motivating example from Section 2. The single variable 𝑠 is replaced by three variables: 𝑒𝑠 ∶ 𝑈Sys, 𝑠1sys ∶ State
and 𝑠2sys ∶ 𝑁 , where 𝑒𝑠 represents the constructor at the head of 𝑠, and 𝑠1sys and 𝑠2sys are the arguments that are used when the
constructor is sys.

The occurrence of 𝑠 in condition 𝑐 ≈ uninit of the first summand (i.e., the first condition-action-effect rule) can be replaced, for
instance, by if (𝑒𝑠 ≈ 𝑐uninit,uninit, sys(𝑠1sys, 𝑠

2
sys)). Essentially, this uses 𝑒𝑠 to determine which constructor was at the head of 𝑠, and based

on that it returns the term that is equivalent to 𝑠. If 𝑒𝑠 is 𝑐uninit , the result is uninit, otherwise the result is sys(𝑠1sys, 𝑠
2
sys). We later

generalize this idea by introducing case functions that facilitate reasoning about sorts with more than two constructors.

Finally, again in the first summand, the assignment of sys(p_off , zero) to 𝑠 must be split into assignments of the terms 𝑐sys, p_off ,
and zero, to parameters 𝑒𝑠, 𝑠1sys and 𝑠2sys, respectively. Note that the assignments to these different parameters are independent.

To facilitate these three transformations, we first extend the specification of our algebraic data type, and subsequently use the
new definitions to describe the necessary transformations.

4.1. Extending the algebraic data types

The core of our unfolding is based on Groote and Lisser’s technique in [22]. In particular, the extension of the equational specifi

cation that we present here is similar to that in [22]. We first introduce the extension of data types using our running example, after
which we recall the formal definitions.

When unfolding a sort 𝐷, a new equational specification is constructed that extends the equational specification  with a new
sort 𝑈𝐷 , to represent the constructors of 𝐷, constructors for this new sort, as well as case functions, determinizers and projection
functions and the associated equations.

Example 3. Recall the equational specification from Fig. 2. We unfold sort Sys. Note that  (Sys) = {sys∶ State×𝑁 → Sys,uninit∶ Sys},
that is it has two constructors, sys and uninit. The equational specification of the running example is extended with the following.

sort 𝑈Sys;
cons 𝑐sys, 𝑐uninit ∶ 𝑈Sys;
map CSys ∶ 𝑈Sys × Sys × Sys → Sys

detSys ∶ Sys →𝑈Sys;
𝜋1

sys ∶ Sys → State;
𝜋2

sys ∶ Sys →𝑁 ;
var 𝑥,𝑥1, 𝑥2 ∶ Sys; 𝑒 ∶ 𝑈Sys;

𝑦1 ∶ State;𝑦2 ∶ 𝑁 ;

eqn CSys(𝑐uninit , 𝑥1, 𝑥2) = 𝑥1;
CSys(𝑐sys, 𝑥1, 𝑥2) = 𝑥2;
CSys(𝑒, 𝑥, 𝑥) = 𝑥;
detSys(uninit) = 𝑐uninit;
detSys(sys(𝑦1, 𝑦2)) = 𝑐sys;
𝜋1

sys(uninit) = p_on;
𝜋2

sys(uninit) = 0;
𝜋1

sys(sys(𝑦1, 𝑦2)) = 𝑦1;
𝜋2

sys(sys(𝑦1, 𝑦2)) = 𝑦2;

The explanation of the additions is as follows. We add constructor sort 𝑈Sys, with constructors 𝑐sys, 𝑐uninit , i.e., we introduce one
new constructor in sort 𝑈Sys for every constructor in the unfolded sort. Case function CSys is used in the unfolding of processes to
reconstruct a term of sort Sys from the unfolded parts, e.g., CSys(𝑐sys,uninit, sys(𝑝_on,3)) = sys(𝑝_on,3). The equation CSys(𝑒, 𝑥, 𝑥) = 𝑥
is used to facilitate simplifications in the implementation even when the arguments do not yet have a concrete value. We add
determinizer functions detSys that are used to recognize the head symbol of a term of sort Sys, and map it onto the corresponding
constructor in 𝑈Sys, e.g., detSys(sys(𝑝_on,3)) = 𝑐sys. Projection functions 𝜋1sys and 𝜋2sys are added to extract the arguments of a term with
head symbol sys, e.g., 𝜋2sys(sys(𝑝_on,3)) = 3; if this projection function is applied to uninit it returns a default value. Since constructor
uninit has no arguments, there are no projection functions 𝜋uninit .

To be effective in practice, the projection and determinizer functions need to distribute over if-then-else and the case functions.
Therefore, also the following distribution laws are added.

var 𝑥1, 𝑥2 ∶ Sys; 𝑒 ∶ 𝑈Sys;𝑏 ∶ 𝐵
eqn 𝜋1

sys(CSys(𝑒, 𝑥1, 𝑥2)) = CSys(𝑒, 𝜋1
sys(𝑥1), 𝜋

1
sys(𝑥2));

𝜋1
sys(if (𝑏, 𝑥1, 𝑥2)) = if (𝑏, 𝜋1

sys(𝑥1), 𝜋
1
sys(𝑥2));

𝜋2
sys(CSys(𝑒, 𝑥1, 𝑥2)) = CSys(𝑒, 𝜋2

sys(𝑥1), 𝜋
2
sys(𝑥2));

𝜋2
sys(if (𝑏, 𝑥1, 𝑥2)) = if (𝑏, 𝜋2

sys(𝑥1), 𝜋
2
sys(𝑥2));

detSys(CSys(𝑒, 𝑥1, 𝑥2)) = CSys(𝑒,detSys(𝑥1),detSys(𝑥2));
detSys(if (𝑏, 𝑥1, 𝑥2)) = if (𝑏,detSys(𝑥1),detSys(𝑥2));

We now formally define the unfolding of a constructor sort 𝐷.

Theoretical Computer Science 1038 (2025) 115181

8

A. Stramaglia, J.J.A. Keiren and T. Neele

Definition 1 (Unfolding of sort 𝐷 [22]). Fix equational specification  = (Σ,𝐸) with signature Σ = ( , ,). Let 𝐷 ∈  be a
constructor sort.

The unfolding of 𝐷 in  is the equational specification ′ = (Σ′,𝐸′), where Σ′ = ( ′,
′,

′), defined as follows.

•  ′ =  ∪ {𝑈𝐷}, i.e., we add a fresh constructor sort 𝑈𝐷 .

• 
′ =  ∪ {𝑐𝑓 ∣ 𝑓 ∶ 𝐷1 ×⋯ ×𝐷𝑛 →𝐷 ∈  (𝐷)}, i.e., we add one (unique, fresh) constant constructor 𝑐𝑓 for every constructor

𝑓 ∶ 𝐷1 ×⋯ ×𝐷𝑛 →𝐷 ∈  (𝐷).
• 

′ = ∪ {C𝐷 ∶ 𝑈𝐷 ×𝐷 ×⋯ ×𝐷→𝐷,det𝐷 ∶ 𝐷→𝑈𝐷} ∪ Π, with:

– case function C𝐷 ∶ 𝑈𝐷 ×𝐷 ×⋯ ×𝐷→𝐷 with arity | (𝐷)|+ 1;

– determinizer function det𝐷 ∶ 𝐷→ 𝑈𝐷 that given a term of sort 𝐷 determines the constructor of sort 𝑈𝐷 that represents its
head symbol; and

– Π =
⋃
𝑓 ∶ 𝐷1×⋯×𝐷𝑛→𝐷∈ (𝐷) Π𝑓 , where for every constructor 𝑓 ∶ 𝐷1 ×⋯ ×𝐷𝑛 → 𝐷 ∈  (𝐷), the set of projection functions

Π𝑓 = {𝜋𝑖
𝑓
∶ 𝐷→𝐷𝑖 ∣ 1 ≤ 𝑖 ≤ arity(𝑓)} where 𝜋𝑖

𝑓
obtains the 𝑖th argument, given a term of sort 𝐷 with head symbol 𝑓 .

We assume that the mappings added here are fresh, i.e., they do not appear in  ∪  .

• 𝐸′ =𝐸 ∪𝐸C𝐷 ∪𝐸det𝐷 ∪𝐸Π ∪𝐸dist are the new equations for each of the mappings, defined as follows:

𝐸C𝐷 = {C𝐷(𝑐𝑓 , 𝑥1,… , 𝑥| (𝐷)|) = 𝑥𝜄(𝑓) ∣ 𝑓 ∶ 𝐷1 ×⋯ ×𝐷𝑛 →𝐷 ∈  (𝐷)} ∪ {C𝐷(𝑒, 𝑥,… , 𝑥) = 𝑥}

𝐸det𝐷 = {det𝐷(𝑓 (𝑦1,… , 𝑦𝑛)) = 𝑐𝑓 ∣ 𝑓 ∶ 𝐷1 ×⋯ ×𝐷𝑛 →𝐷 ∈  (𝐷)}

𝐸Π =
⋃

𝑓 ∶ 𝐷1×⋯×𝐷𝑛→𝐷∈ (𝐷)
𝐸Π𝑓

𝐸Π𝑓 = {𝜋𝑖
𝑓
(𝑓 (𝑦1,… , 𝑦𝑛)) = 𝑦𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑛} ∪

⋃
𝑔∶ 𝐷′

1×⋯×𝐷′
𝑚→𝐷∈ (𝐷),𝑔≠𝑓

{𝜋𝑖
𝑓
(𝑔(𝑦1,… , 𝑦𝑚)) = 𝖽𝖾𝖿𝐷𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑛}

So, the case function, if provided with the constructor 𝑐𝑓 that corresponds to 𝑓 , returns the argument corresponding to index
𝜄(𝑓). Determinizer det𝐷 , provided with a term that has 𝑓 as head symbol, returns the constructor of sort 𝑈𝐷 used to represent
this head symbol. The set 𝐸Π gives the equations to project the arguments of 𝑓 . A projection function 𝜋𝑖

𝑓
returns default value

𝖽𝖾𝖿𝐷𝑖 in case it is applied to a 𝑔 ≠ 𝑓 . 𝐸dist is the set of distribution laws:

{𝜋𝑖
𝑓
(C𝐷(𝑥,𝑥1,… , 𝑥| (𝐷)|)) = C𝐷(𝑥,𝜋𝑖𝑓 (𝑥1),… , 𝜋𝑖

𝑓
(𝑥| (𝐷)|)) ∣ 𝜋𝑖𝑓 ∈Π}

∪ {𝜋𝑖
𝑓
(if (𝑏, 𝑥1, 𝑥2)) = if (𝑏, 𝜋𝑖

𝑓
(𝑥1), 𝜋𝑖𝑓 (𝑥2)) ∣ 𝜋

𝑖
𝑓
∈Π}

∪ {det𝐷(C𝐷(𝑥,𝑥1,… , 𝑥| (𝐷)|)) = C𝐷(𝑥,det𝐷(𝑥1),… ,det𝐷(𝑥| (𝐷)|))}
∪ {det𝐷(if (𝑏, 𝑥1, 𝑥2)) = if (𝑏,det𝐷(𝑥1),det𝐷(𝑥2))}

To ensure well-typedness of the distribution laws, equations analogous to those above and case functions C𝐷 ∶ 𝑈𝐷×𝐷𝑖×⋯×𝐷𝑖 →
𝐷𝑖 and C𝐷 ∶ 𝑈𝐷 ×𝑈𝐷 ×⋯ ×𝑈𝐷 →𝑈𝐷 , both with arity | (𝐷)|+ 1, are also added as needed.

To avoid rendering the equational specification inconsistent (that is, we should not be able to derive 𝐭𝐫𝐮𝐞 = 𝐟𝐚𝐥𝐬𝐞) we need to
ensure that the new equational specification is a conservative extension. This means that using equations that are added in the
unfolding, we should not be able to derive any new facts about the data types in the original equational specification. We remark on
two aspects of our unfolding that together ensure the unfolded equational specification is a conservative extension.

First, the unfolding of sort 𝐷 does not define any additional requirements regarding (in)equality of the constructors of sort 𝑈𝐷 .
This is motivated by the following example.

Example 4. Consider sort 𝐷 with constructors 𝑓 ∶ 𝐴→ 𝑆 and 𝑔∶ 𝑆 such that 𝑓 (𝑎) ≡ 𝑔 for some 𝑎 ∈ 𝐴. When unfolding sort 𝐷, we
introduce sort 𝑈𝐷 with constructors 𝑐𝑓 , 𝑐𝑔 ∶ 𝑈𝐷 . Now, suppose we would require these constructors to be distinct, e.g. by adding the
following equations:

𝑐𝑓 ≈ 𝑐𝑔 = false;
𝑐𝑔 ≈ 𝑐𝑓 = false;

This would make the equational specification inconsistent, as shown by the following derivation.

true = 𝑐𝑓 ≈ 𝑐𝑓
= 𝑐𝑓 ≈ det𝐷(𝑓 (𝑎))

=† 𝑐𝑓 ≈ det𝐷(𝑔)

= 𝑐𝑓 ≈ 𝑐𝑔
= false

Theoretical Computer Science 1038 (2025) 115181

9

A. Stramaglia, J.J.A. Keiren and T. Neele

where at † we use the assumption that 𝑓 (𝑎) ≡ 𝑔.

This shows that we cannot reuse existing data types such as Booleans to represent sort 𝑈𝐷 .

To obtain a conservative extension, in addition, we need to impose a mild restriction on sorts that we unfold. A sort that can be
unfolded is called unfoldable and is defined as follows.

Definition 2. Fix equational specification  = (Σ,𝐸) with signature Σ = ( , ,). Sort 𝐷 ∈  is unfoldable if and only if it is a
constructor sort, and for all constructors 𝑓 ∶ 𝐷1 ×⋯ ×𝐷𝑛 → 𝐷 ∈  (𝐷), and terms 𝑡1,… , 𝑡𝑛, 𝑡

′
1,… , 𝑡′𝑛, if 𝑓 (𝑡1,… , 𝑡𝑛) ≡ 𝑓 (𝑡′1,… , 𝑡′𝑛)

then 𝑡𝑖 ≡ 𝑡′𝑖 for all 𝑖.

In the remainder of this paper, we implicitly assume that sorts that we unfold satisfy this restriction. The following example
illustrates the need for this restriction.

Example 5. Consider sort 𝐷 with constructor 𝑓 ∶ 𝐴→ 𝐷, and terms 𝑎 and 𝑏 of sort 𝐴 such that it does not hold that 𝑎 ≡ 𝑏, but
𝑓 (𝑎) ≡ 𝑓 (𝑏). Using the equations introduced for the projection functions, we now obtain the following: 𝑎 ≡ 𝜋𝑓 (𝑓 (𝑎)) ≡ 𝜋𝑓 (𝑓 (𝑏)) ≡ 𝑏.
The unfolding of the equational specification allows us to derive new equivalences on the original sort 𝐷, so the new equational
specification is not a conservative extension.

Unfolding of an unfoldable sort 𝐷 yields a conservative extension. That is, using the new equations that result from unfolding sort
𝐷, we cannot derive any new facts about the original equational specification.

Lemma 4. Let  be an equational specification with unfoldable sort 𝐷, and let ′ be the unfolding of 𝐷 in . Then ′ is a conservative
extension of .

This follows from the definitions of the new equations, and the assumption that 𝐷 is unfoldable. In particular, the only way to
derive new facts about the original equational specification is through the application of projection functions, in which case the
assumption guarantees that these ‘new’ facts were already present in the original specification.

In the remainder of this section we describe the three transformations needed to achieve the unfolding of process parameters.

4.2. Splitting variable declarations

When unfolding a state variable 𝑑 ∶ 𝐷 of unfoldable sort 𝐷, its declaration is split into a declaration 𝑒𝑑 ∶ 𝑈𝐷 , capturing which
constructor of sort 𝐷 was applied, and for every constructor 𝑓𝑖 of sort 𝐷, declarations of state variables for each of the parameters of
𝑓𝑖. This is defined using 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑). Its definition uses 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑖) to introduce variables for the arguments of constructor 𝑓𝑖 . This
idea was described in [22]; we here formalize the idea.

Definition 3. Let 𝑑 ∶ 𝐷 be a variable of constructor sort 𝐷.

• Let 𝑓𝑖 ∶ 𝐷1
𝑖
×⋯ ×𝐷𝑚𝑖

𝑖
→𝐷 ∈  (𝐷), then

𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑖) = 𝑑1𝑓𝑖 ∶ 𝐷
1
𝑖 ,… ,…𝑑

𝑚𝑖
𝑓𝑖

∶ 𝐷𝑚𝑖
𝑖
,

where all 𝑑𝑗
𝑓𝑖

are fresh. Note that if 𝑓𝑖 is a constant, 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑖) is the empty sequence.

• The variables introduced for 𝑑 are defined as follows.

𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) = 𝑒𝑑 ∶ 𝑈𝐷,𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0),… ,𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)

Note that 𝑒𝑑 is fresh.

In Definition 3 we define how we split a variable declaration, by the use of 𝗉𝖺𝗋𝖺𝗆𝗌, defining new variables and their types. With a
slight abuse of notation we will also use 𝗉𝖺𝗋𝖺𝗆𝗌 to indicate the use of the newly introduced variables, in which case their sorts are
omitted.

We illustrate the definition using an example.

Example 6. Recall our running example with state variable 𝑠 ∶ Sys. Sort Sys has two constructors, uninit∶ Sys and sys∶ State×𝑁 → Sys.
Note that 𝗉𝖺𝗋𝖺𝗆𝗌(𝑠,uninit) is empty, and 𝗉𝖺𝗋𝖺𝗆𝗌(𝑠, sys) = 𝑠1sys ∶ State, 𝑠2sys ∶ 𝑁 . We thus get 𝗉𝖺𝗋𝖺𝗆𝗌(𝑠) = 𝑒𝑠 ∶ 𝑈𝑆𝑦𝑠, 𝑠1sys ∶ State, 𝑠2sys ∶ 𝑁 .

Theoretical Computer Science 1038 (2025) 115181

10

A. Stramaglia, J.J.A. Keiren and T. Neele

4.3. Reconstructing variable use in a term

Next we turn our attention to terms. Suppose we have a term 𝑡 that contains occurrences of variable 𝑑 that is being unfolded. We
need to replace 𝑡 with an equivalent term using 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) instead of 𝑑. The straightforward idea described by [22] is to syntactically
substitute 𝑑 with an application of the case function to 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑).

We call this (default) case placement, and formalize it as follows.

Definition 4. Let 𝑡 be an arbitrary term, and 𝑑 ∶ 𝐷 a variable of constructor sort 𝐷. The case placement is the term 𝖼𝗉(𝑡, 𝑑) defined as:

𝖼𝗉(𝑡, 𝑑) = 𝑡[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]

Example 7. Recall our running example with state variable 𝑠 ∶ Sys. Every occurrence of 𝑠 is replaced by CSys(𝑒𝑠,uninit, sys(𝑠1sys, 𝑠
2
sys)).

So, if 𝑒𝑠 is the constructor 𝑐uninit of sort 𝑈Sys that represents uninit, this term evaluates to uninit; if 𝑒𝑠 is 𝑐sys, the term evaluates to sys
applied to arguments 𝑠1sys and 𝑠2sys.

For condition 𝑠 ≈ uninit of the first summand in our running example, we then obtain the following term in which the case function
has been placed:

𝖼𝗉(𝑠 ≈ uninit, 𝑠) = (𝑠 ≈ uninit)[𝑠 ∶= CSys(𝑒𝑠,uninit, sys(𝑠1sys, 𝑠
2
sys))]

= CSys(𝑒𝑠,uninit, sys(𝑠1sys, 𝑠
2
sys)) ≈ uninit

Alternative case placement In the standard definition of case placement, 𝖼𝗉, case functions are placed at an innermost level. This can
limit simplification using the equational specification; e.g., the term CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys)) ≈ uninit from Example 7 cannot be

simplified since we have no equation that allows distributing the case function over ≈.

In many cases, placing the case function at an outermost level aids simplification and subsequent analysis. Formally, every term
𝑡 now becomes C𝐷(𝑒𝑑 , 𝑡[𝑑 ∶= 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0))],… , 𝑡[𝑑 ∶= 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛))]). However, this may lead to an exponential blow-up in
the size of the terms if multiple parameter unfoldings are performed successively. Therefore, we propose a new intermediate approach
that places case functions at the level where subterms are no longer Boolean. We call this alternative case placement. Intuitively, starting
from the outermost placement, we distribute the case function over the standard Boolean operators. This is possible by the addition
of case function C𝐷 ∶ 𝑈𝐷 ×𝐵 ×⋯ ×𝐵→𝐵 with arity | (𝐷)|+ 1.

Definition 5. Given a term 𝑡 and a variable 𝑑 ∶ 𝐷, the alternative case placement is the term 𝖺𝖼𝗉(𝑡, 𝑑), where 𝖺𝖼𝗉 is the recursive
function:

𝖺𝖼𝗉(𝑏, 𝑑) = C𝐷(𝑒𝑑 , 𝑏[𝑑 ∶= 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0))],… , 𝑏[𝑑 ∶= 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛))])
𝖺𝖼𝗉(¬𝜑,𝑑) = ¬𝖺𝖼𝗉(𝜑,𝑑)
𝖺𝖼𝗉(𝜑 ∧𝜓,𝑑) = 𝖺𝖼𝗉(𝜑,𝑑) ∧ 𝖺𝖼𝗉(𝜓,𝑑)
𝖺𝖼𝗉(𝜑 ∨𝜓,𝑑) = 𝖺𝖼𝗉(𝜑,𝑑) ∨ 𝖺𝖼𝗉(𝜓,𝑑)
𝖺𝖼𝗉(𝜑⇒ 𝜓,𝑑) = 𝖺𝖼𝗉(𝜑,𝑑)⇒ 𝖺𝖼𝗉(𝜓,𝑑)

Here, 𝜑 and 𝜓 are arbitrary terms and 𝑏 is a term that does not have ¬,∧,∨,⇒ as its top-level operator.

Note that in the first case of the definition of 𝖺𝖼𝗉, 𝖺𝖼𝗉(𝑏, 𝑑) is equivalent to 𝑏 if 𝑑 does not occur in 𝑏, by the equation C𝐷(𝑒𝑑 , 𝑥, 𝑥) = 𝑥.

We have the following relation between 𝖼𝗉 and 𝖺𝖼𝗉.

Lemma 5. Let 𝑡 be an arbitrary term, and 𝑑 a variable, then

𝖼𝗉(𝑡, 𝑑) ≡ 𝖺𝖼𝗉(𝑡, 𝑑).

Proof. Follows by induction on 𝑡 and a case analysis on 𝑒𝑑 . □

We next discuss the benefits of alternative case placement on our running example.

Example 8. In Example 7 we established that 𝖼𝗉(𝑠 ≈ uninit, 𝑠) = CSys(𝑒𝑠,uninit, sys(𝑠1sys, 𝑠
2
sys)) ≈ uninit. This case function cannot be

simplified further, as the first argument 𝑒𝑠 is a variable, and it cannot be matched to any of the equations in the equational specification;
also, there are no equations that allow distributing equality over the case function. When applying alternative case placement, the
equality appears within the scope of the arguments of the case function, and the equations for ≈ can be used to simplify the individual
arguments.

Theoretical Computer Science 1038 (2025) 115181

11

A. Stramaglia, J.J.A. Keiren and T. Neele

Concretely, we have the following:

𝖺𝖼𝗉(𝑠 ≈ uninit, 𝑠) = CSys(𝑒𝑠, (𝑠 ≈ uninit)[𝑠 ∶= uninit], (𝑠 ≈ uninit)[𝑠 ∶= sys(𝑠1sys, 𝑠
2
sys)])

= CSys(𝑒𝑠,uninit ≈ uninit, sys(𝑠1sys, 𝑠
2
sys) ≈ uninit)

= CSys(𝑒𝑠, true, false)

Observe that the term has been simplified further. In particular, there are now no references to 𝑠1sys and 𝑠2sys.

4.4. Splitting variable assignments

The final case we need to consider when unfolding state variables is an assignment 𝑑 ∶= 𝑒. If 𝑑 is replaced by 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑), we
also need to calculate the appropriate assignments to the new variables from the single term 𝑒. Groote and Lisser [22] show how to
achieve this using the determinizer and projection functions. We formalize this as follows.

Definition 6. Let 𝑡 be a term of constructor sort 𝐷, with  (𝐷) = {𝑓0,… , 𝑓𝑛}. We define the following.

𝗎𝗇𝖿𝗈𝗅𝖽(𝑡) = det𝐷(𝑡), 𝜋1𝑓0 (𝑡),… , 𝜋
𝑚0
𝑓0

(𝑡),… , 𝜋1
𝑓𝑛
(𝑡),… , 𝜋

𝑚𝑛
𝑓𝑛

(𝑡)

where 𝑚𝑖 denotes the index of the last argument of constructor 𝑓𝑖 .

Example 9. Recall our running example. The first summand performs the assignment 𝑠 ∶= sys(p_off , zero). When unfolding 𝑠, instead
the variables become 𝑒𝑠, 𝑠1sys, 𝑠

2
sys, and the values that are assigned are obtained by using 𝗎𝗇𝖿𝗈𝗅𝖽(sys(p_off , zero)), which is calculated

as follows:

𝗎𝗇𝖿𝗈𝗅𝖽(sys(p_off , zero)) = detSys(sys(p_off , zero)), 𝜋1sys(sys(p_off , zero)), 𝜋2sys(sys(p_off , zero))

= 𝑐sys,p_off , zero

Note that in the calculation we use the definitions of detSys and 𝜋𝑖sys described in Example 3.

Simplifications for pattern matching rules As a result of unfolding variable assignments, we regularly obtain terms of the shape
det𝐷(ℎ(𝑡1,… , 𝑡𝑛)) or 𝜋𝑙

𝑓𝑘
(ℎ(𝑡1,… , 𝑡𝑛)) for some mapping ℎ (i.e., ℎ is not a constructor). Both of these cannot be simplified any further,

often due to the fact that there is insufficient information to apply the pattern matching in the equations for ℎ. To alleviate this, we
propose a new method to perform one unfolding of the function ℎ, allowing us to achieve the necessary simplifications. Let us first
consider an example.

Example 10. Suppose we have a definition of lists of natural numbers, with a function plusone, which is defined using pattern
matching, that increments every element of a list.

sort ListN;
cons []∶ ListN;

⊳ ∶ 𝑁 × ListN → ListN;
map plusone ∶ ListN → ListN;
var 𝑥 ∶𝑁 ; xs ∶ ListN;
eqn plusone([]) = [];

plusone(𝑥 ⊳ xs) = (𝑥+ 1)⊳ plusone(xs);

Suppose we have a state variable 𝑙 of sort ListN with an assignment 𝑙 ∶= plusone(𝑙). The first argument of 𝗉𝖺𝗋𝖺𝗆𝗌(𝑙) is 𝑒𝑙 ∶ 𝑈ListN ,
and the first argument update obtained from 𝗎𝗇𝖿𝗈𝗅𝖽(plusone(𝑙)) is the term detListN (plusone(CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠

2
⊳))), which cannot be

simplified any further. Here the term detListN (plusone(CListN (𝑒𝑙,[], 𝑠1⊳⊳𝑠
2
⊳))) is found as follows: first, by definition of 𝖼𝗉, 𝑙 is replaced in

plusone(𝑙) by CListN (𝑒𝑙,[], 𝑠1⊳ ⊳𝑠
2
⊳), then, 𝗎𝗇𝖿𝗈𝗅𝖽 is applied to plusone(CListN (𝑒𝑙,[], 𝑠1⊳ ⊳𝑠

2
⊳)) such that detListN (plusone(CListN (𝑒𝑙,[], 𝑠1⊳ ⊳

𝑠2⊳))) is obtained.

Intuitively, since detListN considers only its argument’s constructor, and plusone does not modify the constructor, detListN (𝑙) =
detListN (plusone(𝑙)) for all 𝑙. However, due to the pattern matching nature of plusone, we can only eliminate the application of detListN
by means of term rewriting if 𝑙 is of the shape [] or 𝑥 ⊳ xs. Thus, we are not able to automatically deduce that the update in the
example above is in fact equal to 𝑒𝑙 , and that the assignment does not modify 𝑒𝑙 . To facilitate further static analysis in the above
example, it would be helpful to have a general technique for further simplification in such situations.

Our approach is to compute a single non-pattern-matching equation for each mapping that is equivalent to its original pattern

matching-based definition. The pattern matching logic will instead be encoded in a tree of case functions. We will apply the new
singly-defined rule in selected places in order to eliminate determinizer and projection functions by means of ordinary rewriting. At
its core, our transformation is based on the following observation.

Theoretical Computer Science 1038 (2025) 115181

12

A. Stramaglia, J.J.A. Keiren and T. Neele

Lemma 6. Let ℎ ∶𝐷1 ×⋯ ×𝐷𝑛 →𝐷 be a mapping and 𝑡1,… , 𝑡𝑛 arbitrary terms. Then we have for any 𝜎 and any 1≤ 𝑖 ≤ 𝑛:

�ℎ(𝑡1,… , 𝑡𝑛)�𝜎 = �C𝐷𝑖 (det𝐷𝑖 (𝑡𝑖),

ℎ(𝑡1,… , 𝑡𝑖−1, 𝑓1(𝜋1𝑓1 (𝑡𝑖),… , 𝜋
𝑚1
𝑓1

(𝑡𝑖)), 𝑡𝑖+1,… , 𝑡𝑛),

… ,

ℎ(𝑡1,… , 𝑡𝑖−1, 𝑓| (𝐷𝑖)|(𝜋1𝑓| (𝐷𝑖)| (𝑡𝑖),… , 𝜋
𝑚| (𝐷𝑖)|
𝑓| (𝐷𝑖)| (𝑡𝑖)), 𝑡𝑖+1,… , 𝑡𝑛))�𝜎

where 𝑚𝑘 denotes the index of the last argument of constructor 𝑓𝑘.

Proof. Let ℎ, 𝑡1,… , 𝑡𝑛 and 𝑖 be as above. By Lemma 3, let �𝑡𝑖�𝜎 = �𝑓𝑘(𝑢1,… , 𝑢𝑚𝑘)�
𝜎 for some 1 ≤ 𝑘 ≤ | (𝐷𝑖)| and some terms

𝑢1,… , 𝑢𝑚𝑘 . After unfolding the semantics, we can apply the equations

det𝐷𝑖 (𝑓𝑘(𝑢1,… , 𝑢𝑚𝑘)) = 𝑐𝑓𝑘
C𝐷𝑖 (𝑐𝑓𝑘 , 𝑥1,… , 𝑥𝑘,… , 𝑥| (𝐷𝑖)|) = 𝑥𝑘

to obtain the desired equality. □

We repeatedly apply this equality until each occurrence of ℎ can be rewritten at least once, leading to nested case function
applications. Furthermore, we add the equation C𝐷(𝑒, 𝑐𝑓1 ,… , 𝑐𝑓| (𝐷)|) = 𝑒 to aid simplification. Using the distribution laws, the
surrounding determinizer/projection functions can often be eliminated.

Example 11. We revisit the term detListN (plusone(CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠
2
⊳))) obtained from unfolding in Example 10. Applying Lemma 6

on plusone(CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠
2
⊳)), we obtain the following term:

detListN (CListN (detListN (CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠
2
⊳)),

plusone([]),

plusone(𝜋1ListN (CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠
2
⊳))⊳ 𝜋

2
ListN (CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠

2
⊳)))))

By the definition of plusone, the above term is logically equivalent to

detListN (CListN (detListN (CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠
2
⊳)),

[],

(𝜋1ListN (CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠
2
⊳)) + 1)⊳ plusone(𝜋2ListN (CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠

2
⊳)))))

Thus, we now managed to eliminate outermost occurrences of plusone. After repeated distribution of detListN over CListN , this term can
ultimately be rewritten to simply 𝑒𝑙 .

4.5. Properties of unfold and case placement

The definitions of 𝗎𝗇𝖿𝗈𝗅𝖽 and case placement work closely together in the following sense. Given a term 𝑡, 𝗎𝗇𝖿𝗈𝗅𝖽 replaces a
variable 𝑑 with a case function over 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑). If we originally assigned a term 𝑒 to 𝑑, 𝗎𝗇𝖿𝗈𝗅𝖽(𝑒) determines the terms that need to
be assigned to the new parameters in order to obtain an equivalent term.

Lemma 7. For all constructor sorts 𝐷, variables 𝑑, terms 𝑒 of sort 𝐷 and valuations 𝜎, we have

�𝑒�𝜎 = �C𝐷(det𝐷(𝑒), 𝑓0(𝜋1𝑓0 (𝑒),… , 𝜋
𝑚0
𝑓0

(𝑒)),… , 𝑓𝑛(𝜋1𝑓𝑛 (𝑒),… , 𝜋
𝑚𝑛
𝑓𝑛

(𝑒)))�𝜎

Proof. Fix constructor sort 𝐷 with constructors  (𝐷) = {𝑓0,… , 𝑓𝑛}, variable 𝑑 and term 𝑒 of sort 𝐷 and valuation 𝜎. According to
Lemma 3, there exist 𝑓𝑖 ∈  (𝐷), 𝑒1,… 𝑒𝑚𝑖 and fresh variables 𝑥1,…𝑥𝑚𝑖 such that �𝑒�𝜎 = �𝑓𝑖(𝑥1,…𝑥𝑚𝑖)�

𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖∕𝑥𝑚𝑖]. Pick such
𝑓𝑖, 𝑒1,… 𝑒𝑚𝑖 and 𝑥1,…𝑥𝑚𝑖 . We now derive the following.

�𝑒�𝜎

= {Lemma 3}

�𝑓𝑖(𝑥1,…𝑥𝑚𝑖)�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖 ∕𝑥𝑚𝑖]

= {Definition of 𝜋𝑗
𝑓𝑖
}

�𝑓𝑖(𝜋1𝑓𝑖 (𝑓𝑖(𝑥1,…𝑥𝑚𝑖),… , 𝜋
𝑚𝑖
𝑓𝑖
(𝑓𝑖(𝑥1,…𝑥𝑚𝑖)))�

𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖 ∕𝑥𝑚𝑖]

Theoretical Computer Science 1038 (2025) 115181

13

A. Stramaglia, J.J.A. Keiren and T. Neele

= {Definition of case function C𝐷}

�C𝐷(𝑐𝑓𝑖 , 𝑓0(𝜋
1
𝑓0
(𝑓𝑖(𝑥1,…𝑥𝑚𝑖)),… , 𝜋

𝑚0
𝑓0

(𝑓𝑖(𝑥1,…𝑥𝑚𝑖))),… ,

𝑓𝑛(𝜋1𝑓𝑛 (𝑓𝑖(𝑥1,…𝑥𝑚𝑖)),… , 𝜋
𝑚𝑛
𝑓𝑛

(𝑓𝑖(𝑥1,…𝑥𝑚𝑖))))�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖∕𝑥𝑚𝑖]

= {Definition of det𝐷}

�C𝐷(det𝐷(𝑓𝑖(𝑥1,…𝑥𝑚𝑖)), 𝑓0(𝜋
1
𝑓0
(𝑓𝑖(𝑥1,…𝑥𝑚𝑖)),… , 𝜋

𝑚0
𝑓0

(𝑓𝑖(𝑥1,…𝑥𝑚𝑖))),… ,

𝑓𝑛(𝜋1𝑓𝑛 (𝑓𝑖(𝑥1,…𝑥𝑚𝑖)),… , 𝜋
𝑚𝑛
𝑓𝑛

(𝑓𝑖(𝑥1,…𝑥𝑚𝑖))))�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖∕𝑥𝑚𝑖]

= {Semantics}

�C𝐷�(�det𝐷�(�𝑓𝑖(𝑥1,…𝑥𝑚𝑖)�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖 ∕𝑥𝑚𝑖]),

�𝑓0�(�𝜋1𝑓0�(�𝑓𝑖(𝑥1,…𝑥𝑚𝑖)�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖∕𝑥𝑚𝑖]),… , �𝜋

𝑚0
𝑓0

�(�𝑓𝑖(𝑥1,…𝑥𝑚𝑖)�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖 ∕𝑥𝑚𝑖])),… ,

�𝑓𝑛�(�𝜋1𝑓𝑛 �(�𝑓𝑖(𝑥1,…𝑥𝑚𝑖)�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖∕𝑥𝑚𝑖]),… , �𝜋

𝑚𝑛
𝑓𝑛

�(�𝑓𝑖(𝑥1,…𝑥𝑚𝑖)�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖 ∕𝑥𝑚𝑖])))

= {Lemma 3}

�C𝐷�(�det𝐷�(�𝑒�𝜎),

�𝑓0�(�𝜋1𝑓0�(�𝑒�
𝜎),… , �𝜋

𝑚0
𝑓0

�(�𝑒�𝜎)),… ,

�𝑓𝑛�(�𝜋1𝑓𝑛 �(�𝑒�
𝜎),… , �𝜋

𝑚𝑛
𝑓𝑛

�(�𝑒�𝜎)))

= {Semantics}

�C𝐷(det𝐷(𝑒), 𝑓0(𝜋1𝑓0 (𝑒),… , 𝜋
𝑚0
𝑓0

(𝑒)),… , 𝑓𝑛(𝜋1𝑓𝑛 (𝑒),… , 𝜋
𝑚𝑛
𝑓𝑛

(𝑒)))�𝜎 □

We use this to establish correctness of case placement in a term as established by the following lemma.

Lemma 8. For all variables 𝑑 and terms 𝑒 of constructor sort 𝐷, terms 𝑡, and valuations 𝜎 such that 𝜎(𝑑) = �𝑒�𝜎 and 𝜎(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)) =
�𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�𝜎 , it holds that

�𝑡�𝜎 = �𝖼𝗉(𝑡, 𝑑)�𝜎 .

Proof. Fix 𝑑 and 𝑒 and 𝜎 as above. The proof proceeds by induction on the structure of 𝑡.

• 𝑡 ∈  . So, 𝑡 is a variable. If 𝑡 ≠ 𝑑, then 𝖼𝗉(𝑡, 𝑑) = 𝑡, and the result follows immediately. So, assume that 𝑡 = 𝑑. We argue as
follows.

�𝑑�𝜎

= {Semantics}

𝜎(𝑑)

= {Valuation 𝜎}

�𝑒�𝜎

= {Lemma 7}

�C𝐷(det𝐷(𝑒), 𝑓0(𝜋1𝑓0 (𝑒),… , 𝜋
𝑚0
𝑓0

(𝑒)),… , 𝑓𝑛(𝜋1𝑓𝑛 (𝑒),… , 𝜋
𝑚𝑛
𝑓𝑛

(𝑒)))�𝜎

= {Substitution, definition of 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑖)}

�C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))

[𝑒𝑑 ∶= det𝐷(𝑒), 𝑑1𝑓0 ∶= 𝜋
1
𝑓0
(𝑒),… , 𝑑

𝑚0
𝑓0

∶= 𝜋𝑚0
𝑓0

(𝑒)),… , 𝑑1
𝑓𝑛

∶= 𝜋1
𝑓𝑛
(𝑒),… , 𝑑

𝑚𝑛
𝑓𝑛

∶= 𝜋𝑚𝑛
𝑓𝑛

(𝑒))]�𝜎

= {Definition of 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) and 𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)}

�C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))[𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) ∶= 𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)]�𝜎

= {Lemma 2, assumption on 𝜎}

�C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))�𝜎

= {Definition of 𝖼𝗉}

�𝖼𝗉(𝑑,𝑑)�𝜎

Theoretical Computer Science 1038 (2025) 115181

14

A. Stramaglia, J.J.A. Keiren and T. Neele

• 𝑡 = 𝑓 ∈  ∪ . Then 𝖼𝗉(𝑡, 𝑑) = 𝖼𝗉(𝑓,𝑑) = 𝑓 = 𝑡 and the result is immediate.

• 𝑡 = 𝑡′(𝑡1,… , 𝑡𝑛). We reason as follows.

�𝑡′(𝑡1,… , 𝑡𝑛)�𝜎

= {Semantics}

�𝑡′�𝜎(�𝑡1�𝜎 ,… , �𝑡𝑛�
𝜎)

= {IH}

�𝖼𝗉(𝑡′, 𝑑)�𝜎(�𝖼𝗉(𝑡1, 𝑑)�𝜎 ,… , �𝖼𝗉(𝑡𝑛, 𝑑)�𝜎)

= {Definition of 𝖼𝗉}

�𝑡′[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]�𝜎

(�𝑡1[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]�𝜎 ,… ,

�𝑡𝑛[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]�𝜎)

= {Semantics}

�𝑡′[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]

(𝑡1[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))],… ,

𝑡𝑛[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))])�𝜎

= {Definition of substitution}

�(𝑡′(𝑡1,… , 𝑡𝑛)[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))])�𝜎

= {Definition of 𝖼𝗉}

�(𝖼𝗉(𝑡′(𝑡1,… , 𝑡𝑛), 𝑑)�𝜎 □

Since 𝑑 and 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) do not appear on one side of the equation, we also immediately get the following corollary using Lemma 1.
This shows the precise interplay between the new parameters generated by 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) and the application of case placement, as well
as the unfolding of term 𝑒.

Corollary 1. For all variables 𝑑 and terms 𝑒 of constructor sort 𝐷, terms 𝑡 and valuations 𝜎

�𝑡�𝜎[�𝑒�
𝜎∕𝑑] = �𝖼𝗉(𝑡, 𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)].

Proof. Fix 𝑑 and 𝑒 and 𝜎 as above. The proof proceeds by induction on the structure of 𝑡.

• 𝑡 ∈  . So, 𝑡 is a variable. If 𝑡 ≠ 𝑑, then 𝖼𝗉(𝑡, 𝑑) = 𝑡, and the result follows immediately. So, assume that 𝑡 = 𝑑. We argue as
follows.

�𝑑�𝜎[�𝑒�
𝜎∕𝑑]

= {Lemma 2}

�𝑑[𝑑 ∶= 𝑒]�𝜎

= {Substitution}

�𝑒�𝜎

= {Lemma 7}

�C𝐷(det𝐷(𝑒), 𝑓0(𝜋1𝑓0 (𝑒),… , 𝜋
𝑚0
𝑓0

(𝑒)),… , 𝑓𝑛(𝜋1𝑓𝑛 (𝑒),… , 𝜋
𝑚𝑛
𝑓𝑛

(𝑒)))�𝜎

= {Substitution, definition of 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑖)}

�C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))

[𝑒𝑑 ∶= det𝐷(𝑒), 𝑑1𝑓0 ∶= 𝜋
1
𝑓0
(𝑒),… , 𝑑

𝑚0
𝑓0

∶= 𝜋𝑚0
𝑓0

(𝑒)),… , 𝑑1
𝑓𝑛

∶= 𝜋1
𝑓𝑛
(𝑒),… , 𝑑

𝑚𝑛
𝑓𝑛

∶= 𝜋𝑚𝑛
𝑓𝑛

(𝑒))]�𝜎

= {Definition of 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) and 𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)}

�C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))[𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) ∶= 𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)]�𝜎

Theoretical Computer Science 1038 (2025) 115181

15

A. Stramaglia, J.J.A. Keiren and T. Neele

= {Lemma 2}

�C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�
𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)]

= {Definition of 𝖼𝗉}

�𝖼𝗉(𝑑,𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)]

• 𝑡 = 𝑓 ∈  ∪ . Then 𝖼𝗉(𝑡, 𝑑) = 𝖼𝗉(𝑓,𝑑) = 𝑓 = 𝑡 and the result is immediate.

• 𝑡 = 𝑡′(𝑡1,… , 𝑡𝑛). The result follows immediately from the semantics and the induction hypothesis. □

This result also immediately extends to the vectors of expressions obtained by unfolding a term.

Corollary 2. For all variables 𝑑, terms 𝑒 and 𝑡, all of which are of constructor sort 𝐷 and for all 𝜎

�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�𝜎[�𝑒�𝜎∕𝑑] = �𝗎𝗇𝖿𝗈𝗅𝖽(𝖼𝗉(𝑡, 𝑑))�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)].

Finally, the order in which unfolding and case placement are performed to a term does not matter. This is formalized in the
following lemma.

Lemma 9. Let 𝑡 be a term, and 𝑑 a variable of constructor sort 𝐷 with  (𝐷) = {𝑓0,… , 𝑓𝑛}, then

𝗎𝗇𝖿𝗈𝗅𝖽(𝖼𝗉(𝑡, 𝑑)) = 𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽(𝑡), 𝑑).

Proof. Let 𝑡 and 𝑑 be as above. We derive the following.

𝗎𝗇𝖿𝗈𝗅𝖽(𝖼𝗉(𝑡, 𝑑))

= {Definition of 𝖼𝗉}

𝗎𝗇𝖿𝗈𝗅𝖽(𝑡[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))])

= {Definition of 𝗎𝗇𝖿𝗈𝗅𝖽}

det𝐷(𝑡[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]),

𝜋1
𝑓0
(𝑡[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]),… ,

𝜋
𝑚0
𝑓0

(𝑡[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]),… ,

𝜋1
𝑓𝑛
(𝑡[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]),… ,

𝜋
𝑚𝑛
𝑓𝑛

(𝑡[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))])

= {Property of substitution}

(det𝐷(𝑡), 𝜋1𝑓0 (𝑡),… , 𝜋
𝑚0
𝑓0

(𝑡),… , 𝜋1
𝑓𝑛
(𝑡),… , 𝜋

𝑚𝑛
𝑓𝑛

(𝑡))

[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]

= {Definition of 𝗎𝗇𝖿𝗈𝗅𝖽}

𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]

= {Definition of 𝖼𝗉}

𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽(𝑡), 𝑑) □

5. Unfolding parameters in mCRL2

In the remainder of this paper we show how the generic unfolding technique from the previous section can be applied in mCRL2.
The mCRL2 language is a modeling language based on process algebra with data [25]. In general, the language allows for the
specification of the behavior of communicating, parallel processes. However, the first step in any automated analysis using the
mCRL2 toolset [14] is to linearize the specification. In this process, parallel composition operators are eliminated, and replaced by
sequential composition and choice, effectively making the allowed interleavings explicit. This results in a standardized format for
processes, the linear process equations (LPEs). We apply the unfolding of variables to such LPEs.

Theoretical Computer Science 1038 (2025) 115181

16

A. Stramaglia, J.J.A. Keiren and T. Neele

5.1. Data specification

In mCRL2, the equational specification defined in Section 3 is referred to as data specification. The algebraic data types in mCRL2
can be specified using a richer syntax than we introduced in Sections 2 and 3. In particular, mCRL2 has default definitions of common
data types such as Booleans (Bool), and numeric data types such as natural numbers (Nat), as well as container sorts such as lists
(List(𝐷)). In the remainder of the paper we assume that the standard data types from mCRL2 and their standard operations such as
∧ and + are part of the signature. For any sort 𝐷, we assume sort List(𝐷) is defined, with constructors [] for the empty list, and ⊳
for the constructor that adds an element in front of a list.

In addition to the standard data types, for every data type 𝐷 that is introduced in mCRL2, the mappings for comparisons (≈, ≉,
<, ≤, >, ≥) as well as an if-then-else if ∶ Bool ×𝐷 ×𝐷→𝐷 are introduced by default. The default specification is only partial, and
contains, e.g. 𝑥 ≈ 𝑥 = true. For the standard data types these are extended to their full definition.

Finally, mCRL2 allows for the definition of structured sorts, which essentially are sorts with value constructors, and associated
recognizer and projection functions. For such sorts, the comparison operators are fully defined. This allows for a much more compact
and convenient definition of algebraic data types. We illustrate the use of structured sorts by redefining the State and Sys sorts from
Fig. 2 in this manner.

Example 12. Recall the algebraic data types State and Sys from Fig. 2. Using structured sorts, these can be defined in mCRL2 as
follows:

sort State = 𝐬𝐭𝐫𝐮𝐜𝐭 p_on ∣ p_off ;
Sys = 𝐬𝐭𝐫𝐮𝐜𝐭 uninit?is_uninit ∣ sys(get_state∶ State,get_ip ∶ Nat)?is_sys;

map set_state∶ Sys × State → Sys;
set_ip∶ Sys × Nat → Sys;

var 𝑝1, 𝑝2 ∶ State, 𝑛,𝑚 ∶ Nat;
eqn set_state(sys(𝑝1, 𝑛), 𝑝2) = sys(𝑝2, 𝑛);

set_ip(sys(𝑝1, 𝑛),𝑚) = sys(𝑝1,𝑚);

The unfolding of sort Sys is identical to the unfolding in Example 3.

Structured sorts can be translated into equivalent sorts with an explicit constructor definition. For our running example, the result
would be the definitions from Section 2, extended with full definitions of the comparisons and recognizer functions. The semantics of
algebraic data types in mCRL2 follows the model class semantics as outlined in Section 3. For a complete overview of mCRL2’s data
types and their semantics see [25].

5.2. Linear processes

A Linear Process Equation (LPE) defines the name of a recursive process, whose definition is a set of summands that are, essentially,
condition-action-effect rules that may refer to local variables. The examples from Section 2, in fact, are LPEs.

An LPE is defined in the context of a data specification , that specifies algebraic data types, and a set of global variables 𝑔 .
These global variables are parameters to the LPE, but their value is immaterial to the behavior described by the LPE. Global variables
can thus be seen as ``do not care'' values; later we discuss this in more detail. The combination of an LPE with a data specification
and its global variables is a Linear Process Specification (LPS).

Definition 7. A linear process specification (LPS) 𝐿 is a tuple (,𝑔 , 𝑃 , 𝑒) where  is a data specification describing the data types
used in the LPS, 𝑔 is a set of global variables, 𝑃 is a linear process equation (LPE), and 𝑒 is a vector of terms of sort 𝐷⃗ that may
refer to variables in 𝑔 . We typically say that 𝑃 (𝑒) is the initial process. LPE 𝑃 is described as follows:

𝑃 (𝑑 ∶ 𝐷⃗) =
∑
𝑖∈𝐼

∑
𝑒𝑖 ∶ 𝐸𝑖

𝑐𝑖 → 𝑎𝑖(𝑓𝑖) ⋅ 𝑃 (𝑔𝑖) +
∑
𝑗∈𝐽

∑
𝑒𝑗 ∶ 𝐸𝑗

𝑐𝑗 → 𝑎𝛿𝑗 (𝑓𝑗)

where 𝑑 is a vector of process parameters whose types are 𝐷⃗. 𝐼 and 𝐽 are disjoint, finite index sets, such that for 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽 we
have that 𝑐𝑖 and 𝑐𝑗 are boolean conditions, 𝑎𝑖 and 𝑎𝛿𝑗 are actions, 𝑓𝑖 and 𝑓𝑗 are terms that form the action parameters, and 𝑔𝑖 is the
next state, providing the vector of terms assigned to the parameters of process 𝑃 in the recursive call to 𝑃 . Terms 𝑐𝑖 , 𝑓𝑖, 𝑔𝑖 (𝑐𝑗 , 𝑓𝑗)
range over 𝑑, 𝑔 , and local variables 𝑒𝑖 of sort 𝐸𝑖 (𝑒𝑗 of sort 𝐸𝑗).

The operational semantics of LPEs induces a labelled transition system, see [25] for its definition. The definition in [25] assumes
that every value 𝑣 ∈𝑀𝐷 in the data types has a syntactic denotation as closed terms 𝑡𝑣 [25, Definition 15.2.17]. In the remainder of
this paper we also use this assumption.

In their full generality, LPEs can use timestamps on the actions. These timestamps are treated by our transformation in the same
way as action parameters. For the sake of simplicity, we restrict ourselves to untimed LPEs in this paper. For the same reason, we
will henceforth only consider recursive summands, and we generally assume processes whose parameters we unfold have a single

Theoretical Computer Science 1038 (2025) 115181

17

A. Stramaglia, J.J.A. Keiren and T. Neele

parameter, and summands with a single local variable; the generalization to multiple parameters is straightforward. Of course, the
resulting process will have more than one parameter.

Example 13. We recall our motivating example from Section 2. So far, we have reset the IP-address to zero when the state is p_off . We
can make the fact that we do not care about the value of the IP-address explicit by, instead, using a global variable when changing
the state to p_off . Let  be the data specification described in Example 12. We use mCRL2 syntax to describe the global variables
(𝐠𝐥𝐨𝐛), LPE (𝐩𝐫𝐨𝐜) and initialization (𝐢𝐧𝐢𝐭).

glob dc1,dc2∶ Nat;
proc 𝑃 (s ∶ Sys) =

(s ≈ uninit)→ initialize ⋅ 𝑃 (sys(p_off ,dc1))
+
∑
𝑛 ∶ Nat(s ≉ uninit ∧ get_state(s) ≈ p_off)→ on ⋅ 𝑃 (set_state(set_ip(s, 𝑛),p_on))

+(s ≉ uninit ∧ get_state(s) ≈ p_on)→ off ⋅ 𝑃 (set_state(set_ip(s,dc2),p_off));
init 𝑃 (uninit);

Transformations of LPEs are correct if they are behavior preserving. For this, we use a generalization of strong bisimulation to
linear processes [22]. Two LPEs 𝑃 and 𝑃 ′ with initial values 𝑒 and 𝑒′, respectively, are strongly bisimilar if and only if the labeled
transition systems induced by 𝑃 (𝑒) and 𝑃 ′(𝑒′) are strongly bisimilar. In this case, we write 𝑃 (𝑒) � 𝑃 ′(𝑒′). For ease of definition,
we assume that the process parameters and summation variables in the processes are disjoint (since this can easily be achieved by
renaming, this does not affect generality). Formally, strong bisimulation of LPEs is defined as follows.

Definition 8 (Strong bisimulation of LPEs [22]). Let  = (Σ,𝐸) be a data specification, and let 𝐷⃗ = 𝐷1,… ,𝐷𝑛, 𝐷⃗′ = 𝐷′
1,… ,𝐷′

𝑚.
Consider the following two LPEs.

𝑃 (𝑑 ∶ 𝐷⃗) =
∑
𝑖∈𝐼

∑
𝑒𝑖 ∶ 𝐸𝑖

𝑐𝑖 → 𝑎𝑖(𝑓𝑖) ⋅ 𝑃 (𝑔𝑖)

𝑄(𝑑′ ∶ 𝐷⃗′) =
∑
𝑖∈𝐼 ′

∑
𝑒′
𝑖
∶ 𝐸′

𝑖

𝑐′𝑖 → 𝑎′𝑖(𝑓
′
𝑖) ⋅𝑄(𝑔

′
𝑖)

Relation 𝑅⊆ (𝑀𝐷1
×⋯×𝑀𝐷𝑛

)×(𝑀𝐷′
1
×⋯×𝑀𝐷′

𝑚
) is a strong bisimulation iff for all terms 𝑒, 𝑒′ and valuations 𝜎 and 𝜎′, if �𝑒�𝜎 𝑅 �𝑒′�𝜎

′
,

then:

• for all 𝑖 ∈ 𝐼 , 𝑤⃗𝑖 ∈𝑀𝐸𝑖
, such that �𝑐𝑖�𝜎[�𝑒�

𝜎∕𝑑,𝑤⃗𝑖∕𝑒𝑖] = 𝐭𝐫𝐮𝐞 there is some 𝑖′ ∈ 𝐼 ′ and 𝑤⃗′
𝑖′

such that

– �𝑐′
𝑖′
�𝜎

′[�𝑒′�𝜎∕𝑑′ ,𝑤𝑖′ ∕𝑒𝑖′] = 𝐭𝐫𝐮𝐞,
– 𝑎𝑖 = 𝑎′𝑖′ ,

– �𝑓𝑖�
𝜎[�𝑒�𝜎∕𝑑,𝑤𝑖∕𝑒𝑖] = �𝑓 ′

𝑖′
�𝜎

′[�𝑒′�𝜎∕𝑑′ ,𝑤𝑖′ ∕𝑒𝑖′], and

– �𝑔𝑖�
𝜎[�𝑒�𝜎∕𝑑,𝑤⃗𝑖∕𝑒𝑖] 𝑅 �𝑔′

𝑖′
�𝜎

′[�𝑒′�𝜎∕𝑑′ ,𝑤𝑖′ ∕𝑒𝑖′].
• vice versa.

Process terms 𝑃 (𝑡⃗) and 𝑄(𝑡′) are strongly bisimilar w.r.t. data specification , denoted 𝑃 (𝑡⃗) �𝑄(𝑡′), iff for all -models 𝕄 and valu

ations 𝜎 and 𝜎′ there is a bisimulation relation 𝑅 such that �𝑡⃗�𝜎 𝑅 �𝑡′�𝜎
′
. It is well known that the composition of strong bisimulation

relations is again a strong bisimulation relation.

Note that Groote and Lisser adapted the standard definition of strong bisimulation [49] to LPEs: if process 𝑃 can do an action
𝑎𝑖(𝑓𝑖), since its condition 𝑐𝑖 is true, process 𝑄 can do the same action, and the target states are related by the strong bisimulation
relation. If the LPEs do not refer to global variables, the valuations are fully defined by the assignment of values to process parameters
and sum variables. As a consequence, their version of strong bisimulation is an equivalence relation (in particular, it is a reflexive
relation).

The fact that we allow for global variables in the definition of processes means that strong bisimulation is no longer reflexive.
However, global variables are generally assumed to not have any significant effect on the behavior of a process. This is captured by
the reflexivity property (Refl).

(Refl) Let 𝐿 = (,𝑔, 𝑃 , 𝑒) be an LPS. Then 𝑃 (𝑒) � 𝑃 (𝑒).

By the definition of strong bisimulation, this implies that for every pair of valuations 𝜎,𝜎′ there exists a strong bisimulation relation
𝑅 such that �𝑒�𝜎 𝑅 �𝑒�𝜎

′
. As 𝑒 is a vector of terms over 𝑔 , the only (potentially) relevant difference is in the assignment to global

variables, but any assignment to the variables leads to bisimilar processes. When discussing the correctness of our transformations,
we implicitly assume that the input LPS satisfies the (Refl) property.

Theoretical Computer Science 1038 (2025) 115181

18

A. Stramaglia, J.J.A. Keiren and T. Neele

5.3. Unfolding process parameters in an LPE

The basic definition of the unfolding of process parameters using 𝖼𝗉, and without pattern match unfolding, was described by
Groote and Lisser [22].

Definition 9 (Unfolding of process parameters [22]). Let 𝐿 = (,𝑔, 𝑃 , 𝑒) be an LPS, where 𝑃 is the following LPE.

𝑃 (𝑑 ∶ 𝐷) =
∑
𝑖∈𝐼

∑
𝑒𝑖 ∶ 𝐸𝑖

𝑐𝑖 → 𝑎𝑖(𝑓𝑖) ⋅ 𝑃 (𝑔𝑖)

The result of unfolding process parameter 𝑑 ∶ 𝐷 in 𝐿 is the LPS (′,𝑔, 𝑃
′,𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)), where ′ is data specification  in which sort

𝐷 is unfolded, and LPE 𝑃 ′ is as follows:

𝑃 ′(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)) =
∑
𝑖∈𝐼

∑
𝑒𝑖 ∶ 𝐸𝑖

𝖼𝗉(𝑐𝑖, 𝑑)→ 𝑎𝑖(𝖼𝗉(𝑓𝑖, 𝑑)) ⋅ 𝑃 ′(𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖), 𝑑))

So, essentially, unfolding parameter 𝑑 replaces 𝑑 by the vector 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑). In recursive calls to 𝑃 , the term 𝑔𝑖 assigned to the
unfolded parameter is also unfolded using 𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖). Similarly, using 𝗎𝗇𝖿𝗈𝗅𝖽(𝑒), the initial process is unfolded. Finally, in the right
hand side of the equation, default case placement is used to replace every occurrence of 𝑑 by an application of the corresponding
case function.

We illustrate the combined application of all transformations on our running example.

Example 14. Recall our example with global variables from Example 13, for which we have described the unfolding of sort Sys in
the data specification in Example 3. If we unfold parameter 𝑠, we get the LPE and initialization shown below.

glob dc1,dc2∶ Nat;
proc 𝑃 (𝑒𝑠 ∶ 𝑈Sys, 𝑠

1
sys ∶ State, 𝑠2sys ∶ Nat) =

(CSys(𝑒𝑠,uninit, sys(s1
sys, s

2
sys)) ≈ uninit)

→ initialize ⋅ 𝑃 (detSys(sys(p_off ,dc1)), 𝜋1
sys(sys(p_off ,dc1)), 𝜋2

sys(sys(p_off ,dc1)))
+
∑
𝑛 ∶ Nat(¬(CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys)) ≈ uninit) ∧ get_state(CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys))) ≈ p_off)

→ on ⋅ 𝑃 (detSys(set_state(set_ip(CSys(𝑒𝑠,uninit, sys(s1
sys, s

2
sys)), 𝑛),p_on)),

𝜋1
sys(set_state(set_ip(CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys)), 𝑛),p_on)),

𝜋2
sys(set_state(set_ip(CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys)), 𝑛),p_on)))

+(¬(CSys(𝑒𝑠,uninit, sys(s1
sys, s

2
sys)) ≈ uninit) ∧ get_state(CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys))) ≈ p_on)

→ off ⋅ 𝑃 (detSys(set_state(set_ip(CSys(𝑒𝑠,uninit, sys(s1
sys, s

2
sys)),dc2),p_off)),

𝜋1
sys(set_state(set_ip(CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys)),dc2),p_off)),

𝜋2
sys(set_state(set_ip(CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys)),dc2),p_off)));

init 𝑃 (detSys(uninit), 𝜋1
sys(uninit), 𝜋2

sys(uninit));

It has three parameters. As before, parameter 𝑒𝑠 keeps track of the constructor of the term in 𝑠, e.g., initially 𝑠 is uninit, so the
corresponding value in 𝑒𝑠 is 𝑐uninit . Parameters 𝑠1sys and 𝑠2sys are used to track the arguments of the constructor sys. If 𝑒𝑠 is 𝑐sys, then
sys(𝑠1sys, 𝑠

2
sys) is equivalent to 𝑠 (the original parameter that is unfolded). As uninit does not have arguments, no parameters need to be

introduced for its arguments. The original term 𝑠 is then reconstructed in the process by replacing 𝑠 with CSys(𝑒𝑠,uninit, sys(s1
sys, s

2
sys)).

The functions detSys, 𝜋1sys and 𝜋2sys are used to move from a term of sort Sys to terms of sort 𝑈Sys, State and Nat.
Using the equations for detSys, 𝜋1sys and 𝜋2sys this can be simplified slightly. The recursion of the first summand then becomes

𝑃 (𝑐sys,p_off ,dc1) and the initialization becomes 𝐢𝐧𝐢𝐭 𝑃 (𝑐uninit,p_on,0), as per the default values of 𝜋𝑖sys(uninit). The resulting LPE cannot
be simplified further. Since parameters 𝑠1sys and 𝑠2sys appear in the conditions of each of the summands, existing static analysis tools
for constant elimination and parameter elimination are not able to remove any of the parameters from this process.

Alternative case placement If, in Definition 9, we use 𝖺𝖼𝗉 instead of 𝖼𝗉, the changed level of placement of case functions dramatically
affects the simplifications that are allowed after the transformation. We show the result of the unfolding using alternative case
placement.

Example 15. Recall our example with global variables from Example 13 which we have unfolded using 𝖼𝗉 in Example 14. We now
instead transform terms using alternative case placement (𝖺𝖼𝗉).

Theoretical Computer Science 1038 (2025) 115181

19

A. Stramaglia, J.J.A. Keiren and T. Neele

glob dc1,dc2∶ Nat;
proc 𝑃 (𝑒𝑠 ∶ 𝑈Sys, 𝑠

1
sys ∶ State, 𝑠2sys ∶ Nat) =

(CSys(𝑒𝑠,uninit ≈ uninit, sys(s1
sys, s

2
sys) ≈ uninit)

→ initialize ⋅ 𝑃 (detSys(sys(p_off ,dc1)), 𝜋1
sys(sys(p_off ,dc1)), 𝜋2

sys(sys(p_off ,dc1)))
+
∑
𝑛 ∶ Nat(¬CSys(𝑒𝑠,uninit ≈ uninit, sys(s1

sys, s
2
sys) ≈ uninit)∧

CSys(𝑒𝑠,get_state(uninit) ≈ p_on,get_state(sys(s1
sys, s

2
sys)) ≈ p_off))

→ on ⋅ 𝑃 (CSys(𝑒𝑠,detSys(set_state(set_ip(uninit, 𝑛),p_on)),
detSys(set_state(set_ip(sys(s1

sys, s
2
sys), 𝑛),p_on))),

CSys(𝑒𝑠, 𝜋1
sys(set_state(set_ip(uninit, 𝑛),p_on)),

𝜋1
sys(set_state(set_ip(sys(𝑠1sys, 𝑠

2
sys), 𝑛),p_on))),

CSys(𝑒𝑠, 𝜋2
sys(set_state(set_ip(uninit, 𝑛),p_on)),

𝜋1
sys(set_state(set_ip(sys(𝑠1sys, 𝑠

2
sys), 𝑛),p_on))))

+(¬CSys(𝑒𝑠,uninit ≈ uninit, sys(s1
sys, s

2
sys) ≈ uninit)∧

CSys(𝑒𝑠,get_state(uninit) ≈ p_on,get_state(sys(s1
sys, s

2
sys)) ≈ p_on))

→ off ⋅ 𝑃 (CSys(𝑒𝑠,detSys(set_state(set_ip(uninit,dc2),p_off)),
detSys(set_state(set_ip(sys(s1

sys, s
2
sys),dc2),p_off))),

CSys(𝑒𝑠, 𝜋1
sys(set_state(set_ip(uninit,dc2),p_off)),

𝜋1
sys(set_state(set_ip(sys(s1

sys, s
2
sys),dc2),p_off))),

CSys(𝑒𝑠, 𝜋2
sys(set_state(set_ip(uninit,dc2),p_off)),

𝜋2
sys(set_state(set_ip(sys(s1

sys, s
2
sys),dc2),p_off))));

init 𝑃 (detSys(uninit), 𝜋1
sys(uninit), 𝜋2

sys(uninit));

As explained in Example 8, the case functions appear at a higher level, such that the case functions can be simplified further using
the equations for ≈, detSys, 𝜋1sys, 𝜋

2
sys, 𝑠𝑒𝑡_𝑖𝑝 and 𝑠𝑒𝑡_𝑠𝑡𝑎𝑡𝑒. Using these, the last summand is simplified to:

(¬CSys(𝑒𝑠, true, false) ∧ CSys(𝑒𝑠,get_state(uninit) ≈ p_on, 𝑠1sys ≈ p_on))
→ off ⋅ 𝑃 (CSys(𝑒𝑠, 𝑐uninit , 𝑐sys),CSys(𝑒𝑠,p_on,p_off),CSys(𝑒𝑠,0,dc2))

We thus obtained more concise terms than those in Example 14. In particular, this summand no longer contains any reference to
unfolded parameter 𝑠2sys. The same applies to the other two summands, hence parameter 𝑠2sys can be eliminated using static analysis
techniques [22]. As a result, the sum over 𝑛 in the second summand is not used and can be eliminated as well. The final LPE we
obtain is:

proc 𝑃 (𝑒𝑠 ∶ 𝑈Sys, 𝑠
1
sys ∶ State) =

CSys(𝑒𝑠, true, false)
→ initialize ⋅ 𝑃 (𝑐sys,p_off)

+(¬CSys(𝑒𝑠, true, false) ∧ CSys(𝑒𝑠,get_state(uninit) ≈ p_off , 𝑠1sys ≈ p_off))
→ on ⋅ 𝑃 (CSys(𝑒𝑠, 𝑐uninit , 𝑐sys),p_on)

+(¬CSys(𝑒𝑠, true, false) ∧ CSys(𝑒𝑠,get_state(uninit) ≈ p_on, 𝑠1sys ≈ p_on))
→ off ⋅ 𝑃 (CSys(𝑒𝑠, 𝑐uninit , 𝑐sys),CSys(𝑒𝑠,p_on,p_off))

init 𝑃 (𝑐uninit ,p_on);

Note that the original state space before the unfolding is infinite while after unfolding with alternative case placement the state
space has only three states.

5.4. Global variables

Some static analysis techniques in mCRL2 use global variables to more effectively simplify the process. For instance, when constant
elimination observes that the only change to a parameter is assigning a global variable to that parameter, the global variable can be
replaced by a constant. This is safe since all values for global variables lead to bisimilar processes (by Property (Refl)). The technique
from [22] does not give special treatment to such global variables. We first describe why global variables need special treatment, and
subsequently describe how they should be treated.

When unfolding a process parameter, the value assigned to it in the initialization or recursion may be a global variable dc ∈ 𝑔 .
Applying the unfoldings described so far results in 𝗎𝗇𝖿𝗈𝗅𝖽(dc), which contains terms such as det𝐷(dc) and 𝜋𝑗

𝑓𝑖
(dc) that cannot be

simplified further. These more complex terms cannot be used directly for simplification in static analysis, leaving the resulting LPE
more complicated than it needs to be. This results in longer verification times. We illustrate the issue using an example that is based
on board games such as tic-tac-toe, which often represent the board using (lists of) lists.

Example 16. Process 𝑃 is initialized with a singleton list [𝑜] of sort List(Piece) representing the board. It also has parameters 𝑝,
keeping track of the player whose turn it is, and done to indicate that the game ends. As long as done is false, and 𝑙 contains a piece
of player 𝑝 whose turn it is, 𝑝 is updated to the next player. If 𝑙 contains a piece of the other player, a 𝜏 transition is taken, the values

Theoretical Computer Science 1038 (2025) 115181

20

A. Stramaglia, J.J.A. Keiren and T. Neele

of 𝑙 and 𝑝 are set to global variables, and done is set to true. If done is true, the process deadlocks. This resembles what happens in
models of board games such as tic-tac-toe when the game ends.

sort Piece = 𝐬𝐭𝐫𝐮𝐜𝐭 𝑥 ∣ 𝑜;
map other∶ Piece → Piece;
eqn other(𝑥) = 𝑜;other(𝑜) = 𝑥;
act 𝑖𝑠 ∶ Piece;
glob dc1∶ List(Piece);dc2∶ Piece;
proc 𝑃 (𝑙∶ List(Piece), 𝑝 ∶ Piece,done∶ Bool) =

(¬done ∧ 𝑙 ≈ [other(𝑝)])→ 𝜏.𝑃 (𝑑𝑐1, 𝑑𝑐2, 𝑡𝑟𝑢𝑒)
+(¬done ∧ 𝑙 ≈ [𝑝])→ 𝑖𝑠(𝑝).𝑃 ([𝑝],other(𝑝),done);

init 𝑃 ([𝑜], 𝑜, false);

Unfolding parameter 𝑙 yields the following LPE.

proc 𝑃 (𝑒 ∶ 𝑈Piece, 𝑙𝑝 ∶ Piece, 𝑙𝑙 ∶ 𝐿𝑖𝑠𝑡(Piece), 𝑝 ∶ Piece,done∶ Bool) =
(¬done ∧ CList(Piece)(𝑒, [], 𝑙𝑝 ⊳ 𝑙𝑙) ≈ [other(𝑝)])

→ 𝜏.𝑃 (detList(Piece)(𝑑𝑐1), 𝜋1
⊳
(𝑑𝑐1), 𝜋2

⊳
(𝑑𝑐1), 𝑑𝑐2, true)

+(¬done ∧ CList(Piece)(𝑒, [], 𝑙𝑝 ⊳ 𝑙𝑙) ≈ [𝑝])
→ 𝑖𝑠(𝑝).𝑃 (detList(Piece)([𝑝]), 𝜋1

⊳
([𝑝]), 𝜋2

⊳
([𝑝]),other(𝑝));

init 𝑃 (detList(Piece)([𝑜]), 𝜋1
⊳
([𝑜]), 𝜋2

⊳
([𝑜]), 𝑜, false);

The recursion in the first summand cannot be simplified further, and no parameters can be removed during static analysis.

Since the behavior of a process is not affected by (the value of) a global variable, the individual arguments of the term assigned
to that global variable also do not affect the behavior of the process. Therefore, instead of applying projection functions to a global
variable, fresh global variables can be introduced for each of the new process parameters when unfolding a global variable. We extend
the definition of 𝗎𝗇𝖿𝗈𝗅𝖽 from Definition 6 as follows.

Definition 10. Let 𝑒 be a term of constructor sort 𝐷. Then

𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒) =

{
dc𝑒,dc1

𝑓0
,… ,dc𝑚0

𝑓0
,… ,dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
if 𝑒 = dc ∈ 𝑔

𝗎𝗇𝖿𝗈𝗅𝖽(𝑒) otherwise

where dc𝑒,dc1
𝑓0
,… ,dc𝑚0

𝑓0
,…dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
are fresh global variables, and 𝑚𝑖 denotes the index of the last argument of constructor 𝑓𝑖 .

The unfolded LPE taking global variables into account is obtained using 𝗎𝗇𝖿𝗈𝗅𝖽𝑔 instead of 𝗎𝗇𝖿𝗈𝗅𝖽 in Definition 9. However, we
need to take care that any other occurrences of the same global variable that is being replaced are updated consistently. This results
in the following definition.1

Definition 11 (Unfolding of process parameters with global variable replacement). Let 𝐿= (,𝑔, 𝑃 , 𝑒) be an LPS, where 𝑃 is the following
LPE.

𝑃 (𝑑 ∶ 𝐷) =
∑
𝑖∈𝐼

∑
𝑒𝑖 ∶ 𝐸𝑖

𝑐𝑖 → 𝑎𝑖(𝑓𝑖) ⋅ 𝑃 (𝑔𝑖)

The result of unfolding process parameter 𝑑 ∶ 𝐷 in 𝐿 is the LPS

𝐿′ = (′, ′
𝑔, 𝑃

′,𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟)

where ′ is data specification  in which sort 𝐷 is unfolded, and LPE 𝑃 ′ is as follows:

𝑃 ′(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑))

=
∑
𝑖∈𝐼

∑
𝑒𝑖 ∶ 𝐸𝑖

𝖼𝗉(𝑐𝑖, 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟

→ 𝑎𝑖(𝖼𝗉(𝑓𝑖, 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟)

⋅ 𝑃 ′(𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑔𝑖), 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟)

where 𝑟 ⊆ 𝑔 is the set of all global variables dc∶ 𝐷 that have been replaced by a vector of fresh global variables 𝗎𝗇𝖿𝗈𝗅𝖽𝑔(dc).  ′
𝑔 is

the set 𝑔 extended with these fresh global variables.

1 The definition using alternative case placement can be modified to take global variables into account in the same way.

Theoretical Computer Science 1038 (2025) 115181

21

A. Stramaglia, J.J.A. Keiren and T. Neele

We apply this improved definition to the specification in Example 16.

Example 17. Recall the specification from Example 16. When using 𝗎𝗇𝖿𝗈𝗅𝖽𝑔 instead of 𝗎𝗇𝖿𝗈𝗅𝖽, the recursion in the first summand
becomes 𝑃 (dc1𝑒,dc1lp,dc1ll,dc2, true).

This allows further simplification using constant elimination and parameter elimination to the LPE below.

proc 𝑃 (𝑙𝑝 ∶ Piece, 𝑝 ∶ Piece,done∶ Bool)
= (¬done ∧ 𝑙𝑝 ≈ 𝑝)→ 𝑖𝑠(𝑝).𝑃 (𝑝,other(𝑝),done)
+(¬done ∧ 𝑙𝑝 ≈ other(𝑝))→ 𝜏.𝑃 (dc1lp,dc2, true);

init 𝑃 (𝑜, 𝑜, false);

In particular, all case functions, determinizers and projection functions are fully removed. The transformation now essentially replaced
the (fixed-length) list in the original process by its individual elements.

When unfolding parameters in other examples, for instance board games such as tic-tac-toe or four in a row, replacing global
variables in the way described proves essential for eliminating all lists from the specification. In our experiments in Section 6 we will
demonstrate that this results in a dramatic performance increase for symbolic reachability.

5.5. Correctness

We describe correctness of the unfolding with standard placement of case functions. A similar result was given, without proof,
in [22]. The result in [22] does not allow for global variables in an LPE.

Theorem 1. Let  = (Σ,𝐸), and consider LPE 𝐿= (,𝑔, 𝑃 , 𝑒), where 𝑃 is defined as:

𝑃 (𝑑 ∶ 𝐷) =
∑
𝑖∈𝐼

∑
𝑒𝑖 ∶ 𝐸𝑖

𝑐𝑖 → 𝑎𝑖(𝑓𝑖) ⋅ 𝑃 (𝑔𝑖)

Also consider the result 𝐿′ = (′,𝑔, 𝑃
′,𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)) of unfolding parameter 𝑑, as in Definition 9,

𝑃 ′(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)) =
∑
𝑖∈𝐼

∑
𝑒𝑖 ∶ 𝐸𝑖

𝖼𝗉(𝑐𝑖, 𝑑)→ 𝑎𝑖(𝖼𝗉(𝑓𝑖, 𝑑)) ⋅ 𝑃 ′(𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖), 𝑑))

Then 𝑃 (𝑒) � 𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)).

Proof. We need to show that for all valuations 𝜎′ and 𝜎, there exists a bisimulation relation 𝑅𝑃,𝑃 ′ such that �𝑒�𝜎′ 𝑅𝑃,𝑃 ′ �𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�𝜎 .
Fix 𝜎′ and 𝜎. As 𝑃 (𝑒) � 𝑃 (𝑒), there exists a bisimulation relation 𝑅𝑃,𝑃 such that �𝑒�𝜎′ 𝑅𝑃,𝑃 �𝑒�𝜎 . So, it suffices to prove there exists
a bisimulation relation 𝑅 such that �𝑒�𝜎 𝑅 �𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�𝜎 . It then follows that 𝑅𝑃,𝑃 ′=𝑅𝑃,𝑃 ◦ 𝑅 is a bisimulation relation such that
�𝑒�𝜎

′
𝑅𝑃,𝑃 ′ �𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�𝜎 .

Define relation 𝑅 as follows:

𝑅= {(�𝑡�𝜎 , �𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�𝜎) ∣ 𝑡 is a term of sort 𝐷}

We prove 𝑅 is a strong bisimulation relation. So, fix arbitrary term 𝑡 such that �𝑡�𝜎 𝑅 �𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�𝜎 , and fix arbitrary 𝑖 ∈ 𝐼 , value
𝑤𝑖 ∈𝑀𝐸𝑖

such that �𝑐𝑖�𝜎[�𝑡�
𝜎∕𝑑,𝑤𝑖∕𝑒𝑖] = 𝐭𝐫𝐮𝐞. That is, the condition of summand 𝑖 is satisfied. We need to show there exists a summand

𝑖′ ∈ 𝐼 ′ and value 𝑤′
𝑖′ ∈𝑀𝐸′

𝑖′
such that the condition of summand 𝑖′ is satisfied, the action and its parameters match those of summand

𝑖, and the target states are related. We prove that this is witnessed by summand 𝑖 and value 𝑤𝑖.
First, we show that �𝖼𝗉(𝑐𝑖, 𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�

𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖] = �𝑐𝑖�
𝜎[�𝑡�𝜎∕𝑑,𝑤𝑖∕𝑒𝑖]. As �𝑐𝑖�

𝜎[�𝑡�𝜎∕𝑑,𝑤𝑖∕𝑒𝑖] = 𝐭𝐫𝐮𝐞, it then follows that
�𝖼𝗉(𝑐𝑖, 𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�

𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖] = 𝐭𝐫𝐮𝐞. The derivation is as follows.

�𝖼𝗉(𝑐𝑖, 𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�
𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖]

= {𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) fresh}

�𝖼𝗉(𝑐𝑖, 𝑑)�𝜎[𝑤𝑖∕𝑒𝑖][�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�
𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)]

= {Corollary 1}

�𝑐𝑖�
𝜎[𝑤𝑖∕𝑒𝑖][�𝑡�𝜎∕𝑑]

= {𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) fresh}

�𝑐𝑖�
𝜎[�𝑡�𝜎∕𝑑,𝑤𝑖∕𝑒𝑖]

By construction of the unfolded LPE, 𝑎𝑖 = 𝑎𝑖. The proof that �𝖼𝗉(𝑓𝑖, 𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�
𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖] = �𝑓𝑖�

𝜎[�𝑡�𝜎∕𝑑,𝑤𝑖∕𝑒𝑖] is analogous
to the case for 𝑐𝑖.

Theoretical Computer Science 1038 (2025) 115181

22

A. Stramaglia, J.J.A. Keiren and T. Neele

Finally, we prove that �𝑔𝑖�𝜎[�𝑡�
𝜎∕𝑑,𝑤𝑖∕𝑒𝑖] 𝑅 �𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖), 𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�

𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖].

�𝑔𝑖�
𝜎[�𝑡�𝜎∕𝑑,𝑤𝑖∕𝑒𝑖]

= {By assumption, every 𝑤𝑖 has closed term 𝑡𝑖 s.t. �𝑡𝑖� =𝑤𝑖; �𝑡𝑖� = �𝑡𝑖�
𝜎 since 𝑡𝑖 closed}

�𝑔𝑖�
𝜎[�𝑡�𝜎∕𝑑,�𝑡𝑖�𝜎∕𝑒𝑖]

= {Lemma 2}

�𝑔𝑖[𝑑 ∶= 𝑡, 𝑒𝑖 ∶= 𝑡𝑖]�𝜎

𝑅 {Definition of 𝑅}

�𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖[𝑑 ∶= 𝑡, 𝑒𝑖 ∶= 𝑡𝑖])�𝜎

= {Definitions of substitution, 𝗎𝗇𝖿𝗈𝗅𝖽}

�𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖)[𝑑 ∶= 𝑡, 𝑒𝑖 ∶= 𝑡𝑖]�𝜎

= {Lemma 2}

�𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖)�𝜎[�𝑡�
𝜎∕𝑑,�𝑡𝑖�𝜎∕𝑒𝑖]

= {Corollary 2}

�𝗎𝗇𝖿𝗈𝗅𝖽(𝖼𝗉(𝑔𝑖, 𝑑))�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�
𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),�𝑡𝑖�𝜎∕𝑒𝑖]

= {�𝑡𝑖�𝜎 =𝑤𝑖, see first step in derivation}

�𝗎𝗇𝖿𝗈𝗅𝖽(𝖼𝗉(𝑔𝑖, 𝑑))�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�
𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖]

= {Lemma 9}

�𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖), 𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�
𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖]

This concludes the first direction of the proof that both processes are strongly bisimilar. The other direction is symmetric. □

Corollary 3. Consider the LPEs from Theorem 1. Then it holds that 𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)) � 𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)).

Proof. Theorem 1 shows that 𝑃 (𝑒) � 𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)). Using similar arguments we can also show that 𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)) � 𝑃 (𝑒). The result
then follows from transitivity of strong bisimulation. □

We next show that also the variant where global variables are replaced with fresh global variables preserves strong bisimulation.

Theorem 2. Let  = (Σ,𝐸), and consider LPE 𝐿= (,𝑔, 𝑃 , 𝑒), where 𝑃 is defined as:

𝑃 (𝑑 ∶ 𝐷) =
∑
𝑖∈𝐼

∑
𝑒𝑖 ∶ 𝐸𝑖

𝑐𝑖 → 𝑎𝑖(𝑓𝑖) ⋅ 𝑃 (𝑔𝑖)

Also consider the result of unfolding parameter 𝑑 using the global variables optimization from Definition 11

𝐿′ = (′, ′
𝑔, 𝑃

′,𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟)

where 𝑃 ′ is defined as

𝑃 ′(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑))

=
∑
𝑖∈𝐼

∑
𝑒𝑖 ∶ 𝐸𝑖

𝖼𝗉(𝑐𝑖, 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟

→ 𝑎𝑖(𝖼𝗉(𝑓𝑖, 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟)

⋅ 𝑃 ′(𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑔𝑖), 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟)

Then 𝑃 (𝑒) � 𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟).

Proof. Fix arbitrary valuation 𝜎. Let 𝑟 be as in Definition 11. We define valuation 𝜎𝑟 as follows:

𝜎𝑟 = 𝜎[�C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))�𝜎∕dc]dc∈𝑟

Theoretical Computer Science 1038 (2025) 115181

23

A. Stramaglia, J.J.A. Keiren and T. Neele

Also, define relation 𝑅 such that for every term 𝑡 of sort 𝐷,

�𝑡�𝜎𝑟 𝑅 �𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑡)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎

Before we continue our proof, note that it follows immediately from Lemma 2 and the definition of 𝜎𝑟 that

�𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑡)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎 = �𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑡)�𝜎𝑟

So, an equivalent definition of 𝑅 is, for any 𝑡 of sort 𝐷,

�𝑡�𝜎𝑟 𝑅 �𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑡)�𝜎𝑟

We prove that 𝑅 is a strong bisimulation relation.

To this end, fix arbitrary term 𝑡 such that �𝑡�𝜎𝑟 𝑅 �𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑡)�𝜎𝑟 , and fix arbitrary 𝑖 ∈ 𝐼 , value 𝑤𝑖 ∈𝑀𝐸𝑖
such that �𝑐𝑖�𝜎𝑟[�𝑡�

𝜎𝑟 ∕𝑑,𝑤𝑖∕𝑒𝑖]

= 𝐭𝐫𝐮𝐞. So, the condition of summand 𝑖 is satisfied. We show that summand 𝑖 and 𝑤𝑖 witness the transfer condition.

First, we show that

�𝖼𝗉(𝑐𝑖, 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎𝑟[�𝗎𝗇𝖿𝗈𝗅𝖽𝑔 (𝑡)�𝜎𝑟 ∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖]

=�𝑐𝑖�
𝜎𝑟[�𝑡�𝜎𝑟 ∕𝑑,𝑤𝑖∕𝑒𝑖]

It then follows immediately that the left hand side of this equality is 𝐭𝐫𝐮𝐞 as well.

For the sake of brevity, in the remainder of the proof, we write 𝜎𝑟,𝑖 for 𝜎𝑟[�𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑡)�𝜎𝑟∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖]. The derivation is as
follows.

�𝖼𝗉(𝑐𝑖, 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎𝑟,𝑖

= {Lemma 2}

�𝖼𝗉(𝑐𝑖, 𝑑)�
𝜎𝑟,𝑖[�C𝐷(dc𝑒,𝑓0(dc1

𝑓0
,…,dc

𝑚0
𝑓0

),…,𝑓𝑛(dc1
𝑓𝑛
,…,dc𝑚𝑛

𝑓𝑛
))�𝜎𝑟,𝑖 ∕dc]dc∈𝑟

= {𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) and 𝑒𝑖 are not global variables}

�𝖼𝗉(𝑐𝑖, 𝑑)�
𝜎𝑟,𝑖[�C𝐷(dc𝑒,𝑓0(dc1

𝑓0
,…,dc

𝑚0
𝑓0

),…,𝑓𝑛(dc1
𝑓𝑛
,…,dc𝑚𝑛

𝑓𝑛
))�𝜎𝑟 ∕dc]dc∈𝑟

= {Fresh global variables are not in 𝑟}

�𝖼𝗉(𝑐𝑖, 𝑑)�
𝜎𝑟,𝑖[�C𝐷(dc𝑒,𝑓0(dc1

𝑓0
,…,dc

𝑚0
𝑓0

),…,𝑓𝑛(dc1
𝑓𝑛
,…,dc𝑚𝑛

𝑓𝑛
))�𝜎∕dc]dc∈𝑟

= {Definition of 𝜎𝑟; dc not in 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) or 𝑒𝑖}

�𝖼𝗉(𝑐𝑖, 𝑑)�𝜎𝑟,𝑖

= {𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) fresh, Corollary 1, analogous to case 𝑐𝑖 in the proof of Theorem 1}

�𝑐𝑖�
𝜎𝑟[�𝑡�𝜎𝑟 ∕𝑑,𝑤𝑖∕𝑒𝑖]

The proofs for 𝑎𝑖 and 𝑓𝑖 are analogous to the proof of Theorem 1 and that of 𝑐𝑖 above. So we finally need to prove that

�𝑔𝑖�
𝜎𝑟[�𝑡�𝜎𝑟 ∕𝑑,𝑤𝑖∕𝑒𝑖]

𝑅

�𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑔𝑖), 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎𝑟,𝑖

Using a similar line of reasoning as the case for 𝑐𝑖 , it follows that

�𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑔𝑖), 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎𝑟,𝑖

= �𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑔𝑖), 𝑑)�𝜎𝑟,𝑖

So, using 𝜎𝑟,𝑖 = 𝜎𝑟[�𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑡)�𝜎𝑟∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖], it remains to show that

�𝑔𝑖�
𝜎𝑟[�𝑡�𝜎𝑟 ∕𝑑,𝑤𝑖∕𝑒𝑖] 𝑅 �𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑔𝑖), 𝑑)�𝜎𝑟[�𝗎𝗇𝖿𝗈𝗅𝖽𝑔 (𝑡)�

𝜎𝑟 ∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖]

The proof of this is analogous to that of the case for 𝑔𝑖 in the proof of Theorem 1.

This concludes the first direction of the proof that 𝑅 is a strong bisimulation relation. The other direction is symmetric.

Finally we show that for all valuations 𝜎′ and 𝜎, there exists a bisimulation relation 𝑅𝑃,𝑃 ′ such that �𝑒�𝜎′ 𝑅𝑃,𝑃 ′ �𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒)[dc ∶=
C𝐷(dc𝑒, 𝑓0(dc1

𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎 . Using 𝜎𝑟 and 𝑅 as defined above, we have that

�𝑒�𝜎𝑟 𝑅 �𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎

Theoretical Computer Science 1038 (2025) 115181

24

A. Stramaglia, J.J.A. Keiren and T. Neele

As 𝑃 (𝑒) � 𝑃 (𝑒), it also follows that there is a bisimulation relation 𝑅𝑃,𝑃 such that �𝑒�𝜎 𝑅𝑃 ,𝑃 �𝑒�𝜎𝑟 . From this it follows that 𝑅𝑃,𝑃 ′ =
𝑅𝑃,𝑃 ◦𝑅 is a strong bisimulation. This concludes the proof. □

Using similar arguments as before, it follows that, after unfolding it still remains the case that global variables do not affect the
behavior of the processes.

Corollary 4. Consider the LPEs from Theorem 2. Then it holds that

𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟)

�

𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟)

6. Experiments

The original parameter unfolding technique from [22] has been available in the tool lpsparunfold in the mCRL2 toolset [14]
for over a decade. We have extended the C + + implementation with the ideas described in this article. The tool allows selecting which
parameters to unfold, and the number of times a parameter should be unfolded using command-line options. Multiple parameters
can be unfolded in a single run; this is achieved by iterating the unfolding of a single parameter.

In previous experiments reported in [26], we compared the original definition of parameter unfolding from Groote and Lisser [22]
to our description in which distribution laws, pattern match unfolding and the global variables optimization were always enabled.
We compared the effect of default and alternative case placement in this setting. In this article we extend the experiment, and focus
on the effect of (default vs alternative) case placement, pattern match unfolding and global variables replacement.2 We run all eight
combinations of these options to allow studying the effectiveness of the single optimizations.

By default, the tool lpsparunfold performs parameter unfolding with distribution laws, pattern match unfolding and global
variables replacement using default case placement. Command line arguments -x can be used to switch off pattern match unfolding,
and -g disables replacement of global variables. To evaluate the effect of our improvements on further analysis of LPEs and the
generation of the underlying state space using symbolic reachability, we compare the following nine workflows:

• standard: standard static analysis workflow: instantiate finite summations, eliminate constant and redundant parameters and
superfluous summation variables [22] (using the mCRL2 tools lpssuminst, lpsconstelm, lpsparelm and lpssumelm).
Finally, perform symbolic reachability (lpsreach). No parameter unfolding is applied.

• cp-x-g: perform parameter unfolding with default case placement (cp), where pattern matching functions are not unfolded
(-x) and global variables are not replaced (-g). After that, apply the steps from standard.

• cp-x: perform parameter unfolding with our extension for global variables with default case placement (cp), where pattern
matching functions are not unfolded (-x). After that, apply the steps from standard.

• cp-g: perform parameter unfolding with pattern matching rules with default case placement (cp), where global variables are
not replaced (-g). After that, apply the steps from standard.

• cp: perform parameter unfolding with our extension for global variables and pattern matching rules with default case placement
(cp). After that, apply the steps from standard.

• acp-x-g, acp-x, acp-g, and acp: these are the same as the workflows for cp, but use alternative case placement instead of
default case placement.

The workflows are executed on various mCRL2 specifications, including our running example (onoff). We consider models of
two-player games, often used to teach formal methods: four-in-a-row, with varying numbers of rows and columns and tic-tac-toe on
a standard 3x3 board, in which the board is encoded using fixed length lists of lists. First, the board is unfolded, and then each of the
rows resulting from this first unfolding. The sliding window protocol [50], that forms the basis of the TCP protocol used for reliable
in-order delivery of packets, as it occurs in [25], with window size 𝑛 and 𝑚 messages (swp-𝑛-𝑚) for different values of 𝑛 and 𝑚 is a
representative of communication protocols. For this the send and receive windows are unfolded. Moreover, we include models based
on industrial applications: a UML state machine diagram of an industrial pneumatic cylinder (cylinder) [51] and of an industrial lift
(left-lift); the protocol negotiating a service level agreement (sla) between two parties communicating via message passing along reliable
channels encoded using fixed length lists [52]; a model of the Workload Management System (wms) of the DIRAC Community Grid
Solution for the LHCb experiment at CERN [53]; two configurations of the model of session setup of the IEEE 11073-20601 standard
for communication between personal health devices, with two unidirectional buffers of size 𝑛 for communication (ieee-11073-𝑛) [54].
Note that the use of complex data structures for industrial case studies is wide-spread, allowing the creation of concise and elegant
models.

2 Experiments run one single time over each of the specifications show that adding distribution laws never negatively effects the running time, we hence always
include them in our experiments.

Theoretical Computer Science 1038 (2025) 115181

25

A. Stramaglia, J.J.A. Keiren and T. Neele

Table 1
Experimental results for symbolic reachability, reporting size of the underlying labeled transition system, and the mean total time of each of the tool
executions out of 10 runs.

Model Size (# states) Time (s)
standard cp-x-g cp-x cp-g cp acp-x-g acp-x acp-g acp

cylinder 1 593 209 27.0 15.9 15.6 15.9 15.6 15.9 15.8 16.0 15.8
fourinarow3-4 12 305 62.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
fourinarow3-5 (*)171 243 t-o 9.0 9.1 9.0 9.0 9.2 9.2 9.2 9.2
fourinarow4-3 6 214 14.5 1.0 1.1 1.1 1.0 1.1 1.1 1.1 1.1
fourinarow4-4 (*)187 928 t-o 9.3 9.3 9.3 9.3 9.6 9.6 9.4 9.4
fourinarow4-5 (*)5 464 759 t-o 312.6 311.8 313.0 312.4 316.1 315.2 316.5 316.0
fourinarow5-3 44 131 842.4 3.1 3.1 3.1 3.1 3.2 3.1 3.1 3.2
fourinarow5-4 (*)2 788 682 t-o 146.2 146.3 145.9 146.1 149.4 148.6 148.8 147.8
onoff (*)3 t-o t-o t-o t-o t-o 0.0 0.0 0.0 0.1
sla7 7 918 2.0 2.5 2.5 2.6 2.5 2.6 2.5 2.5 2.5
sla10 238 931 30.4 17.2 17.1 16.5 16.4 14.2 14.2 14.3 14.3
sla13 (*)6 693 054 t-o 383.7 385.5 375.4 375.5 301.0 295.9 304.9 291.9
swp2-2 14 064 1.2 1.3 1.4 1.3 1.3 1.3 1.3 1.2 1.3
swp2-4 140 352 2.3 2.6 2.6 2.4 2.5 2.6 2.6 2.4 2.4
swp2-6 598 320 3.4 3.6 3.7 3.3 3.2 3.6 3.6 3.3 3.2
swp2-8 1 731 840 4.1 4.8 4.8 4.0 4.3 4.8 4.8 4.0 4.0
swp4-2 2 589 056 5.8 9.5 9.5 7.2 7.4 9.8 9.4 7.2 7.6
swp4-4 292 878 336 130.9 163.1 161.5 100.2 100.8 162.5 162.1 100.2 100.5
swp4-6 5 729 304 960 3 040.8 1 071.1 1 071.4 669.4 668.5 1 075.1 1 073.4 669.5 671.0
swp4-8 (*)50 128 191 488 t-o t-o t-o 2 746.3 2 740.6 t-o t-o 2 754.5 2 745.7
tictactoe3-3 5 479 12.3 8.0 1.5 4.7 1.4 2.3 1.4 2.3 1.4
wms 155 034 776 17.4 17.7 17.5 17.6 17.6 17.5 17.5 17.4 17.6
ieee-11073-2 9 874 3.7 3.9 3.8 3.8 3.8 3.9 3.9 3.9 3.9
ieee-11073-3 54 147 12.7 8.1 8.0 8.4 8.1 7.8 7.9 7.8 7.8
left-lift 13 212 954 983 2 145.4 2 780.2 2 778.2 2 770.0 2 783.1 2 780.9 2 764.4 2 844.3 2 770.6

A reproduction package including all tool versions and mCRL2 specifications used is available from https://doi.org/10.5281/

zenodo.12705700, also in [55]. The used mCRL2 version is 202307.1.

6.1. Results

All experiments were run 10 times, on a machine with 4 Intel 6136 CPUs and 3TB of RAM, running Ubuntu 20.04. The results are
presented in Table 1. We used a time-out of 1 hour (3600 seconds) and a memory limit of 64 GB. Every experiment is limited to the
use of a single thread. We report the size of the explored state space in number of states and the mean total running time of 10 runs in
seconds. The reported running time is only for symbolic reachability. The reason for this is that the running time for standard static
analysis tools and parameter unfolding are insignificant compared to that of symbolic reachability. For each model we report the size,
in terms of the number of states, only once in the table. This is because, for a single model, the workflows that do not timeout result
in the same state space. For all models, apart from onoff, parameter unfolding does not enable other static analysis tools to achieve a
reduction of the state space size. Therefore, the size of the state space is the same for all the workflows that terminate. If a workflow
times out, ‘t-o’, no size for the state space is reported. With the (*) symbol we indicate that the reported size is for the workflows that
did not result in a timeout. For example, the fourinarow3-5 model has a state space of size 171 243 for all workflows but standard,
for the latter no size is reported since the workflow times out.

For each model, we highlight the fastest runs as follows. Let 𝑚 be the running time of the fastest run. We highlight in bold all
running times that are at most 10% higher than 𝑚. For most of the experiments, the standard deviation is below 10% of the mean.3

6.2. Discussion

The experiments show that our improvements typically reduce the total running time of the verification. In particular, our extension
for global variables reduces the running time for tic-tac-toe, i.e., in Table 1 workflows cp-x, cp, acp-x and acp have a lower running
time than the other workflows. The simplifications for pattern matching rules show a reduction in the running time for the sliding
window protocol (swp). For model swp4-8, in Table 1, workflows cp-g, cp, acp-g and acp have a running time of ∼ 45 minutes while
the other workflows result in a timeout. Alternative case placement reduces the infinite state space of our running example (onoff)
to only three states; for the service-level-agreement protocol (sla) it reduces the total running time, mostly for larger configurations
as it is shown by the results for sla13.

3 The cases where the standard deviation exceeds 10% of the mean, with their standard deviation, are: sla-13 acp-g: 37.8, swp2-6 standard: 0.6, swp2-8 cp: 0.8,
swp4-2 cp: 0.8, acp-x-g: 1.3, acp: 1.4, 11073-3 acp-g: 1.2.

https://doi.org/10.5281/zenodo.12705700
https://doi.org/10.5281/zenodo.12705700

Theoretical Computer Science 1038 (2025) 115181

26

A. Stramaglia, J.J.A. Keiren and T. Neele

Even when the size of the state space is not changed, our improvements often reduce the running time of symbolic reachability.
This is due to the simplification of data in the processes, and the reduction of dependencies between process parameters. Although in
theory alternative case placement could lead to an exponential blow-up of the terms in the LPE, this is not observed in our experiments.

In some cases, our parameter unfolding techniques do not manage to improve the results of static analysis. This typically happens
when the unfolded data structures do not have a fixed size. In Table 1, models ieee-11073-n and left-lift have data structures with a
dynamic size which, as clearly shown by the results of left-lift, negatively affects our parameter unfolding techniques. We demonstrate
this in the below example, which is inspired by the ieee-11073 model.

Example 18. Consider the following process that models a buffer that can store up to two natural numbers:

proc Buf (𝑙∶ List(Nat),broken∶ Bool)
= Σ𝑛 ∶ Nat(#𝑙 ≤ 2 ∧ ¬broken)→ receive(𝑛).Buf (𝑙 ⊲ 𝑛,broken)
+(𝑙 ≉ [] ∧ ¬broken)→ send(head(𝑙)).Buf (tail(𝑙),broken)
+destroy.Buf ([], true);

init Buf ([], false);

Here, ⊲ is a mapping that appends a single element to the back of a list and #𝑙 is the length of list 𝑙 (the corresponding equations in
the data specification are straightforwardly defined using recursion). This buffer operates in a first-in first-out manner: when a number
is received it is placed at the back of the list and the number at the head of the list can be sent. In case the buffer is destroyed in an
accident, it ceases all operations.

We unfold the parameter 𝑙∶ List(Nat) twice with alternative case placement and pattern match unfolding. The new process now
has the following parameters:

Buf ′(𝑒1
𝑙
, 𝑒2
𝑙
∶ 𝑈List(Nat), 𝑝1, 𝑝2 ∶ Nat, 𝑞∶ List(Nat),broken∶ Bool)

Parameters 𝑒1
𝑙

and 𝑒2
𝑙

indicate whether the first and second positions of the original list are occupied, respectively. The corresponding
values are stored in 𝑝1 and 𝑝2, while the remainder of the list is stored in parameter 𝑞. Note that 𝑞 ≈ [] is an invariant of Buf ′, since
the original list never grows beyond size 2.

The difficulty of deducing this invariant lies in the first summand, where the list is extended. After unfolding and rewriting, this
summand is as follows (for conciseness we refer to CList(Nat) simply as C).

Σ𝑛 ∶ Nat(C(𝑒2
𝑙
, true,C(𝑒1

𝑙
, true, false)) ∧ ¬broken)→ receive(𝑛).

Buf ′(𝑐⊳, 𝑒1𝑙 ,C(𝑒1
𝑙
, 𝑛, 𝑝1),C(𝑒2

𝑙
,C(𝑒1

𝑙
,0, 𝑛),C(𝑒1

𝑙
,0, 𝑝2)),C(𝑒2

𝑙
,[],C(𝑒1,[], 𝑞 ⊲ 𝑛)))

The invariant can only be deduced if we can show that �C(𝑒2
𝑙
, true,C(𝑒1

𝑙
, true, false)) ∧ ¬broken�𝜎 implies �C(𝑒2

𝑙
,[],C(𝑒1,[], 𝑞 ⊲ 𝑛)) ≈

[]�𝜎 for all 𝜎. This requires a careful analysis of the equations in the data specification, something our static analysis tools are
currently not capable of.

Similar to the example, in the case of ieee-11073 our static analysis tools are not able to deduce invariants of the form 𝑞 ≈ []; the
case of left-lift is comparable. Despite this unused potential, parameter unfolding still helps speed up symbolic exploration in the case
of ieee-11073 with buffer size 3.

Overall, the results show that generally pattern match unfolding and the unfolding of global variables have a positive effect on
the performance. Our experiments show that pattern match unfolding and the unfolding of global variables are safe to be used by
default. They never have a significant negative effect on the performance. Case placement and alternative case placement are often
close in terms of performance, where alternative case placement is potentially more powerful. The models where alternative case
placement is clearly beneficial are those where distribution of function symbols over case functions can be exploited for simplification.
In particular when there are many comparisons, e.g., using ≈,<,>,…, with a constant, alternative case placement can speed up the
running time, or, as in our running example, reduce the size of the state space. The presence of (many) such comparisons can be
deduced by inspecting the structure of the specification. Since alternative case placement is susceptible to exponential blow-up, even
though we did not observe such blow-up in our experiments, we keep it as an option to the tool, but refrain from making it the
default. Unfortunately, it is not possible to detect a priori which specification would lead to a blow-up.

7. Conclusion

In this article we have described a general approach to unfold state variables in a specification of a distributed system. We have
presented our technique, based on Groote and Lisser’s parameter unfolding [22], for models that describe the behavior of a system
using state variables and (terms over) algebraic data types. In particular, we have presented (alternative) case placement and pattern
match unfolding in detail. In the context of mCRL2, we have added global variables unfolding. We have proven the correctness of
each of the transformations.

We have experimentally evaluated the effect of case placement and alternative case placement, pattern match unfolding and global
variables unfolding in mCRL2. In general, we observe that, even if the size of the state space is not reduced, the unfolding of state

Theoretical Computer Science 1038 (2025) 115181

27

A. Stramaglia, J.J.A. Keiren and T. Neele

variables improves the performance of symbolic reachability. Pattern match unfolding and global variables unfolding typically have
a positive effect; the performance of case placement and alternative case placement are mostly comparable.

We believe the effect of lpsparunfold should be investigated in relation to other static analysis techniques such as dead
variable analysis [23]. Together these have the potential to speed up the model checking of industrial systems, e.g., described by OIL
models [48] and Cordis models [51] using mCRL2. The effect of lpsparunfold could also be investigated in the context of PBESs.

The general nature of our techniques also warrants further study in the context of other formalisms that use algebraic data types.
Examples are constrained Horn clause (CHC) solvers [56] and compilers for functional programming languages.

CRediT authorship contribution statement

Anna Stramaglia: Writing -- review & editing, Writing -- original draft, Validation, Methodology, Investigation, Formal analysis,
Conceptualization. Jeroen J.A. Keiren: Writing -- review & editing, Writing -- original draft, Validation, Supervision, Software, Project
administration, Methodology, Investigation, Funding acquisition, Formal analysis. Thomas Neele: Writing -- review & editing, Writing
– original draft, Software, Investigation, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

Michel Reniers and Frank Stappers previously described Groote and Lisser’s original definition of parameter unfolding in an
unpublished note. Some of our notation is inspired by their note.

This research was supported by the MACHINAIDE project (ITEA3, No. 18030), and the National Growth Fund through the Dutch
6G flagship project ``Future Network Services''.

References

[1] C.A.R. Hoare, An axiomatic basis for computer programming, Commun. ACM 12 (10) (1969) 576--580, https://doi.org/10.1145/363235.363259.

[2] S.S. Ishtiaq, P.W. O’Hearn, BI as an assertion language for mutable data structures, in: POPL, ACM, 2001, pp. 14--26, https://doi.org/10.1145/360204.375719.

[3] J.C. Reynolds, Separation logic: a logic for shared mutable data structures, in: LICS, IEEE Computer Society, 2002, pp. 55--74, https://doi.org/10.1109/LICS.

2002.1029817.

[4] J.C.M. Baeten, T. Basten, M.A. Reniers, Process Algebra: Equational Theories of Communicating Processes, Cambridge Tracts in Theoretical Computer Science,
vol. 50, Cambridge University Press, Cambridge, New York, 2010.

[5] U. Khedker, A. Sanyal, B. Sathe, Data Flow Analysis: Theory and Practice, CRC Press, Boca Raton, 2017, https://doi.org/10.1201/9780849332517.

[6] C. Baier, J.P. Katoen, Principles of Model Checking, MIT Press, 2008.

[7] E.M. Clarke, O. Grumberg, D. Kroening, D.A. Peled, H. Veith, Model Checking, 2nd edition, MIT Press, 2018.

[8] G.J. Holzmann, The SPIN Model Checker: Primer and Reference Manual, 4th edition, Addison-Wesley, Boston, Mass. Munich, 2008.

[9] Z. Baranová, J. Barnat, K. Kejstová, T. Kucera, H. Lauko, J. Mrázek, P. Rockai, V. Still, Model checking of C and C + + with DIVINE 4, in: ATVA, in: Lecture Notes
in Computer Science, vol. 10482, Springer, 2017, pp. 201--207, https://doi.org/10.1007/978-3-319-68167-2_14.

[10] F. Merz, S. Falke, C. Sinz, LLBMC: bounded model checking of C and C + + programs using a compiler IR, in: VSTTE, in: Lecture Notes in Computer Science,
vol. 7152, Springer, 2012, pp. 146--161, https://doi.org/10.1007/978-3-642-27705-4_12.

[11] H. Garavel, F. Lang, R. Mateescu, W. Serwe, CADP 2011: a toolbox for the construction and analysis of distributed processes, Int. J. Softw. Tools Technol. Transf.
15 (2) (2013) 89--107, https://doi.org/10.1007/S10009-012-0244-Z.

[12] R. van Beusekom, J.F. Groote, P.F. Hoogendijk, R. Howe, W. Wesselink, R. Wieringa, T.A.C. Willemse, Formalising the Dezyne modelling language in mCRL2,
in: FMICS-AVoCS, in: Lecture Notes in Computer Science, vol. 10471, Springer, 2017, pp. 217--233, https://doi.org/10.1007/978-3-319-67113-0_14.

[13] T. Gibson-Robinson, P.J. Armstrong, A. Boulgakov, A.W. Roscoe, FDR3 - a modern refinement checker for CSP, in: TACAS, in: Lecture Notes in Computer Science,
vol. 8413, Springer, 2014, pp. 187--201, https://doi.org/10.1007/978-3-642-54862-8_13.

[14] O. Bunte, J.F. Groote, J.J.A. Keiren, M. Laveaux, T. Neele, E.P. de Vink, W. Wesselink, A. Wijs, T.A.C. Willemse, The mCRL2 toolset for analysing concurrent
systems - improvements in expressivity and usability, in: TACAS (2), in: Lecture Notes in Computer Science, vol. 11428, Springer, 2019, pp. 21--39, https://

doi.org/10.1007/978-3-030-17465-1_2.

[15] E.M. Clarke, My 27-year quest to overcome the state explosion problem, in: LICS, IEEE Computer Society, 2009, p. 3, https://doi.org/10.1109/LICS.2009.42.

[16] Y. Hwong, J.J.A. Keiren, V.J.J. Kusters, S.J.J. Leemans, T.A.C. Willemse, Formalising and analysing the control software of the compact muon solenoid experiment
at the large hadron collider, Sci. Comput. Program. 78 (12) (2013) 2435--2452, https://doi.org/10.1016/J.SCICO.2012.11.009.

[17] A. Valmari, The state explosion problem, in: W. Reisig, G. Rozenberg (Eds.), Lectures on Petri Nets I: Basic Models: Advances in Petri Nets, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1998, pp. 429--528, https://doi.org/10.1007/3-540-65306-6_21.

[18] P. Godefroid, Partial-Order Methods for the Verification of Concurrent Systems - an Approach to the State-Explosion Problem, Lecture Notes in Computer Science,
vol. 1032, Springer, 1996, https://doi.org/10.1007/3-540-60761-7.

[19] D.A. Peled, All from one, one for all: on model checking using representatives, in: CAV, in: Lecture Notes in Computer Science, vol. 697, Springer, 1993,
pp. 409--423, https://doi.org/10.1007/3-540-56922-7_34.

[20] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang, Symbolic model checking: 1020 states and beyond, Inf. Comput. 98 (2) (1992) 142--170, https://

doi.org/10.1016/0890-5401(92)90017-A.

[21] K.L. McMillan, Symbolic Model Checking, Springer US, Boston, MA, 1993, https://doi.org/10.1007/978-1-4615-3190-6.

[22] J.F. Groote, B. Lisser, Computer assisted manipulation of algebraic process specifications, Tech. Rep. SEN-R0117, CWI, Jan. 2001, https://ir.cwi.nl/pub/4326/.

[23] J. van de Pol, M. Timmer, State space reduction of linear processes using control flow reconstruction, in: ATVA, in: Lecture Notes in Computer Science, vol. 5799,
Springer, 2009, pp. 54--68, https://doi.org/10.1007/978-3-642-04761-9_5.

https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/360204.375719
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
http://refhub.elsevier.com/S0304-3975(25)00119-7/bib61C61C0478D0391BF4C808F3AD705CC7s1
http://refhub.elsevier.com/S0304-3975(25)00119-7/bib61C61C0478D0391BF4C808F3AD705CC7s1
https://doi.org/10.1201/9780849332517
http://refhub.elsevier.com/S0304-3975(25)00119-7/bibE518CDDC24D47D578050C58A6F28E84Bs1
http://refhub.elsevier.com/S0304-3975(25)00119-7/bibB64C71B6C6A142576C1140B022CD89C7s1
http://refhub.elsevier.com/S0304-3975(25)00119-7/bibBD982BE733DFFD9072C77C3BF31F3590s1
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-642-27705-4_12
https://doi.org/10.1007/S10009-012-0244-Z
https://doi.org/10.1007/978-3-319-67113-0_14
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1109/LICS.2009.42
https://doi.org/10.1016/J.SCICO.2012.11.009
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/978-1-4615-3190-6
https://ir.cwi.nl/pub/4326/
https://doi.org/10.1007/978-3-642-04761-9_5

Theoretical Computer Science 1038 (2025) 115181

28

A. Stramaglia, J.J.A. Keiren and T. Neele

[24] G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, T. van Dijk, LTSmin: high-performance language-independent model checking, in: TACAS, in: Lecture
Notes in Computer Science, vol. 9035, Springer, 2015, pp. 692--707, https://doi.org/10.1007/978-3-662-46681-0_61.

[25] J.F. Groote, M.R. Mousavi, Modeling and Analysis of Communicating Systems, MIT Press, 2014.

[26] A. Stramaglia, J.J.A. Keiren, T. Neele, Simplifying process parameters by unfolding algebraic data types, in: ICTAC, in: Lecture Notes in Computer Science,
vol. 14446, Springer, 2023, pp. 399--416, https://doi.org/10.1007/978-3-031-47963-2_24.

[27] M. Wirsing, Structured algebraic specifications: a kernel language, Theor. Comput. Sci. 42 (1986) 123--249, https://doi.org/10.1016/0304-3975(86)90051-4.

[28] J.V. Guttag, The specification and application of programming of abstract data types, Ph.D. thesis, University of Toronto, Toronto, Sep. 1975, http://archive.

org/details/technicalreportc59univ.

[29] J.V. Guttag, J.J. Horning, The algebraic specification of abstract data types, Acta Inform. 10 (1978) 27--52, https://doi.org/10.1007/BF00260922.

[30] D. Sannella, A. Tarlecki, Foundations of Algebraic Specification and Formal Software Development, Monographs in Theoretical Computer Science. An EATCS
Series, Springer, 2012.

[31] S. Blom, W.J. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, J. van de Pol, 𝜇CRL: a toolset for analysing algebraic specifications, in: CAV, in: Lecture Notes
in Computer Science, vol. 2102, Springer, 2001, pp. 250--254, https://doi.org/10.1007/3-540-44585-4_23.

[32] J.F. Groote, T.A.C. Willemse, Parameterised Boolean equation systems, Theor. Comput. Sci. 343 (3) (2005) 332--369, https://doi.org/10.1016/J.TCS.2005.06.016.

[33] S. Orzan, W. Wesselink, T.A.C. Willemse, Static analysis techniques for parameterised Boolean equation systems, in: TACAS, in: Lecture Notes in Computer
Science, vol. 5505, Springer, 2009, pp. 230--245, https://doi.org/10.1007/978-3-642-00768-2_22.

[34] J.J.A. Keiren, W. Wesselink, T.A.C. Willemse, Liveness analysis for parameterised Boolean equation systems, in: ATVA, in: Lecture Notes in Computer Science,
vol. 8837, Springer, 2014, pp. 219--234, https://doi.org/10.1007/978-3-319-11936-6_16.

[35] T. Neele, (Re)moving quantifiers to simplify parameterised Boolean equation systems, in: ARQNL@IJCAR, in: CEUR Workshop Proceedings, vol. 3326, 2022,
pp. 64--80, CEUR-WS.org.

[36] R. Melton, D. Dill, C. Ip, U. Stern, Murphi annotated reference manual, release 3.1, https://github.com/melver/cmurphi/blob/master/doc/User.Manual, 1996.

[37] H. Garavel, W. Serwe, State space reduction for process algebra specifications, Theor. Comput. Sci. 351 (2) (2006) 131--145.

[38] G.H. Slomp, Reducing UPPAAL models through control flow analysis, MSc thesis, University of Twente, Enschede, 2010, https://essay.utwente.nl/60021/.

[39] C. Dubslaff, A. Morozov, C. Baier, K. Janschek, Reduction methods on probabilistic controlflow programs for reliability analysis, CoRR, arXiv:2004.06637, 2020.

[40] E.M. Clarke, E.A. Emerson, S. Jha, A.P. Sistla, Symmetry reductions in model checking, in: CAV, in: Lecture Notes in Computer Science, vol. 1427, Springer,
1998, pp. 147--158.

[41] T. Gibson-Robinson, G. Lowe, Symmetry reduction in CSP model checking, Int. J. Softw. Tools Technol. Transf. 21 (5) (2019) 567--605, https://doi.org/10.1007/

S10009-019-00516-4.

[42] T. van Dijk, J. van de Pol, Sylvan: multi-core decision diagrams, in: TACAS, in: Lecture Notes in Computer Science, vol. 9035, Springer, 2015, pp. 677--691,
https://doi.org/10.1007/978-3-662-46681-0_60.

[43] S. Blom, J. van de Pol, Symbolic reachability for process algebras with recursive data types, in: ICTAC, in: Lecture Notes in Computer Science, vol. 5160, Springer,
2008, pp. 81--95, https://doi.org/10.1007/978-3-540-85762-4_6.

[44] J. Meijer, G. Kant, S. Blom, J. van de Pol, Read, write and copy dependencies for symbolic model checking, in: Haifa Verification Conference, in: Lecture Notes
in Computer Science, vol. 8855, Springer, 2014, pp. 204--219, https://doi.org/10.1007/978-3-319-13338-6_16.

[45] T. van Dijk, J. van de Pol, Sylvan: multi-core framework for decision diagrams, Int. J. Softw. Tools Technol. Transf. 19 (6) (2017) 675--696, https://doi.org/10.

1007/S10009-016-0433-2.

[46] B. Steffen, Data flow analysis as model checking, in: TACS, in: Lecture Notes in Computer Science, vol. 526, Springer, 1991, pp. 346--365.

[47] M. Gallardo, C. Joubert, P. Merino, On-thefly data flow analysis based on verification technology, in: COCV@ETAPS, in: Electronic Notes in Theoretical Computer
Science, vol. 190, Elsevier, 2007, pp. 33--48.

[48] O. Bunte, L.C.M. van Gool, T.A.C. Willemse, Formal verification of OIL component specifications using mCRL2, in: FMICS, in: Lecture Notes in Computer Science,
vol. 12327, Springer, 2020, pp. 231--251, https://doi.org/10.1007/978-3-030-58298-2_10.

[49] D.M.R. Park, Concurrency and automata on infinite sequences, in: Theoretical Computer Science, in: Lecture Notes in Computer Science, vol. 104, Springer,
1981, pp. 167--183, https://doi.org/10.1007/BFB0017309.

[50] V.G. Cerf, R.E. Kahn, A protocol for packet network intercommunication, IEEE Trans. Commun. 22 (5) (1974) 637--648, https://doi.org/10.1109/TCOM.1974.

1092259.

[51] A. Stramaglia, J.J.A. Keiren, Formal verification of an industrial UML-like model using mCRL2, in: FMICS, in: Lecture Notes in Computer Science, vol. 13487,
Springer, 2022, pp. 86--102, https://doi.org/10.1007/978-3-031-15008-1_7.

[52] J.F. Groote, T.A.C. Willemse, A symmetric protocol to establish service level agreements, Log. Methods Comput. Sci. 16 (3) (2020), https://doi.org/10.23638/

LMCS-16(3:19)2020.

[53] D. Remenska, T.A.C. Willemse, K. Verstoep, J. Templon, H.E. Bal, Using model checking to analyze the system behavior of the LHC production grid, Future
Gener. Comput. Syst. 29 (8) (2013) 2239--2251, https://doi.org/10.1016/J.FUTURE.2013.06.004.

[54] J.J.A. Keiren, M. Klabbers, Modelling and verifying IEEE Std 11073-20601 session setup using mCRL2, Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 53
(2012), https://doi.org/10.14279/TUJ.ECEASST.53.793.

[55] A. Stramaglia, J.J.A. Keiren, T. Neele, Artifact for ‘Unfolding State Variables Improves Model Checking’, https://doi.org/10.5281/zenodo.12705700, 2024.

[56] N.S. Bjørner, A. Gurfinkel, K.L. McMillan, A. Rybalchenko, Horn clause solvers for program verification, in: L.D. Beklemishev, A. Blass, N. Dershowitz, B.
Finkbeiner, W. Schulte (Eds.), Fields of Logic and Computation II, in: LNCS, vol. 9300, Springer, 2015, pp. 24--51, https://doi.org/10.1007/978-3-319-23534-9_2.

https://doi.org/10.1007/978-3-662-46681-0_61
http://refhub.elsevier.com/S0304-3975(25)00119-7/bibEE33B4BCCCB5958716BCDB0A54CEE3FDs1
https://doi.org/10.1007/978-3-031-47963-2_24
https://doi.org/10.1016/0304-3975(86)90051-4
http://archive.org/details/technicalreportc59univ
http://archive.org/details/technicalreportc59univ
https://doi.org/10.1007/BF00260922
http://refhub.elsevier.com/S0304-3975(25)00119-7/bib8FAB85C95746D97EC9DE55FAD54754D3s1
http://refhub.elsevier.com/S0304-3975(25)00119-7/bib8FAB85C95746D97EC9DE55FAD54754D3s1
https://doi.org/10.1007/3-540-44585-4_23
https://doi.org/10.1016/J.TCS.2005.06.016
https://doi.org/10.1007/978-3-642-00768-2_22
https://doi.org/10.1007/978-3-319-11936-6_16
http://refhub.elsevier.com/S0304-3975(25)00119-7/bib126C5E8A64CEDB60A6DF24FA323DE09As1
http://refhub.elsevier.com/S0304-3975(25)00119-7/bib126C5E8A64CEDB60A6DF24FA323DE09As1
https://github.com/melver/cmurphi/blob/master/doc/User.Manual
http://refhub.elsevier.com/S0304-3975(25)00119-7/bib86504CF7FA93B22EF25523E4175ADD20s1
https://essay.utwente.nl/60021/
http://refhub.elsevier.com/S0304-3975(25)00119-7/bib8F360527E6D5DE544EE9856B32E9C5D2s1
http://refhub.elsevier.com/S0304-3975(25)00119-7/bib94818C8C38BE1917F62AF440CC338ADFs1
http://refhub.elsevier.com/S0304-3975(25)00119-7/bib94818C8C38BE1917F62AF440CC338ADFs1
https://doi.org/10.1007/S10009-019-00516-4
https://doi.org/10.1007/S10009-019-00516-4
https://doi.org/10.1007/978-3-662-46681-0_60
https://doi.org/10.1007/978-3-540-85762-4_6
https://doi.org/10.1007/978-3-319-13338-6_16
https://doi.org/10.1007/S10009-016-0433-2
https://doi.org/10.1007/S10009-016-0433-2
http://refhub.elsevier.com/S0304-3975(25)00119-7/bib94524F8F761D07DCDAD6EBD5977DA064s1
http://refhub.elsevier.com/S0304-3975(25)00119-7/bibCBB8DFB46AF039D2E5284EDCB991D01Cs1
http://refhub.elsevier.com/S0304-3975(25)00119-7/bibCBB8DFB46AF039D2E5284EDCB991D01Cs1
https://doi.org/10.1007/978-3-030-58298-2_10
https://doi.org/10.1007/BFB0017309
https://doi.org/10.1109/TCOM.1974.1092259
https://doi.org/10.1109/TCOM.1974.1092259
https://doi.org/10.1007/978-3-031-15008-1_7
https://doi.org/10.23638/LMCS-16(3:19)2020
https://doi.org/10.23638/LMCS-16(3:19)2020
https://doi.org/10.1016/J.FUTURE.2013.06.004
https://doi.org/10.14279/TUJ.ECEASST.53.793
https://doi.org/10.5281/zenodo.12705700
https://doi.org/10.1007/978-3-319-23534-9_2

	Unfolding state variables improves model checking performance
	1 Introduction
	2 Motivating example
	3 Algebraic data types
	4 Unfolding state variables
	4.1 Extending the algebraic data types
	4.2 Splitting variable declarations
	4.3 Reconstructing variable use in a term
	4.4 Splitting variable assignments
	4.5 Properties of unfold and case placement

	5 Unfolding parameters in mCRL2
	5.1 Data specification
	5.2 Linear processes
	5.3 Unfolding process parameters in an LPE
	5.4 Global variables
	5.5 Correctness

	6 Experiments
	6.1 Results
	6.2 Discussion

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

