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When describing the behavior of systems, state variables are typically modeled using complex 
data types. This use of data types allows for concise models that are easy to read. However, 
model checking tools that aim to automatically establish the correctness of such models use static 
analyses of state variables to improve their performance. Therefore, the use of complex data types 
in behavioral models negatively affects the performance of model checking tools. To address this, 
in this article we revisit a technique by Groote and Lisser that can be used to replace a single state 
variable of a complex data type by multiple state variables of simpler data types. We introduce and 
study several extensions in the context of the process algebraic specification language mCRL2, and 
establish their correctness. We demonstrate that our technique typically reduces the verification 
times when using symbolic model checking, and show that sometimes it enables static analysis to 
reduce the underlying state space from infinite to finite.

1. Introduction

Most modern software is inherently concurrent. Concurrent systems consist of components that perform local computations, and 
that use protocols to communicate (or interact) with other components and the environment. As users, we expect the software to 
work correctly in all circumstances. However, in practice, this is generally not the case. This is due to the inherent difficulty in the 
development of concurrent systems: corner cases are easily overlooked, resulting in subtle errors during the use of the software.

Several solutions have been developed to improve the quality of software. One can, for instance, prove the correctness of software 
using techniques such as Hoare logic [1], separation logic [2,3] and process algebra [4]. These typically involve a significant manual 
verification effort. Data-flow analysis (see, e.g., [5]) can be used as a fully automated, abstract, but imprecise interpretation of 
programs. Model checking [6,7] aims to provide a precise, fully automated analysis of a (model of) a program.

Although there are model checkers that directly deal with implementations in high-level programming languages such as C or 
C + + , e.g., Spin [8], DIVINE 4 [9], and LLBMC [10], most model checkers use abstract models of concurrent systems. Model checking 
abstract models is one of the few instruments that can be used to formally verify designs when the code is not (yet) available. Examples 
of model checkers that use this approach are CADP [11], Dezyne [12], FDR [13], and mCRL2 [14]. The modeling languages of these 
tools differ, but in essence, all of these tools describe states of the model using state variables. These state variables have means to 
describe the states of the model, in the form of variable declarations, and a way to describe transitions between states. State variables 
are used in expressions that appear, e.g., in conditions that control whether a given transition is enabled, as parameters to actions 
that label a transition, and they can be assigned a new value to describe the effect of a transition.

✩ This article belongs to Section B: Logic, semantics and theory of programming, Edited by Don Sannella.
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Model checking suffers from the infamous state space explosion problem [15]. There are two key contributing factors to the large 
number of states in the state space of a system. First, concurrency results in the exponential growth of the state space. For instance, 
a system consisting of three components of ten states each can potentially be in 103 = 1000 different states. The second factor is the 
use of data in the model. For instance, a controller that tracks 𝑛 bits of information can already be in 2𝑛 different states, due to the 
data alone. Together these result in state spaces easily exceeding 10100 states in practice [16].

Many techniques have been developed to counteract the state space explosion problem [17]. For instance, partial-order reduc-

tion [18,19] reduces the number of different interleavings that must be considered. Symbolic model checking [20,21] uses symbolic 
representations such as binary decision diagrams to store states and transition relations. Most model checkers furthermore use static 
analysis techniques such as constant propagation and dead variable analysis to reduce the data [22,23].

Both static analysis and modern symbolic model checkers such as LTSmin [24] analyze state variables and their dependencies. As 
such, they benefit from models in which state variables are fine grained. On the other hand, to facilitate modeling of realistic systems, 
modeling languages often allow the use of data types such as structures, records and lists. Their use leads to specifications that are 
easy to construct and understand for the modeler.

Contributions In this paper, we describe a general approach that allows to unfold state variables in a specification of a distributed 
system, a basic version of which was described by Groote and Lisser [22]. We assume that the description of the behavior uses state 
variables and updates their value. We use algebraic data types to characterize the data. By unfolding state variables, we retain the 
possibility for the modeler to construct high-level specifications, while also automatically generating a fine-grained model that is 
more amenable to static analysis and symbolic model checking.

More concretely, our approach consists of the following steps:

• Replacing a single state variable 𝑠 by a number of variables 𝑠1,… , 𝑠𝑛.

• Replacing a term using state variable 𝑠 by an equivalent term using the newly introduced state variables 𝑠1,… , 𝑠𝑛. We describe 
and compare two alternatives for this, referred to as case placement and alternative case placement.

• Replacing an update of a single state variable 𝑠 by the corresponding updates to the new state variables 𝑠1,… , 𝑠𝑛. We simplify 
complex state updates by locally eliminating functions that are defined using pattern matching. We refer to this as pattern match 
unfolding.

• Extending the algebraic data types with the functions needed to facilitate these replacements.

To study the effect of the unfolding of state variables, we consider the mCRL2 language [25]. This is a process algebraic specifi-

cation language where processes can be parameterized with data specified using algebraic data types. The language comes with an 
associated toolset to model, validate and verify complex systems [14]. Models in mCRL2 consist of a number of (communicating) 
parallel processes that are parameterized with data. As preprocessing for further analysis, the mCRL2 toolset transforms specifications 
into linear process equations (LPEs). In this step, parallelism and communication are removed from the process definition. Therefore, 
an LPE consists of a single (recursive) process definition, parameterized with variables, and a number of condition-action-effect rules 
referred to as summands, in which the variables are used and updated in a manner that closely matches the previous high-level 
description.

Prior to the research presented in this article, the tool lpsparunfold in the mCRL2 toolset already implemented Groote and Lis-

ser’s parameter unfolding [22]. We have extended this implementation with alternative case placement and pattern match unfolding. 
In addition, mCRL2 allows the use of global variables; we extend the unfolding technique and its implementation to take into account 
such global variables. We prove that each of the transformations preserves strong bisimilarity of LPEs. This establishes correctness. 
Using experiments, we show that parameter unfolding typically speeds up symbolic model checking. Pattern match unfolding and the 
unfolding of global variables typically have a positive effect on the performance. Although theoretically alternative case placement 
can lead to an exponential blow-up of terms to which it is applied, this effect is not observed in our experiments: the performance of 
case placement and alternative case placement is comparable most of the time. On our running example alternative case placement 
is essential in order to transform an infinite state space into an equivalent but finite one.

This article is an extended version of [26]. Compared to [26] we have separated the presentation of the unfolding of state variables 
from the setting of mCRL2, emphasizing that this is a technique that is more generally applicable. Equivalence of terms and their 
unfolding is proven in this general setting. For correctness of the unfolding in the setting of mCRL2, we include a detailed discussion 
of the unfolding using global variables. Moreover, we present full proofs that show that strong bisimulation is preserved. We have 
also extended the experiments and present the results in more detail.

Related work The algebraic data types used in mCRL2 [25] and assumed in this article, have a model-class semantics [27]. In this 
semantic approach, the class consists of all algebras that satisfy the axioms, in contrast to the more common initial algebra semantics 
that is restricted to the isomorphism class of initial algebras. This approach is sometimes referred to as loose semantics [28,29]. Without 
further assumptions, the loose semantics allows for certain degenerate models, such as the one where every element is mapped to 
the same value in the domain. Such degenerate models can be excluded by taking the non-degenerate loose semantics, in which models 
satisfying true = false are excluded. We refer to [30] for an accessible introduction to algebraic data types.

Our unfolding of state variables is most closely related to various analysis and transformation techniques for LPEs that have 
been developed in the setting of μCRL [31] and mCRL2 [14] over the years. Groote and Lisser [22] introduced static analysis for 
μCRL specifications, including a technique for flattening the structure of process parameters and implemented these in μCRL [31]. 
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The latter technique is the core of our unfolding of state variables. However, in [22] alternatives for reconstructing parameters and 
pattern match unfolding are not considered, and global variables are not taken into account. Furthermore, no correctness proof is 
presented. A more advanced algorithm is liveness analysis [23], which reconstructs a control-flow graph from a given LPE and uses 
knowledge of relevant data parameters to reduce the size of the underlying state space.

Similar analysis and transformation techniques have been developed for Parameterized Boolean Equation Systems (PBES) [32]. For 
example, redundant and constant parameter elimination for PBES is presented in [33], liveness analysis in [34]; a generalization of 
constant elimination occurs in [35].

The use of data flow analysis techniques to reduce the state space or improve the performance of model checking is not limited to 
mCRL2. For instance, manually resetting variables when they are no longer needed is supported through a dedicated keyword (clear) 
by Murphi [36]. Automated dead variable analysis has been studied for model checkers such as CADP [37] and UPPAAL [38]. Data 
flow analysis has also been studied for probabilistic models [39]. All of these analyses potentially benefit from a more fine-grained 
representation of variables, e.g., when only part of a more complex variable is dead.

Parameter unfolding could be beneficial for other techniques used in model checking as well. For instance, symmetry reduc-

tion [40], which is implemented in model checkers such as FDR [41], depends on an analysis of shared variables. Unfolding parameters 
can lead to more fine-grained information regarding such shared variables. Furthermore, symbolic model checkers use representa-

tions such as list decision diagrams (LDDs, a generalization of binary decision diagrams) [42], in which each variable is represented by 
a layer in the LDD. Parameter unfolding could change the LDD structure by having multiple simpler layers instead of a single more 
complex layer. This potentially reduces the size of the LDD representation. The implementation of symbolic reachability used in our 
experiments is based on the techniques from [43,44], and uses the list decision diagrams from Sylvan [45].

Instead of using data flow analysis to improve model checking, model checking has also been used to perform data flow analysis. 
For instance, Steffen uses a model checker to compute optimal placement of computations within a program [46]. Del Mar Gallardo 
et al. used model checkers as generic, on-the-fly data flow analyzers [47]. Data flow analysis for programming languages in general 
has been studied extensively in the literature. We refer to standard textbooks such as [5] for an in-depth description of data flow 
analysis of programming languages.

Structure Section 2 introduces a running example that is used throughout the paper. Next, an introduction to algebraic data types is 
provided in Section 3. In Section 4 we introduce the unfolding of state variables, and describe alternative case placement and pattern 
match unfolding. We describe how this can be used in mCRL2 in Section 5, and prove that unfolding preserves strong bisimilarity. 
Finally, we evaluate the approach using experiments in Section 6 and conclude in Section 7.

2. Motivating example

We first present a motivating example. To facilitate consistent use of syntax throughout the paper, we present the motivating 
example using the mCRL2 specification language. The techniques introduced in this paper are, however, generally applicable to 
specification languages that: (1) use algebraic data types for the specification of the data used, and (2) declare state variables, use 
them in terms, and update their value. Note that mCRL2 has standard data types for, e.g., Booleans and numeric data types. To present 
the motivating example independently from mCRL2, we here choose to give our own specification of all the relevant data types. In 
Section 5 we update the example to instead use the full power of mCRL2.

Our motivating example is a specification of a simple system inspired by the mCRL2 models generated from Open Interaction 
Language (OIL) specifications [48]. It describes a system that starts out uninitialized. If it is uninitialized, it can be initialized using 
a transition labelled initialize. The initialized system can be in either of two states: off or on, and can be toggled between these two 
states. Moreover, the initialized system has an IP address, which we model abstractly as a natural number. The IP address is only 
relevant when the state is on, and whenever the system switches from off to on, it gets assigned an arbitrary number as IP address.

sort 𝐵;
cons true, false∶ 𝐵;
map ≈,≉  ∶ 𝐵 ×𝐵→𝐵;

¬  ∶ 𝐵→𝐵;
∧,∨  ∶ 𝐵 ×𝐵→𝐵;

var 𝑥, 𝑦  ∶ 𝐵;
eqn 𝑥 ≈ 𝑥 = true;

true ≈ false = false;
false ≈ true = false;
𝑥 ≉ 𝑦 = ¬(𝑥 ≈ 𝑦);
¬true = false;
¬false = true;
𝑥 ∧ true = 𝑥;
true ∧ 𝑥 = 𝑥;
𝑥 ∧ false = false;
false ∧ 𝑥 = false;
𝑥 ∨ true = true;
true ∨ 𝑥 = true;
𝑥 ∨ false = 𝑥;
false ∨ 𝑥 = 𝑥;

sort 𝑁 ;
cons zero∶ 𝑁 ;

succ∶ 𝑁 →𝑁 ;
map ≈,≉  ∶ 𝑁 ×𝑁 →𝐵;

+  ∶ 𝑁 ×𝑁 →𝑁 ;
var 𝑛,𝑚  ∶ 𝑁 ;
eqn zero ≈ zero = true;

zero ≈ succ(𝑛) = false;
succ(𝑛) ≈ zero = false;
succ(𝑛) ≈ succ(𝑚) = 𝑛 ≈𝑚;
𝑛 ≉𝑚 = ¬(𝑛 ≈𝑚);
zero + 𝑛 = 𝑛;
𝑛+ zero = 𝑛;
succ(𝑛) +𝑚 = succ(𝑛+𝑚);
𝑛+ succ(𝑚) = succ(𝑛+𝑚);

Fig. 1. Specification of the data types for Booleans and natural numbers. 
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sort State;
cons p_on,p_off ∶ State;
map ≈,≉  ∶ State × State →𝐵;
var 𝑥, 𝑦  ∶ State;
eqn 𝑥 ≈ 𝑥 = true;

p_on ≈ p_off = false;
p_off ≈ p_on = false;
𝑥 ≉ 𝑦 = ¬(𝑥 ≈ 𝑦);

sort Sys;
cons uninit∶ Sys;

sys∶ State ×𝑁 → Sys;
map ≈,≉  ∶ Sys × Sys →𝐵;

get_state∶ Sys → State;
get_ip∶ Sys →𝑁 ;
set_state∶ Sys × State → Sys;
set_ip∶ Sys ×𝑁 → Sys;

var 𝑠, 𝑡  ∶ Sys;𝑝1, 𝑝2 ∶ State;𝑛,𝑚  ∶ 𝑁 ;
eqn 𝑠 ≈ 𝑠 = true;

uninit ≈ sys(𝑝1, 𝑛) = false;
sys(𝑝1, 𝑛) ≈ uninit = false;
sys(𝑝1, 𝑛) ≈ sys(𝑝2,𝑚) = 𝑝1 ≈ 𝑝2 ∧ 𝑛 ≈𝑚;
𝑠 ≉ 𝑡 = ¬(𝑠 ≈ 𝑡);
get_state(sys(𝑝1, 𝑛)) = 𝑝1;
get_ip(sys(𝑝1, 𝑛)) = 𝑛;
set_state(sys(𝑝1, 𝑛), 𝑝2) = sys(𝑝2, 𝑛);
set_ip(sys(𝑝1, 𝑛),𝑚) = sys(𝑝1,𝑚);

Fig. 2. Specification of the data types State and Sys. 

The specification uses four data types, see Figs. 1 and 2. The Booleans are described using sort 𝐵 with constructors true and false. 
Standard operations such as equality ≈, negation ¬ as well as conjunction and disjunction ∧∕∨ are defined. The operations are defined 
in an equational manner. In a similar way, natural numbers, represented using sort 𝑁 , can be defined using zero and successor (succ). 
We restrict the definitions to the operators used in our specifications, and we illustrate the definition of +. They can be extended 
with additional operations such as multiplication in the obvious way.

The sort State represents the status of the system which can be set to p_on or p_off , see Fig. 2. They are defined to be distinct using 
a definition of ≈.

Finally, sort Sys has two constructors, uninit∶ Sys and sys∶ State×𝑁 → Sys. For this, operations such as equality (≈) and inequality 
(≉) are defined, to ensure that, e.g., sys(𝑝, 𝑛) ≉ uninit for all 𝑝 ∶ State, 𝑛 ∶ 𝑁 . Also, the projection functions get_state∶ Sys → State and 
get_ip∶ Sys →𝑁 are defined such that, get_state(sys(𝑝, 𝑛)) = 𝑝 and get_ip(sys(𝑝, 𝑛)) = 𝑛. Similarly, we define functions set_state and set_ip
to set the state and IP address. Note that these four functions are partially defined.

The behavior of our example is defined abstractly as a process 𝑃 , parameterized with a single state variable 𝑠 of sort Sys. The 
definition uses actions on, off , and initialize. The behavior is defined using a set of (recursive) condition-action-effect rules. A condition-

action-effect rule is of the shape ‘(condition) → action-effect’ which can be read as ‘if condition is true then do action and update 
the state with effect’. The operator + denotes a nondeterministic choice among the different rules. Operator 

∑
, parameterized with 

a local variable, denotes a generalized nondeterministic choice over rules parameterized with that variable.

𝑃 (s ∶ Sys) = (s ≈ uninit)→ initialize ⋅ 𝑃 (sys(p_off , zero))

+
∑
𝑛 ∶ 𝑁

(s ≉ uninit ∧ get_state(s) ≈ p_off )→ on ⋅ 𝑃 (set_state(set_ip(s, 𝑛),p_on))

+ (s ≉ uninit ∧ get_state(s) ≈ p_on)→ off ⋅ 𝑃 (set_state(set_ip(s, zero),p_off ))

The process 𝑃 describes that when the system is uninitialized, captured using condition 𝑠 ≈ uninit, a transition labelled with action 
initialize is taken, and the value of variable 𝑠 is updated to be sys(p_off , zero). For any natural number 𝑛, when the system is off, denoted 
by 𝑠 ≉ uninit ∧ get_state(𝑠) ≈ p_off , the transition labelled on can be taken, and in the next state, the IP address component of the state 
becomes 𝑛, and the state-component becomes p_on; this is denoted using set_state(set_ip(𝑠, 𝑛),p_on). When the system is on, it can take 
a transition labelled off , and similar to the previous case, the IP address is set to zero, and the state component is updated to p_off .

Note that equivalently, in the second condition-action-effect rule, we could have set 𝑠 in the next state to sys(p_on, 𝑛). In the same 
rule, the use of 

∑
𝑛 ∶ 𝑁 is shorthand for the following nondeterministic choice between infinitely many transitions:

+ (s ≉ uninit ∧ get_state(s) ≈ p_off )→ on ⋅ 𝑃 (set_state(set_ip(s, zero),p_on))

+ (s ≉ uninit ∧ get_state(s) ≈ p_off )→ on ⋅ 𝑃 (set_state(set_ip(s, succ(zero)),p_on))

+…

The above process serves as a compact description of a labelled transition system (LTS). The LTS for 𝑃 (uninit) is shown in Fig. 3. 
Note that this LTS has an infinite state space due to the use of natural numbers for IP addresses. However, this parameter does not 
affect the behavior of the system: the behavior when it is on, i.e., it is in a state sys(p_on, 𝑛), is bisimilar for all values of 𝑛. Since the 
state contained in state variable 𝑠 is used in the process, for instance to determine whether a transition is enabled, static analysis 
techniques that consider 𝑠 as a single entity are not able to simplify the description. Yet, intuitively, as the IP address contained in 
𝑠 is not used significantly, it is desirable for static analysis to detect this, and remove this component altogether, leading to a finite, 
bisimilar description. To enable such static analyses, it is beneficial to split parameter 𝑠 into multiple parameters, e.g., 𝑒𝑠, denoting 
whether the value of 𝑠 is uninit or sys(𝑝, 𝑛) for some 𝑝 and 𝑛, encoded as 𝑐uninit and 𝑐sys, respectively, and parameters 𝑠1sys and 𝑠2sys
storing the parameters 𝑝 and 𝑛 in case 𝑠 is sys(𝑝, 𝑛). Such a process could look as follows. Note that we omit the details of the data 
types. These are discussed in more detail later in the paper. 

𝑃 (𝑒𝑠 ∶ 𝑈Sys, 𝑠
1
sys ∶ State, 𝑠2sys ∶ 𝑁) = (𝑒𝑠 ≈ 𝑐uninit)→ initialize ⋅ 𝑃 (𝑐sys,p_off , zero)

+
∑
𝑛 ∶ 𝑁

(𝑒𝑠 ≉ 𝑐uninit ∧ 𝑝 ≈ p_off )→ on ⋅ 𝑃 (𝑒𝑠,p_on, 𝑛)

+ (es ≉ 𝑐uninit ∧ 𝑝 ≈ p_on)→ off ⋅ 𝑃 (𝑒𝑠,p_off , zero)
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𝑠 ≈ uninit

𝑠 ≈ sys(p_off , zero)

𝑠 ≈ sys(p_on, zero) 𝑠 ≈ sys(p_on, succ(zero))
…

initialize

on

off
on off

Fig. 3. LTS for process 𝑃 (init) of the running example. 

The transformation we present in this paper produces a description similar to the process described above, obtained from our running 
example. The reader should note that 𝑠2sys is not used significantly in this description, so it (and as result also the locally bound 
variable 𝑛) can be removed using for instance the parameter elimination technique from [22]. This reduced description has an 
underlying LTS of only 3 states.

3. Algebraic data types

In this paper we work in a setting where data is defined using algebraic data types. We give a brief overview of the concepts 
relevant to this paper. A good textbook introduction to algebraic data types can be found in [30]. For detailed definitions of the data 
types used in mCRL2 we refer to [25].

We use many-sorted algebras to allow for the definition of several sorts of data. A signature is a triple Σ = ( , , ) where 
is the set of sorts,  and  are disjoint sets of function symbols over  , called value constructors, and mappings, respectively. We 
typically write constructors instead of value constructors. The set of sorts  consists of sort names and function sorts. Function sorts are 
of the form 𝐷0 ×⋯ ×𝐷𝑛 →𝐷, for 𝐷𝑖,𝐷 ∈  for 0 ≤ 𝑖 ≤ 𝑛; sorts that are not function sorts are sort names. If 𝐷 =𝐷1 ×⋯ ×𝐷𝑛 →𝐷′

we write range(𝐷) for its range 𝐷′. Function symbols in  ∪ are of the form 𝑓 ∶ 𝐷1 ×⋯ ×𝐷𝑛 → 𝐷. If 𝑛 = 0, we say 𝑓 is a 
constant. We assume every signature has a sort name 𝐵 representing the Booleans.

Although they are syntactically not distinguished, the role of constructors and mappings is subtly different. Constructors are used 
to inductively define the elements of a sort, and introduce a means for pattern matching. Mappings define any other operation on 
an algebraic data type. As such, constructors play a crucial role when unfolding state variables in the technique that we propose. 
Note that not every sort is defined using constructors, the real numbers are an example of such a sort. We write  (𝐷) = {𝑓 ∶ 𝐷1 ×
⋯ ×𝐷𝑛 →𝐷′ ∈  ∣𝐷′ =𝐷} for the constructors of sort 𝐷. We assume a bijection 𝜄𝐷 between  (𝐷) and 0..| (𝐷)| − 1 ordering 
the constructors, and write 𝜄 if 𝐷 is clear from the context. For our examples we assume that 𝜄 is consistent with the order in which 
the constructors appear in the specification, and we leave its definition implicit. We say that 𝐷 is a constructor sort if, and only 
if,  (𝐷) ≠ ∅. A constructor sort 𝐷 is syntactically non-empty if there is a constructor 𝑓 ∶ 𝐷1 ×⋯ × 𝐷𝑛 → 𝐷 such that if 𝐷𝑖 is a 
constructor sort, then 𝐷𝑖 is syntactically non-empty, for 1 ≤ 𝑖 ≤ 𝑛. We require all constructor sorts to be syntactically non-empty, and 
for 𝑓 ∶ 𝐷 ∈  , range(𝐷) must not be a function sort. With every constructor sort 𝐷, we associate a unique default term, 𝖽𝖾𝖿𝐷 . Such 
a term exists due to syntactic non-emptiness.

Example 1. The sort 𝐵, representing the Booleans, from the previous section has two constructors, true and false that together allow 
us to describe all Booleans. Formally  (𝐵) = {true∶ 𝐵, false∶ 𝐵}. Likewise, sort 𝑁 with constructors zero and succ allows to describe 
all natural numbers. Similar as before, we have  (𝑁) = {zero∶ 𝑁, succ∶ 𝑁 →𝑁}. Note that sorts 𝐵 and 𝑁 are sort names, and sort 
𝑁 →𝑁 is a function sort. Both 𝐵 and 𝑁 are constructor sorts.

Given a set  of  -sorted variables, where 𝑥 ∈ 𝑆 for 𝑆 ∈  denotes that 𝑥 is a variable of sort 𝑆 , we can construct terms. Terms 
are syntactically described by the following grammar:

𝑡 ∶∶= 𝑥 ∣ 𝑓 ∣ 𝑡(𝑡,… , 𝑡)

where 𝑥 ∈  are variables, 𝑓 ∈  ∪ are sorted function symbols, where we sometimes write 𝑓 ∶ 𝐷1 ×⋯×𝐷𝑛 →𝐷 ∈  if the 
sort of 𝑓 is important, and 𝑡(𝑡,… , 𝑡) describes the application of a term to its arguments. For term 𝑡(𝑡1,… , 𝑡𝑛), 𝑡 is the head term and 
𝑡1,… , 𝑡𝑛 are the arguments; if 𝑡 is a function symbol, we typically refer to it as the head symbol. We use fv(𝑡) to denote the set of 
variables occurring in 𝑡, and we write 𝑒[𝑥 ∶= 𝑒′] for the syntactic substitution of 𝑥 with 𝑒′ in 𝑒.
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Equality of terms is defined using an equational specification  = (Σ,𝐸), where Σ is a signature and 𝐸 is a set of conditional 
equations of the form ⟨𝑐 → 𝑡 = 𝑢⟩, where 𝑐, 𝑡, 𝑢 are terms over  . We typically write ⟨𝑡 = 𝑢⟩, when 𝑐 = true. Note that the mCRL2 
toolset uses term rewriting, interpreting the equations in a strictly left to right fashion, to simplify terms.

The core ideas of our technique are independent of the precise semantics of the data types. For the sake of conciseness we use the 
model class semantics of the data types in mCRL2 [25]. The results carry over straightforwardly when using different semantics.

Sorts are mapped into their semantic counterpart using applicative structures. A set {𝑀𝐷 ∣𝐷 ∈ } is an applicative structure if, and 
only if, 𝑀𝐵 = {𝐭𝐫𝐮𝐞, 𝐟𝐚𝐥𝐬𝐞}, and if 𝐷 =𝐷1 ×⋯×𝐷𝑛 →𝐷′, then 𝑀𝐷 contains all (semantic) functions from 𝑀𝐷1

×⋯×𝑀𝐷𝑛
→𝑀𝐷′ . 

Function �−� maps every function symbol in the equational specification into its semantic counterpart, that is, for all 𝑓 ∈  ∪

of sort 𝐷, �𝑓� ∈𝑀𝐷 . This is generalized to arbitrary terms as follows:

�𝑥�𝜎 = 𝜎(𝑥) if 𝑥 ∈ 

�𝑓�𝜎 = �𝑓� if 𝑓 ∈  ∪

�𝑡(𝑡1,… , 𝑡𝑛)�𝜎 = �𝑡�𝜎(�𝑡1�𝜎,… , �𝑡𝑛�
𝜎)

where 𝜎 ∶  →
⋃
𝐷∈𝑀𝐷 is a valuation that ensures that 𝜎(𝑥) ∈𝑀𝐷 for all 𝑥 ∶ 𝐷. We write 𝜎[𝑣∕𝑑] for the valuation that assigns 𝑣

to 𝑑 and otherwise behaves as 𝜎. The model 𝕄 of a equational specification is an applicative structure together with an interpretation 
function, that in addition ensures that for equations ⟨ , 𝑐→ 𝑡 = 𝑢⟩ ∈𝐸 and valuations 𝜎, if �𝑐�𝜎 = 𝐭𝐫𝐮𝐞 then �𝑡�𝜎 = �𝑢�𝜎 ; �true�𝜎 = 𝐭𝐫𝐮𝐞, 
�false�𝜎 = 𝐟𝐚𝐥𝐬𝐞, for all valuations 𝜎; and if 𝐷 is a constructor sort, then every 𝑣 ∈𝑀𝐷 is a constructor element. Element 𝑣 ∈𝑀𝐷 is a 
constructor element if a constructor function 𝑓 ∈  of sort 𝐷1 ×⋯×𝐷𝑛 →𝐷 exists such that 𝑣 = �𝑓�(𝑣1,… , 𝑣𝑛) where 𝑣𝑖 is either a 
constructor element of sort 𝐷𝑖 , or sort 𝐷𝑖 is not a constructor sort. We write 𝑡 ≡ 𝑡′ for terms 𝑡 and 𝑡′ if for all models, �𝑡�𝜎 = �𝑡′�𝜎 for 
all valuations 𝜎.

In the remainder, we use some (standard) properties of the semantics of algebraic data types. The first property states that the 
valuation of variables that do not appear in a term do not affect the semantics of the term.

Lemma 1. For all terms 𝑡, and variables 𝑦 such that 𝑦∉ fv(𝑡), for all values 𝑣, and valuations 𝜎

�𝑡�𝜎[𝑣∕𝑦] = �𝑡�𝜎 .

In case 𝑡 is closed, that is fv(𝑡) = ∅, we have �𝑡�𝜎 = �𝑡�𝜎
′

for all 𝜎,𝜎′, and we sometimes write �𝑡�.
Also, syntactic substitutions can be moved into the valuation by evaluating the right hand side in the context of the same valuation.

Lemma 2. For all terms 𝑡 and 𝑒, variables 𝑑 and valuations 𝜎

�𝑡[𝑑 ∶= 𝑒]�𝜎 = �𝑡�𝜎[�𝑒�
𝜎∕𝑑].

Finally, we remark on the fact that, if 𝐷 is a constructor sort, every term 𝑡 of sort 𝐷 can be written in terms of a constructor 
application.

Lemma 3. Let 𝐷 be a constructor sort. Then for every term 𝑡 of sort 𝐷, and valuation 𝜎, we have

�𝑡�𝜎 = �𝑓𝑖(𝑥𝑖,… , 𝑥𝑚𝑖 )�
𝜎[𝑣1∕𝑥𝑖,…,𝑣𝑚𝑖 ∕𝑥𝑚𝑖 ]

for some constructor 𝑓𝑖 ∶ 𝐷1 ×⋯ ×𝐷𝑚𝑖 →𝐷 ∈  , variables 𝑥𝑖 of sort 𝐷𝑖 and 𝑣𝑖 ∈𝑀𝐷𝑖
.

Proof. Fix 𝐷, 𝑡 and 𝜎 as above. Note that �𝑡�𝜎 = 𝑣 for some 𝑣 ∈𝑀𝐷 . As 𝐷 is a constructor sort, 𝑣 is a constructor element, hence 
a constructor function 𝑓𝑖 ∈  exists of sort 𝐷1 ×⋯ ×𝐷𝑚𝑖 →𝐷 such that 𝑣 = �𝑓𝑖�(𝑣1,… , 𝑣𝑚𝑖 ). Now, choose 𝑥1,… , 𝑥𝑚𝑖 ∈  fresh, 
then according to the semantics, �𝑓𝑖�(𝑣1,… , 𝑣𝑚𝑖 ) = �𝑓𝑖(𝑥1,… , 𝑥𝑚𝑖 )�

𝜎[𝑣1∕𝑥1 ,…,𝑣𝑚𝑖 ∕𝑥𝑚𝑖 ]. □

4. Unfolding state variables

The unfolding of state variables was introduced in the context of μCRL by Groote and Lisser under the name structelm [22], and 
has later been implemented in the mCRL2 toolset in a tool called lpsparunfold. The main idea is that a term from a constructor 
sort whose head symbol is a constructor can be replaced by separate terms for the name of the constructor and each of the arguments.

More concretely, if we look at the description of our running example, there are three different ways in which a state variable 
appears, and that therefore need to be taken into account when unfolding:

1. The variable is declared, and this declaration must be split into multiple declarations. This is formalized in Section 4.2.

2. A variable can be used in a term. The term must be replaced by an equivalent term using the newly declared variables instead 
of the variable that is replaced. This is formalized in Section 4.3.
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3. A variable can be assigned to. This variable assignment must be split into assignments to the variables that it is replaced by. This 
is formalized in Section 4.4.

Example 2. Recall our motivating example from Section 2. The single variable 𝑠 is replaced by three variables: 𝑒𝑠 ∶ 𝑈Sys, 𝑠1sys ∶ State
and 𝑠2sys ∶ 𝑁 , where 𝑒𝑠 represents the constructor at the head of 𝑠, and 𝑠1sys and 𝑠2sys are the arguments that are used when the 
constructor is sys.

The occurrence of 𝑠 in condition 𝑐 ≈ uninit of the first summand (i.e., the first condition-action-effect rule) can be replaced, for 
instance, by if (𝑒𝑠 ≈ 𝑐uninit,uninit, sys(𝑠1sys, 𝑠

2
sys)). Essentially, this uses 𝑒𝑠 to determine which constructor was at the head of 𝑠, and based 

on that it returns the term that is equivalent to 𝑠. If 𝑒𝑠 is 𝑐uninit , the result is uninit, otherwise the result is sys(𝑠1sys, 𝑠
2
sys). We later 

generalize this idea by introducing case functions that facilitate reasoning about sorts with more than two constructors.

Finally, again in the first summand, the assignment of sys(p_off , zero) to 𝑠 must be split into assignments of the terms 𝑐sys, p_off , 
and zero, to parameters 𝑒𝑠, 𝑠1sys and 𝑠2sys, respectively. Note that the assignments to these different parameters are independent.

To facilitate these three transformations, we first extend the specification of our algebraic data type, and subsequently use the 
new definitions to describe the necessary transformations.

4.1. Extending the algebraic data types

The core of our unfolding is based on Groote and Lisser’s technique in [22]. In particular, the extension of the equational specifi-

cation that we present here is similar to that in [22]. We first introduce the extension of data types using our running example, after 
which we recall the formal definitions.

When unfolding a sort 𝐷, a new equational specification is constructed that extends the equational specification  with a new 
sort 𝑈𝐷 , to represent the constructors of 𝐷, constructors for this new sort, as well as case functions, determinizers and projection 
functions and the associated equations.

Example 3. Recall the equational specification from Fig. 2. We unfold sort Sys. Note that  (Sys) = {sys∶ State×𝑁 → Sys,uninit∶ Sys}, 
that is it has two constructors, sys and uninit. The equational specification of the running example is extended with the following.

sort 𝑈Sys;
cons 𝑐sys, 𝑐uninit ∶ 𝑈Sys;
map CSys ∶ 𝑈Sys × Sys × Sys → Sys

detSys ∶ Sys →𝑈Sys;
𝜋1

sys ∶ Sys → State;
𝜋2

sys ∶ Sys →𝑁 ;
var 𝑥,𝑥1, 𝑥2 ∶ Sys; 𝑒  ∶ 𝑈Sys;

𝑦1 ∶ State;𝑦2 ∶ 𝑁 ;

eqn CSys(𝑐uninit , 𝑥1, 𝑥2) = 𝑥1;
CSys(𝑐sys, 𝑥1, 𝑥2) = 𝑥2;
CSys(𝑒, 𝑥, 𝑥) = 𝑥;
detSys(uninit) = 𝑐uninit;
detSys(sys(𝑦1, 𝑦2)) = 𝑐sys;
𝜋1

sys(uninit) = p_on;
𝜋2

sys(uninit) = 0;
𝜋1

sys(sys(𝑦1, 𝑦2)) = 𝑦1;
𝜋2

sys(sys(𝑦1, 𝑦2)) = 𝑦2;

The explanation of the additions is as follows. We add constructor sort 𝑈Sys, with constructors 𝑐sys, 𝑐uninit , i.e., we introduce one 
new constructor in sort 𝑈Sys for every constructor in the unfolded sort. Case function CSys is used in the unfolding of processes to 
reconstruct a term of sort Sys from the unfolded parts, e.g., CSys(𝑐sys,uninit, sys(𝑝_on,3)) = sys(𝑝_on,3). The equation CSys(𝑒, 𝑥, 𝑥) = 𝑥
is used to facilitate simplifications in the implementation even when the arguments do not yet have a concrete value. We add 
determinizer functions detSys that are used to recognize the head symbol of a term of sort Sys, and map it onto the corresponding 
constructor in 𝑈Sys, e.g., detSys(sys(𝑝_on,3)) = 𝑐sys. Projection functions 𝜋1sys and 𝜋2sys are added to extract the arguments of a term with 
head symbol sys, e.g., 𝜋2sys(sys(𝑝_on,3)) = 3; if this projection function is applied to uninit it returns a default value. Since constructor 
uninit has no arguments, there are no projection functions 𝜋uninit .

To be effective in practice, the projection and determinizer functions need to distribute over if-then-else and the case functions. 
Therefore, also the following distribution laws are added.

var 𝑥1, 𝑥2 ∶ Sys; 𝑒  ∶ 𝑈Sys;𝑏  ∶ 𝐵
eqn 𝜋1

sys(CSys(𝑒, 𝑥1, 𝑥2)) = CSys(𝑒, 𝜋1
sys(𝑥1), 𝜋

1
sys(𝑥2));

𝜋1
sys(if (𝑏, 𝑥1, 𝑥2)) = if (𝑏, 𝜋1

sys(𝑥1), 𝜋
1
sys(𝑥2));

𝜋2
sys(CSys(𝑒, 𝑥1, 𝑥2)) = CSys(𝑒, 𝜋2

sys(𝑥1), 𝜋
2
sys(𝑥2));

𝜋2
sys(if (𝑏, 𝑥1, 𝑥2)) = if (𝑏, 𝜋2

sys(𝑥1), 𝜋
2
sys(𝑥2));

detSys(CSys(𝑒, 𝑥1, 𝑥2)) = CSys(𝑒,detSys(𝑥1),detSys(𝑥2));
detSys(if (𝑏, 𝑥1, 𝑥2)) = if (𝑏,detSys(𝑥1),detSys(𝑥2));

We now formally define the unfolding of a constructor sort 𝐷.
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Definition 1 (Unfolding of sort 𝐷 [22]). Fix equational specification  = (Σ,𝐸) with signature Σ = ( , , ). Let 𝐷 ∈  be a 
constructor sort.

The unfolding of 𝐷 in  is the equational specification ′ = (Σ′,𝐸′), where Σ′ = ( ′,
′,

′), defined as follows.

•  ′ =  ∪ {𝑈𝐷}, i.e., we add a fresh constructor sort 𝑈𝐷 .

• 
′ =  ∪ {𝑐𝑓 ∣ 𝑓 ∶ 𝐷1 ×⋯ ×𝐷𝑛 →𝐷 ∈  (𝐷)}, i.e., we add one (unique, fresh) constant constructor 𝑐𝑓 for every constructor 

𝑓 ∶ 𝐷1 ×⋯ ×𝐷𝑛 →𝐷 ∈  (𝐷).
• 

′ = ∪ {C𝐷 ∶ 𝑈𝐷 ×𝐷 ×⋯ ×𝐷→𝐷,det𝐷 ∶ 𝐷→𝑈𝐷} ∪ Π, with:

– case function C𝐷 ∶ 𝑈𝐷 ×𝐷 ×⋯ ×𝐷→𝐷 with arity | (𝐷)|+ 1;

– determinizer function det𝐷 ∶ 𝐷→ 𝑈𝐷 that given a term of sort 𝐷 determines the constructor of sort 𝑈𝐷 that represents its 
head symbol; and

– Π =
⋃
𝑓 ∶ 𝐷1×⋯×𝐷𝑛→𝐷∈ (𝐷) Π𝑓 , where for every constructor 𝑓 ∶ 𝐷1 ×⋯ ×𝐷𝑛 → 𝐷 ∈  (𝐷), the set of projection functions 

Π𝑓 = {𝜋𝑖
𝑓
∶ 𝐷→𝐷𝑖 ∣ 1 ≤ 𝑖 ≤ arity(𝑓 )} where 𝜋𝑖

𝑓
obtains the 𝑖th argument, given a term of sort 𝐷 with head symbol 𝑓 .

We assume that the mappings added here are fresh, i.e., they do not appear in  ∪  .

• 𝐸′ =𝐸 ∪𝐸C𝐷 ∪𝐸det𝐷 ∪𝐸Π ∪𝐸dist are the new equations for each of the mappings, defined as follows:

𝐸C𝐷 = {C𝐷(𝑐𝑓 , 𝑥1,… , 𝑥| (𝐷)|) = 𝑥𝜄(𝑓 ) ∣ 𝑓 ∶ 𝐷1 ×⋯ ×𝐷𝑛 →𝐷 ∈  (𝐷)} ∪ {C𝐷(𝑒, 𝑥,… , 𝑥) = 𝑥}

𝐸det𝐷 = {det𝐷(𝑓 (𝑦1,… , 𝑦𝑛)) = 𝑐𝑓 ∣ 𝑓 ∶ 𝐷1 ×⋯ ×𝐷𝑛 →𝐷 ∈  (𝐷)}

𝐸Π =
⋃

𝑓 ∶ 𝐷1×⋯×𝐷𝑛→𝐷∈ (𝐷)
𝐸Π𝑓

𝐸Π𝑓 = {𝜋𝑖
𝑓
(𝑓 (𝑦1,… , 𝑦𝑛)) = 𝑦𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑛} ∪

⋃
𝑔∶ 𝐷′

1×⋯×𝐷′
𝑚→𝐷∈ (𝐷),𝑔≠𝑓

{𝜋𝑖
𝑓
(𝑔(𝑦1,… , 𝑦𝑚)) = 𝖽𝖾𝖿𝐷𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑛}

So, the case function, if provided with the constructor 𝑐𝑓 that corresponds to 𝑓 , returns the argument corresponding to index 
𝜄(𝑓 ). Determinizer det𝐷 , provided with a term that has 𝑓 as head symbol, returns the constructor of sort 𝑈𝐷 used to represent 
this head symbol. The set 𝐸Π gives the equations to project the arguments of 𝑓 . A projection function 𝜋𝑖

𝑓
returns default value 

𝖽𝖾𝖿𝐷𝑖 in case it is applied to a 𝑔 ≠ 𝑓 . 𝐸dist is the set of distribution laws:

{𝜋𝑖
𝑓
(C𝐷(𝑥,𝑥1,… , 𝑥| (𝐷)|)) = C𝐷(𝑥,𝜋𝑖𝑓 (𝑥1),… , 𝜋𝑖

𝑓
(𝑥| (𝐷)|)) ∣ 𝜋𝑖𝑓 ∈Π}

∪ {𝜋𝑖
𝑓
(if (𝑏, 𝑥1, 𝑥2)) = if (𝑏, 𝜋𝑖

𝑓
(𝑥1), 𝜋𝑖𝑓 (𝑥2)) ∣ 𝜋

𝑖
𝑓
∈Π}

∪ {det𝐷(C𝐷(𝑥,𝑥1,… , 𝑥| (𝐷)|)) = C𝐷(𝑥,det𝐷(𝑥1),… ,det𝐷(𝑥| (𝐷)|))}
∪ {det𝐷(if (𝑏, 𝑥1, 𝑥2)) = if (𝑏,det𝐷(𝑥1),det𝐷(𝑥2))}

To ensure well-typedness of the distribution laws, equations analogous to those above and case functions C𝐷 ∶ 𝑈𝐷×𝐷𝑖×⋯×𝐷𝑖 →
𝐷𝑖 and C𝐷 ∶ 𝑈𝐷 ×𝑈𝐷 ×⋯ ×𝑈𝐷 →𝑈𝐷 , both with arity | (𝐷)|+ 1, are also added as needed.

To avoid rendering the equational specification inconsistent (that is, we should not be able to derive 𝐭𝐫𝐮𝐞 = 𝐟𝐚𝐥𝐬𝐞) we need to 
ensure that the new equational specification is a conservative extension. This means that using equations that are added in the 
unfolding, we should not be able to derive any new facts about the data types in the original equational specification. We remark on 
two aspects of our unfolding that together ensure the unfolded equational specification is a conservative extension.

First, the unfolding of sort 𝐷 does not define any additional requirements regarding (in)equality of the constructors of sort 𝑈𝐷 . 
This is motivated by the following example.

Example 4. Consider sort 𝐷 with constructors 𝑓 ∶ 𝐴→ 𝑆 and 𝑔∶ 𝑆 such that 𝑓 (𝑎) ≡ 𝑔 for some 𝑎 ∈ 𝐴. When unfolding sort 𝐷, we 
introduce sort 𝑈𝐷 with constructors 𝑐𝑓 , 𝑐𝑔 ∶ 𝑈𝐷 . Now, suppose we would require these constructors to be distinct, e.g. by adding the 
following equations:

𝑐𝑓 ≈ 𝑐𝑔 = false;
𝑐𝑔 ≈ 𝑐𝑓 = false;

This would make the equational specification inconsistent, as shown by the following derivation.

true = 𝑐𝑓 ≈ 𝑐𝑓
= 𝑐𝑓 ≈ det𝐷(𝑓 (𝑎))

=† 𝑐𝑓 ≈ det𝐷(𝑔)

= 𝑐𝑓 ≈ 𝑐𝑔
= false
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where at † we use the assumption that 𝑓 (𝑎) ≡ 𝑔.

This shows that we cannot reuse existing data types such as Booleans to represent sort 𝑈𝐷 .

To obtain a conservative extension, in addition, we need to impose a mild restriction on sorts that we unfold. A sort that can be 
unfolded is called unfoldable and is defined as follows.

Definition 2. Fix equational specification  = (Σ,𝐸) with signature Σ = ( , , ). Sort 𝐷 ∈  is unfoldable if and only if it is a 
constructor sort, and for all constructors 𝑓 ∶ 𝐷1 ×⋯ ×𝐷𝑛 → 𝐷 ∈  (𝐷), and terms 𝑡1,… , 𝑡𝑛, 𝑡

′
1,… , 𝑡′𝑛, if 𝑓 (𝑡1,… , 𝑡𝑛) ≡ 𝑓 (𝑡′1,… , 𝑡′𝑛)

then 𝑡𝑖 ≡ 𝑡′𝑖 for all 𝑖.

In the remainder of this paper, we implicitly assume that sorts that we unfold satisfy this restriction. The following example 
illustrates the need for this restriction.

Example 5. Consider sort 𝐷 with constructor 𝑓 ∶ 𝐴→ 𝐷, and terms 𝑎 and 𝑏 of sort 𝐴 such that it does not hold that 𝑎 ≡ 𝑏, but 
𝑓 (𝑎) ≡ 𝑓 (𝑏). Using the equations introduced for the projection functions, we now obtain the following: 𝑎 ≡ 𝜋𝑓 (𝑓 (𝑎)) ≡ 𝜋𝑓 (𝑓 (𝑏)) ≡ 𝑏. 
The unfolding of the equational specification allows us to derive new equivalences on the original sort 𝐷, so the new equational 
specification is not a conservative extension.

Unfolding of an unfoldable sort 𝐷 yields a conservative extension. That is, using the new equations that result from unfolding sort 
𝐷, we cannot derive any new facts about the original equational specification.

Lemma 4. Let  be an equational specification with unfoldable sort 𝐷, and let ′ be the unfolding of 𝐷 in . Then ′ is a conservative 
extension of .

This follows from the definitions of the new equations, and the assumption that 𝐷 is unfoldable. In particular, the only way to 
derive new facts about the original equational specification is through the application of projection functions, in which case the 
assumption guarantees that these ‘new’ facts were already present in the original specification.

In the remainder of this section we describe the three transformations needed to achieve the unfolding of process parameters.

4.2. Splitting variable declarations

When unfolding a state variable 𝑑 ∶ 𝐷 of unfoldable sort 𝐷, its declaration is split into a declaration 𝑒𝑑 ∶ 𝑈𝐷 , capturing which 
constructor of sort 𝐷 was applied, and for every constructor 𝑓𝑖 of sort 𝐷, declarations of state variables for each of the parameters of 
𝑓𝑖. This is defined using 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑). Its definition uses 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑖) to introduce variables for the arguments of constructor 𝑓𝑖 . This 
idea was described in [22]; we here formalize the idea.

Definition 3. Let 𝑑 ∶ 𝐷 be a variable of constructor sort 𝐷.

• Let 𝑓𝑖 ∶ 𝐷1
𝑖
×⋯ ×𝐷𝑚𝑖

𝑖
→𝐷 ∈  (𝐷), then

𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑖) = 𝑑1𝑓𝑖 ∶ 𝐷
1
𝑖 ,… ,…𝑑

𝑚𝑖
𝑓𝑖

∶ 𝐷𝑚𝑖
𝑖
,

where all 𝑑𝑗
𝑓𝑖

are fresh. Note that if 𝑓𝑖 is a constant, 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑖) is the empty sequence.

• The variables introduced for 𝑑 are defined as follows.

𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) = 𝑒𝑑 ∶ 𝑈𝐷,𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0),… ,𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)

Note that 𝑒𝑑 is fresh.

In Definition 3 we define how we split a variable declaration, by the use of 𝗉𝖺𝗋𝖺𝗆𝗌, defining new variables and their types. With a 
slight abuse of notation we will also use 𝗉𝖺𝗋𝖺𝗆𝗌 to indicate the use of the newly introduced variables, in which case their sorts are 
omitted.

We illustrate the definition using an example.

Example 6. Recall our running example with state variable 𝑠 ∶ Sys. Sort Sys has two constructors, uninit∶ Sys and sys∶ State×𝑁 → Sys. 
Note that 𝗉𝖺𝗋𝖺𝗆𝗌(𝑠,uninit) is empty, and 𝗉𝖺𝗋𝖺𝗆𝗌(𝑠, sys) = 𝑠1sys ∶ State, 𝑠2sys ∶ 𝑁 . We thus get 𝗉𝖺𝗋𝖺𝗆𝗌(𝑠) = 𝑒𝑠 ∶ 𝑈𝑆𝑦𝑠, 𝑠1sys ∶ State, 𝑠2sys ∶ 𝑁 .
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4.3. Reconstructing variable use in a term

Next we turn our attention to terms. Suppose we have a term 𝑡 that contains occurrences of variable 𝑑 that is being unfolded. We 
need to replace 𝑡 with an equivalent term using 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) instead of 𝑑. The straightforward idea described by [22] is to syntactically 
substitute 𝑑 with an application of the case function to 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑).

We call this (default) case placement, and formalize it as follows.

Definition 4. Let 𝑡 be an arbitrary term, and 𝑑 ∶ 𝐷 a variable of constructor sort 𝐷. The case placement is the term 𝖼𝗉(𝑡, 𝑑) defined as:

𝖼𝗉(𝑡, 𝑑) = 𝑡[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]

Example 7. Recall our running example with state variable 𝑠 ∶ Sys. Every occurrence of 𝑠 is replaced by CSys(𝑒𝑠,uninit, sys(𝑠1sys, 𝑠
2
sys)). 

So, if 𝑒𝑠 is the constructor 𝑐uninit of sort 𝑈Sys that represents uninit, this term evaluates to uninit; if 𝑒𝑠 is 𝑐sys, the term evaluates to sys
applied to arguments 𝑠1sys and 𝑠2sys.

For condition 𝑠 ≈ uninit of the first summand in our running example, we then obtain the following term in which the case function 
has been placed:

𝖼𝗉(𝑠 ≈ uninit, 𝑠) = (𝑠 ≈ uninit)[𝑠 ∶= CSys(𝑒𝑠,uninit, sys(𝑠1sys, 𝑠
2
sys))]

= CSys(𝑒𝑠,uninit, sys(𝑠1sys, 𝑠
2
sys)) ≈ uninit

Alternative case placement In the standard definition of case placement, 𝖼𝗉, case functions are placed at an innermost level. This can 
limit simplification using the equational specification; e.g., the term CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys)) ≈ uninit from Example 7 cannot be 

simplified since we have no equation that allows distributing the case function over ≈.

In many cases, placing the case function at an outermost level aids simplification and subsequent analysis. Formally, every term 
𝑡 now becomes C𝐷(𝑒𝑑 , 𝑡[𝑑 ∶= 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0))],… , 𝑡[𝑑 ∶= 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛))]). However, this may lead to an exponential blow-up in 
the size of the terms if multiple parameter unfoldings are performed successively. Therefore, we propose a new intermediate approach 
that places case functions at the level where subterms are no longer Boolean. We call this alternative case placement. Intuitively, starting 
from the outermost placement, we distribute the case function over the standard Boolean operators. This is possible by the addition 
of case function C𝐷 ∶ 𝑈𝐷 ×𝐵 ×⋯ ×𝐵→𝐵 with arity | (𝐷)|+ 1.

Definition 5. Given a term 𝑡 and a variable 𝑑 ∶ 𝐷, the alternative case placement is the term 𝖺𝖼𝗉(𝑡, 𝑑), where 𝖺𝖼𝗉 is the recursive 
function:

𝖺𝖼𝗉(𝑏, 𝑑) = C𝐷(𝑒𝑑 , 𝑏[𝑑 ∶= 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0))],… , 𝑏[𝑑 ∶= 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛))])
𝖺𝖼𝗉(¬𝜑,𝑑) = ¬𝖺𝖼𝗉(𝜑,𝑑)
𝖺𝖼𝗉(𝜑 ∧𝜓,𝑑) = 𝖺𝖼𝗉(𝜑,𝑑) ∧ 𝖺𝖼𝗉(𝜓,𝑑)
𝖺𝖼𝗉(𝜑 ∨𝜓,𝑑) = 𝖺𝖼𝗉(𝜑,𝑑) ∨ 𝖺𝖼𝗉(𝜓,𝑑)
𝖺𝖼𝗉(𝜑⇒ 𝜓,𝑑) = 𝖺𝖼𝗉(𝜑,𝑑)⇒ 𝖺𝖼𝗉(𝜓,𝑑)

Here, 𝜑 and 𝜓 are arbitrary terms and 𝑏 is a term that does not have ¬,∧,∨,⇒ as its top-level operator.

Note that in the first case of the definition of 𝖺𝖼𝗉, 𝖺𝖼𝗉(𝑏, 𝑑) is equivalent to 𝑏 if 𝑑 does not occur in 𝑏, by the equation C𝐷(𝑒𝑑 , 𝑥, 𝑥) = 𝑥.

We have the following relation between 𝖼𝗉 and 𝖺𝖼𝗉.

Lemma 5. Let 𝑡 be an arbitrary term, and 𝑑 a variable, then

𝖼𝗉(𝑡, 𝑑) ≡ 𝖺𝖼𝗉(𝑡, 𝑑).

Proof. Follows by induction on 𝑡 and a case analysis on 𝑒𝑑 . □

We next discuss the benefits of alternative case placement on our running example.

Example 8. In Example 7 we established that 𝖼𝗉(𝑠 ≈ uninit, 𝑠) = CSys(𝑒𝑠,uninit, sys(𝑠1sys, 𝑠
2
sys)) ≈ uninit. This case function cannot be 

simplified further, as the first argument 𝑒𝑠 is a variable, and it cannot be matched to any of the equations in the equational specification; 
also, there are no equations that allow distributing equality over the case function. When applying alternative case placement, the 
equality appears within the scope of the arguments of the case function, and the equations for ≈ can be used to simplify the individual 
arguments.
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Concretely, we have the following:

𝖺𝖼𝗉(𝑠 ≈ uninit, 𝑠) = CSys(𝑒𝑠, (𝑠 ≈ uninit)[𝑠 ∶= uninit], (𝑠 ≈ uninit)[𝑠 ∶= sys(𝑠1sys, 𝑠
2
sys)])

= CSys(𝑒𝑠,uninit ≈ uninit, sys(𝑠1sys, 𝑠
2
sys) ≈ uninit)

= CSys(𝑒𝑠, true, false)

Observe that the term has been simplified further. In particular, there are now no references to 𝑠1sys and 𝑠2sys.

4.4. Splitting variable assignments

The final case we need to consider when unfolding state variables is an assignment 𝑑 ∶= 𝑒. If 𝑑 is replaced by 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑), we 
also need to calculate the appropriate assignments to the new variables from the single term 𝑒. Groote and Lisser [22] show how to 
achieve this using the determinizer and projection functions. We formalize this as follows.

Definition 6. Let 𝑡 be a term of constructor sort 𝐷, with  (𝐷) = {𝑓0,… , 𝑓𝑛}. We define the following.

𝗎𝗇𝖿𝗈𝗅𝖽(𝑡) = det𝐷(𝑡), 𝜋1𝑓0 (𝑡),… , 𝜋
𝑚0
𝑓0

(𝑡),… , 𝜋1
𝑓𝑛
(𝑡),… , 𝜋

𝑚𝑛
𝑓𝑛

(𝑡)

where 𝑚𝑖 denotes the index of the last argument of constructor 𝑓𝑖 .

Example 9. Recall our running example. The first summand performs the assignment 𝑠 ∶= sys(p_off , zero). When unfolding 𝑠, instead 
the variables become 𝑒𝑠, 𝑠1sys, 𝑠

2
sys, and the values that are assigned are obtained by using 𝗎𝗇𝖿𝗈𝗅𝖽(sys(p_off , zero)), which is calculated 

as follows:

𝗎𝗇𝖿𝗈𝗅𝖽(sys(p_off , zero)) = detSys(sys(p_off , zero)), 𝜋1sys(sys(p_off , zero)), 𝜋2sys(sys(p_off , zero))

= 𝑐sys,p_off , zero

Note that in the calculation we use the definitions of detSys and 𝜋𝑖sys described in Example 3.

Simplifications for pattern matching rules As a result of unfolding variable assignments, we regularly obtain terms of the shape 
det𝐷(ℎ(𝑡1,… , 𝑡𝑛)) or 𝜋𝑙

𝑓𝑘
(ℎ(𝑡1,… , 𝑡𝑛)) for some mapping ℎ (i.e., ℎ is not a constructor). Both of these cannot be simplified any further, 

often due to the fact that there is insufficient information to apply the pattern matching in the equations for ℎ. To alleviate this, we 
propose a new method to perform one unfolding of the function ℎ, allowing us to achieve the necessary simplifications. Let us first 
consider an example.

Example 10. Suppose we have a definition of lists of natural numbers, with a function plusone, which is defined using pattern 
matching, that increments every element of a list.

sort ListN;
cons []∶ ListN;

⊳  ∶ 𝑁 × ListN → ListN;
map plusone ∶ ListN → ListN;
var 𝑥 ∶𝑁 ; xs ∶ ListN;
eqn plusone([]) = [];

plusone(𝑥 ⊳ xs) = (𝑥+ 1)⊳ plusone(xs);

Suppose we have a state variable 𝑙 of sort ListN with an assignment 𝑙 ∶= plusone(𝑙). The first argument of 𝗉𝖺𝗋𝖺𝗆𝗌(𝑙) is 𝑒𝑙 ∶ 𝑈ListN , 
and the first argument update obtained from 𝗎𝗇𝖿𝗈𝗅𝖽(plusone(𝑙)) is the term detListN (plusone(CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠

2
⊳))), which cannot be 

simplified any further. Here the term detListN (plusone(CListN (𝑒𝑙,[], 𝑠1⊳⊳𝑠
2
⊳))) is found as follows: first, by definition of 𝖼𝗉, 𝑙 is replaced in 

plusone(𝑙) by CListN (𝑒𝑙,[], 𝑠1⊳ ⊳𝑠
2
⊳), then, 𝗎𝗇𝖿𝗈𝗅𝖽 is applied to plusone(CListN (𝑒𝑙,[], 𝑠1⊳ ⊳𝑠

2
⊳)) such that detListN (plusone(CListN (𝑒𝑙,[], 𝑠1⊳ ⊳

𝑠2⊳))) is obtained.

Intuitively, since detListN considers only its argument’s constructor, and plusone does not modify the constructor, detListN (𝑙) =
detListN (plusone(𝑙)) for all 𝑙. However, due to the pattern matching nature of plusone, we can only eliminate the application of detListN
by means of term rewriting if 𝑙 is of the shape [] or 𝑥 ⊳ xs. Thus, we are not able to automatically deduce that the update in the 
example above is in fact equal to 𝑒𝑙 , and that the assignment does not modify 𝑒𝑙 . To facilitate further static analysis in the above 
example, it would be helpful to have a general technique for further simplification in such situations.

Our approach is to compute a single non-pattern-matching equation for each mapping that is equivalent to its original pattern-

matching-based definition. The pattern matching logic will instead be encoded in a tree of case functions. We will apply the new 
singly-defined rule in selected places in order to eliminate determinizer and projection functions by means of ordinary rewriting. At 
its core, our transformation is based on the following observation.
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Lemma 6. Let ℎ ∶𝐷1 ×⋯ ×𝐷𝑛 →𝐷 be a mapping and 𝑡1,… , 𝑡𝑛 arbitrary terms. Then we have for any 𝜎 and any 1≤ 𝑖 ≤ 𝑛:

�ℎ(𝑡1,… , 𝑡𝑛)�𝜎 = �C𝐷𝑖 (det𝐷𝑖 (𝑡𝑖),

ℎ(𝑡1,… , 𝑡𝑖−1, 𝑓1(𝜋1𝑓1 (𝑡𝑖),… , 𝜋
𝑚1
𝑓1

(𝑡𝑖)), 𝑡𝑖+1,… , 𝑡𝑛),

… ,

ℎ(𝑡1,… , 𝑡𝑖−1, 𝑓| (𝐷𝑖)|(𝜋1𝑓| (𝐷𝑖)| (𝑡𝑖),… , 𝜋
𝑚| (𝐷𝑖)|
𝑓| (𝐷𝑖)| (𝑡𝑖)), 𝑡𝑖+1,… , 𝑡𝑛))�𝜎

where 𝑚𝑘 denotes the index of the last argument of constructor 𝑓𝑘.

Proof. Let ℎ, 𝑡1,… , 𝑡𝑛 and 𝑖 be as above. By Lemma 3, let �𝑡𝑖�𝜎 = �𝑓𝑘(𝑢1,… , 𝑢𝑚𝑘 )�
𝜎 for some 1 ≤ 𝑘 ≤ | (𝐷𝑖)| and some terms 

𝑢1,… , 𝑢𝑚𝑘 . After unfolding the semantics, we can apply the equations

det𝐷𝑖 (𝑓𝑘(𝑢1,… , 𝑢𝑚𝑘 )) = 𝑐𝑓𝑘
C𝐷𝑖 (𝑐𝑓𝑘 , 𝑥1,… , 𝑥𝑘,… , 𝑥| (𝐷𝑖)|) = 𝑥𝑘

to obtain the desired equality. □

We repeatedly apply this equality until each occurrence of ℎ can be rewritten at least once, leading to nested case function 
applications. Furthermore, we add the equation C𝐷(𝑒, 𝑐𝑓1 ,… , 𝑐𝑓| (𝐷)| ) = 𝑒 to aid simplification. Using the distribution laws, the 
surrounding determinizer/projection functions can often be eliminated.

Example 11. We revisit the term detListN (plusone(CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠
2
⊳))) obtained from unfolding in Example 10. Applying Lemma 6

on plusone(CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠
2
⊳)), we obtain the following term:

detListN (CListN (detListN (CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠
2
⊳)),

plusone([]),

plusone(𝜋1ListN (CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠
2
⊳))⊳ 𝜋

2
ListN (CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠

2
⊳)))))

By the definition of plusone, the above term is logically equivalent to

detListN (CListN (detListN (CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠
2
⊳)),

[],

(𝜋1ListN (CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠
2
⊳)) + 1)⊳ plusone(𝜋2ListN (CListN (𝑒𝑙,[], 𝑠1⊳ ⊳ 𝑠

2
⊳)))))

Thus, we now managed to eliminate outermost occurrences of plusone. After repeated distribution of detListN over CListN , this term can 
ultimately be rewritten to simply 𝑒𝑙 .

4.5. Properties of unfold and case placement

The definitions of 𝗎𝗇𝖿𝗈𝗅𝖽 and case placement work closely together in the following sense. Given a term 𝑡, 𝗎𝗇𝖿𝗈𝗅𝖽 replaces a 
variable 𝑑 with a case function over 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑). If we originally assigned a term 𝑒 to 𝑑, 𝗎𝗇𝖿𝗈𝗅𝖽(𝑒) determines the terms that need to 
be assigned to the new parameters in order to obtain an equivalent term.

Lemma 7. For all constructor sorts 𝐷, variables 𝑑, terms 𝑒 of sort 𝐷 and valuations 𝜎, we have

�𝑒�𝜎 = �C𝐷(det𝐷(𝑒), 𝑓0(𝜋1𝑓0 (𝑒),… , 𝜋
𝑚0
𝑓0

(𝑒)),… , 𝑓𝑛(𝜋1𝑓𝑛 (𝑒),… , 𝜋
𝑚𝑛
𝑓𝑛

(𝑒)))�𝜎

Proof. Fix constructor sort 𝐷 with constructors  (𝐷) = {𝑓0,… , 𝑓𝑛}, variable 𝑑 and term 𝑒 of sort 𝐷 and valuation 𝜎. According to 
Lemma 3, there exist 𝑓𝑖 ∈  (𝐷), 𝑒1,… 𝑒𝑚𝑖 and fresh variables 𝑥1,…𝑥𝑚𝑖 such that �𝑒�𝜎 = �𝑓𝑖(𝑥1,…𝑥𝑚𝑖 )�

𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖∕𝑥𝑚𝑖 ]. Pick such 
𝑓𝑖, 𝑒1,… 𝑒𝑚𝑖 and 𝑥1,…𝑥𝑚𝑖 . We now derive the following.

�𝑒�𝜎

= {Lemma 3}

�𝑓𝑖(𝑥1,…𝑥𝑚𝑖 )�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖 ∕𝑥𝑚𝑖 ]

= {Definition of 𝜋𝑗
𝑓𝑖
}

�𝑓𝑖(𝜋1𝑓𝑖 (𝑓𝑖(𝑥1,…𝑥𝑚𝑖 ),… , 𝜋
𝑚𝑖
𝑓𝑖
(𝑓𝑖(𝑥1,…𝑥𝑚𝑖 )))�

𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖 ∕𝑥𝑚𝑖 ]
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= {Definition of case function C𝐷}

�C𝐷(𝑐𝑓𝑖 , 𝑓0(𝜋
1
𝑓0
(𝑓𝑖(𝑥1,…𝑥𝑚𝑖 )),… , 𝜋

𝑚0
𝑓0

(𝑓𝑖(𝑥1,…𝑥𝑚𝑖 ))),… ,

𝑓𝑛(𝜋1𝑓𝑛 (𝑓𝑖(𝑥1,…𝑥𝑚𝑖 )),… , 𝜋
𝑚𝑛
𝑓𝑛

(𝑓𝑖(𝑥1,…𝑥𝑚𝑖 ))))�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖∕𝑥𝑚𝑖 ]

= {Definition of det𝐷}

�C𝐷(det𝐷(𝑓𝑖(𝑥1,…𝑥𝑚𝑖 )), 𝑓0(𝜋
1
𝑓0
(𝑓𝑖(𝑥1,…𝑥𝑚𝑖 )),… , 𝜋

𝑚0
𝑓0

(𝑓𝑖(𝑥1,…𝑥𝑚𝑖 ))),… ,

𝑓𝑛(𝜋1𝑓𝑛 (𝑓𝑖(𝑥1,…𝑥𝑚𝑖 )),… , 𝜋
𝑚𝑛
𝑓𝑛

(𝑓𝑖(𝑥1,…𝑥𝑚𝑖 ))))�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖∕𝑥𝑚𝑖 ]

= {Semantics}

�C𝐷�(�det𝐷�(�𝑓𝑖(𝑥1,…𝑥𝑚𝑖 )�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖 ∕𝑥𝑚𝑖 ]),

�𝑓0�(�𝜋1𝑓0�(�𝑓𝑖(𝑥1,…𝑥𝑚𝑖 )�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖∕𝑥𝑚𝑖 ]),… , �𝜋

𝑚0
𝑓0

�(�𝑓𝑖(𝑥1,…𝑥𝑚𝑖 )�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖 ∕𝑥𝑚𝑖 ])),… ,

�𝑓𝑛�(�𝜋1𝑓𝑛 �(�𝑓𝑖(𝑥1,…𝑥𝑚𝑖 )�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖∕𝑥𝑚𝑖 ]),… , �𝜋

𝑚𝑛
𝑓𝑛

�(�𝑓𝑖(𝑥1,…𝑥𝑚𝑖 )�
𝜎[𝑒1∕𝑥1 ,…,𝑒𝑚𝑖 ∕𝑥𝑚𝑖 ])))

= {Lemma 3}

�C𝐷�(�det𝐷�(�𝑒�𝜎 ),

�𝑓0�(�𝜋1𝑓0�(�𝑒�
𝜎 ),… , �𝜋

𝑚0
𝑓0

�(�𝑒�𝜎 )),… ,

�𝑓𝑛�(�𝜋1𝑓𝑛 �(�𝑒�
𝜎),… , �𝜋

𝑚𝑛
𝑓𝑛

�(�𝑒�𝜎 )))

= {Semantics}

�C𝐷(det𝐷(𝑒), 𝑓0(𝜋1𝑓0 (𝑒),… , 𝜋
𝑚0
𝑓0

(𝑒)),… , 𝑓𝑛(𝜋1𝑓𝑛 (𝑒),… , 𝜋
𝑚𝑛
𝑓𝑛

(𝑒)))�𝜎 □

We use this to establish correctness of case placement in a term as established by the following lemma.

Lemma 8. For all variables 𝑑 and terms 𝑒 of constructor sort 𝐷, terms 𝑡, and valuations 𝜎 such that 𝜎(𝑑) = �𝑒�𝜎 and 𝜎(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)) =
�𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�𝜎 , it holds that

�𝑡�𝜎 = �𝖼𝗉(𝑡, 𝑑)�𝜎 .

Proof. Fix 𝑑 and 𝑒 and 𝜎 as above. The proof proceeds by induction on the structure of 𝑡.

• 𝑡 ∈  . So, 𝑡 is a variable. If 𝑡 ≠ 𝑑, then 𝖼𝗉(𝑡, 𝑑) = 𝑡, and the result follows immediately. So, assume that 𝑡 = 𝑑. We argue as 
follows.

�𝑑�𝜎

= {Semantics}

𝜎(𝑑)

= {Valuation 𝜎}

�𝑒�𝜎

= {Lemma 7}

�C𝐷(det𝐷(𝑒), 𝑓0(𝜋1𝑓0 (𝑒),… , 𝜋
𝑚0
𝑓0

(𝑒)),… , 𝑓𝑛(𝜋1𝑓𝑛 (𝑒),… , 𝜋
𝑚𝑛
𝑓𝑛

(𝑒)))�𝜎

= {Substitution, definition of 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑖)}

�C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))

[𝑒𝑑 ∶= det𝐷(𝑒), 𝑑1𝑓0 ∶= 𝜋
1
𝑓0
(𝑒),… , 𝑑

𝑚0
𝑓0

∶= 𝜋𝑚0
𝑓0

(𝑒)),… , 𝑑1
𝑓𝑛

∶= 𝜋1
𝑓𝑛
(𝑒),… , 𝑑

𝑚𝑛
𝑓𝑛

∶= 𝜋𝑚𝑛
𝑓𝑛

(𝑒))]�𝜎

= {Definition of 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) and 𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)}

�C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))[𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) ∶= 𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)]�𝜎

= {Lemma 2, assumption on 𝜎}

�C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))�𝜎

= {Definition of 𝖼𝗉}

�𝖼𝗉(𝑑,𝑑)�𝜎
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• 𝑡 = 𝑓 ∈  ∪ . Then 𝖼𝗉(𝑡, 𝑑) = 𝖼𝗉(𝑓,𝑑) = 𝑓 = 𝑡 and the result is immediate.

• 𝑡 = 𝑡′(𝑡1,… , 𝑡𝑛). We reason as follows.

�𝑡′(𝑡1,… , 𝑡𝑛)�𝜎

= {Semantics}

�𝑡′�𝜎(�𝑡1�𝜎 ,… , �𝑡𝑛�
𝜎)

= {IH}

�𝖼𝗉(𝑡′, 𝑑)�𝜎(�𝖼𝗉(𝑡1, 𝑑)�𝜎 ,… , �𝖼𝗉(𝑡𝑛, 𝑑)�𝜎)

= {Definition of 𝖼𝗉}

�𝑡′[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]�𝜎

(�𝑡1[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]�𝜎 ,… ,

�𝑡𝑛[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]�𝜎 )

= {Semantics}

�𝑡′[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]

(𝑡1[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))],… ,

𝑡𝑛[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))])�𝜎

= {Definition of substitution}

�(𝑡′(𝑡1,… , 𝑡𝑛)[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))])�𝜎

= {Definition of 𝖼𝗉}

�(𝖼𝗉(𝑡′(𝑡1,… , 𝑡𝑛), 𝑑)�𝜎 □

Since 𝑑 and 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) do not appear on one side of the equation, we also immediately get the following corollary using Lemma 1. 
This shows the precise interplay between the new parameters generated by 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) and the application of case placement, as well 
as the unfolding of term 𝑒.

Corollary 1. For all variables 𝑑 and terms 𝑒 of constructor sort 𝐷, terms 𝑡 and valuations 𝜎

�𝑡�𝜎[�𝑒�
𝜎∕𝑑] = �𝖼𝗉(𝑡, 𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)].

Proof. Fix 𝑑 and 𝑒 and 𝜎 as above. The proof proceeds by induction on the structure of 𝑡.

• 𝑡 ∈  . So, 𝑡 is a variable. If 𝑡 ≠ 𝑑, then 𝖼𝗉(𝑡, 𝑑) = 𝑡, and the result follows immediately. So, assume that 𝑡 = 𝑑. We argue as 
follows.

�𝑑�𝜎[�𝑒�
𝜎∕𝑑]

= {Lemma 2}

�𝑑[𝑑 ∶= 𝑒]�𝜎

= {Substitution}

�𝑒�𝜎

= {Lemma 7}

�C𝐷(det𝐷(𝑒), 𝑓0(𝜋1𝑓0 (𝑒),… , 𝜋
𝑚0
𝑓0

(𝑒)),… , 𝑓𝑛(𝜋1𝑓𝑛 (𝑒),… , 𝜋
𝑚𝑛
𝑓𝑛

(𝑒)))�𝜎

= {Substitution, definition of 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑖)}

�C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))

[𝑒𝑑 ∶= det𝐷(𝑒), 𝑑1𝑓0 ∶= 𝜋
1
𝑓0
(𝑒),… , 𝑑

𝑚0
𝑓0

∶= 𝜋𝑚0
𝑓0

(𝑒)),… , 𝑑1
𝑓𝑛

∶= 𝜋1
𝑓𝑛
(𝑒),… , 𝑑

𝑚𝑛
𝑓𝑛

∶= 𝜋𝑚𝑛
𝑓𝑛

(𝑒))]�𝜎

= {Definition of 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) and 𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)}

�C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))[𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) ∶= 𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)]�𝜎
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= {Lemma 2}

�C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�
𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)]

= {Definition of 𝖼𝗉}

�𝖼𝗉(𝑑,𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)]

• 𝑡 = 𝑓 ∈  ∪ . Then 𝖼𝗉(𝑡, 𝑑) = 𝖼𝗉(𝑓,𝑑) = 𝑓 = 𝑡 and the result is immediate.

• 𝑡 = 𝑡′(𝑡1,… , 𝑡𝑛). The result follows immediately from the semantics and the induction hypothesis. □

This result also immediately extends to the vectors of expressions obtained by unfolding a term.

Corollary 2. For all variables 𝑑, terms 𝑒 and 𝑡, all of which are of constructor sort 𝐷 and for all 𝜎

�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�𝜎[�𝑒�𝜎∕𝑑] = �𝗎𝗇𝖿𝗈𝗅𝖽(𝖼𝗉(𝑡, 𝑑))�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)].

Finally, the order in which unfolding and case placement are performed to a term does not matter. This is formalized in the 
following lemma.

Lemma 9. Let 𝑡 be a term, and 𝑑 a variable of constructor sort 𝐷 with  (𝐷) = {𝑓0,… , 𝑓𝑛}, then

𝗎𝗇𝖿𝗈𝗅𝖽(𝖼𝗉(𝑡, 𝑑)) = 𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽(𝑡), 𝑑).

Proof. Let 𝑡 and 𝑑 be as above. We derive the following.

𝗎𝗇𝖿𝗈𝗅𝖽(𝖼𝗉(𝑡, 𝑑))

= {Definition of 𝖼𝗉}

𝗎𝗇𝖿𝗈𝗅𝖽(𝑡[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))])

= {Definition of 𝗎𝗇𝖿𝗈𝗅𝖽}

det𝐷(𝑡[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]),

𝜋1
𝑓0
(𝑡[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]),… ,

𝜋
𝑚0
𝑓0

(𝑡[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]),… ,

𝜋1
𝑓𝑛
(𝑡[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]),… ,

𝜋
𝑚𝑛
𝑓𝑛

(𝑡[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))])

= {Property of substitution}

(det𝐷(𝑡), 𝜋1𝑓0 (𝑡),… , 𝜋
𝑚0
𝑓0

(𝑡),… , 𝜋1
𝑓𝑛
(𝑡),… , 𝜋

𝑚𝑛
𝑓𝑛

(𝑡))

[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]

= {Definition of 𝗎𝗇𝖿𝗈𝗅𝖽}

𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)[𝑑 ∶= C𝐷(𝑒𝑑 , 𝑓0(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓0)),… , 𝑓𝑛(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑,𝑓𝑛)))]

= {Definition of 𝖼𝗉}

𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽(𝑡), 𝑑) □

5. Unfolding parameters in mCRL2

In the remainder of this paper we show how the generic unfolding technique from the previous section can be applied in mCRL2. 
The mCRL2 language is a modeling language based on process algebra with data [25]. In general, the language allows for the 
specification of the behavior of communicating, parallel processes. However, the first step in any automated analysis using the 
mCRL2 toolset [14] is to linearize the specification. In this process, parallel composition operators are eliminated, and replaced by 
sequential composition and choice, effectively making the allowed interleavings explicit. This results in a standardized format for 
processes, the linear process equations (LPEs). We apply the unfolding of variables to such LPEs.
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5.1. Data specification

In mCRL2, the equational specification defined in Section 3 is referred to as data specification. The algebraic data types in mCRL2 
can be specified using a richer syntax than we introduced in Sections 2 and 3. In particular, mCRL2 has default definitions of common 
data types such as Booleans (Bool), and numeric data types such as natural numbers (Nat), as well as container sorts such as lists 
(List(𝐷)). In the remainder of the paper we assume that the standard data types from mCRL2 and their standard operations such as 
∧ and + are part of the signature. For any sort 𝐷, we assume sort List(𝐷) is defined, with constructors [] for the empty list, and ⊳
for the constructor that adds an element in front of a list.

In addition to the standard data types, for every data type 𝐷 that is introduced in mCRL2, the mappings for comparisons (≈, ≉, 
<, ≤, >, ≥) as well as an if-then-else if ∶ Bool ×𝐷 ×𝐷→𝐷 are introduced by default. The default specification is only partial, and 
contains, e.g. 𝑥 ≈ 𝑥 = true. For the standard data types these are extended to their full definition.

Finally, mCRL2 allows for the definition of structured sorts, which essentially are sorts with value constructors, and associated 
recognizer and projection functions. For such sorts, the comparison operators are fully defined. This allows for a much more compact 
and convenient definition of algebraic data types. We illustrate the use of structured sorts by redefining the State and Sys sorts from 
Fig. 2 in this manner.

Example 12. Recall the algebraic data types State and Sys from Fig. 2. Using structured sorts, these can be defined in mCRL2 as 
follows:

sort State = 𝐬𝐭𝐫𝐮𝐜𝐭 p_on ∣ p_off ;
Sys = 𝐬𝐭𝐫𝐮𝐜𝐭 uninit?is_uninit ∣ sys(get_state∶ State,get_ip ∶ Nat)?is_sys;

map set_state∶ Sys × State → Sys;
set_ip∶ Sys × Nat → Sys;

var 𝑝1, 𝑝2 ∶ State, 𝑛,𝑚  ∶ Nat;
eqn set_state(sys(𝑝1, 𝑛), 𝑝2) = sys(𝑝2, 𝑛);

set_ip(sys(𝑝1, 𝑛),𝑚) = sys(𝑝1,𝑚);

The unfolding of sort Sys is identical to the unfolding in Example 3.

Structured sorts can be translated into equivalent sorts with an explicit constructor definition. For our running example, the result 
would be the definitions from Section 2, extended with full definitions of the comparisons and recognizer functions. The semantics of 
algebraic data types in mCRL2 follows the model class semantics as outlined in Section 3. For a complete overview of mCRL2’s data 
types and their semantics see [25].

5.2. Linear processes

A Linear Process Equation (LPE) defines the name of a recursive process, whose definition is a set of summands that are, essentially, 
condition-action-effect rules that may refer to local variables. The examples from Section 2, in fact, are LPEs.

An LPE is defined in the context of a data specification , that specifies algebraic data types, and a set of global variables 𝑔 . 
These global variables are parameters to the LPE, but their value is immaterial to the behavior described by the LPE. Global variables 
can thus be seen as “do not care” values; later we discuss this in more detail. The combination of an LPE with a data specification 
and its global variables is a Linear Process Specification (LPS).

Definition 7. A linear process specification (LPS) 𝐿 is a tuple (,𝑔 , 𝑃 , 𝑒) where  is a data specification describing the data types 
used in the LPS, 𝑔 is a set of global variables, 𝑃 is a linear process equation (LPE), and 𝑒 is a vector of terms of sort �⃗� that may 
refer to variables in 𝑔 . We typically say that 𝑃 (𝑒) is the initial process. LPE 𝑃 is described as follows:

𝑃 (𝑑 ∶ �⃗�) =
∑
𝑖∈𝐼 

∑
𝑒𝑖 ∶ 𝐸𝑖

𝑐𝑖 → 𝑎𝑖(𝑓𝑖) ⋅ 𝑃 (𝑔𝑖) +
∑
𝑗∈𝐽

∑
𝑒𝑗 ∶ 𝐸𝑗

𝑐𝑗 → 𝑎𝛿𝑗 (𝑓𝑗 )

where 𝑑 is a vector of process parameters whose types are �⃗�. 𝐼 and 𝐽 are disjoint, finite index sets, such that for 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽 we 
have that 𝑐𝑖 and 𝑐𝑗 are boolean conditions, 𝑎𝑖 and 𝑎𝛿𝑗 are actions, 𝑓𝑖 and 𝑓𝑗 are terms that form the action parameters, and 𝑔𝑖 is the 
next state, providing the vector of terms assigned to the parameters of process 𝑃 in the recursive call to 𝑃 . Terms 𝑐𝑖 , 𝑓𝑖, 𝑔𝑖 (𝑐𝑗 , 𝑓𝑗 ) 
range over 𝑑, 𝑔 , and local variables 𝑒𝑖 of sort 𝐸𝑖 (𝑒𝑗 of sort 𝐸𝑗 ).

The operational semantics of LPEs induces a labelled transition system, see [25] for its definition. The definition in [25] assumes 
that every value 𝑣 ∈𝑀𝐷 in the data types has a syntactic denotation as closed terms 𝑡𝑣 [25, Definition 15.2.17]. In the remainder of 
this paper we also use this assumption.

In their full generality, LPEs can use timestamps on the actions. These timestamps are treated by our transformation in the same 
way as action parameters. For the sake of simplicity, we restrict ourselves to untimed LPEs in this paper. For the same reason, we 
will henceforth only consider recursive summands, and we generally assume processes whose parameters we unfold have a single 
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parameter, and summands with a single local variable; the generalization to multiple parameters is straightforward. Of course, the 
resulting process will have more than one parameter.

Example 13. We recall our motivating example from Section 2. So far, we have reset the IP-address to zero when the state is p_off . We 
can make the fact that we do not care about the value of the IP-address explicit by, instead, using a global variable when changing 
the state to p_off . Let  be the data specification described in Example 12. We use mCRL2 syntax to describe the global variables 
(𝐠𝐥𝐨𝐛), LPE (𝐩𝐫𝐨𝐜) and initialization (𝐢𝐧𝐢𝐭).

glob dc1,dc2∶ Nat;
proc 𝑃 (s  ∶ Sys) =

(s ≈ uninit)→ initialize ⋅ 𝑃 (sys(p_off ,dc1))
+
∑
𝑛 ∶ Nat(s ≉ uninit ∧ get_state(s) ≈ p_off )→ on ⋅ 𝑃 (set_state(set_ip(s, 𝑛),p_on))

+(s ≉ uninit ∧ get_state(s) ≈ p_on)→ off ⋅ 𝑃 (set_state(set_ip(s,dc2),p_off ));
init 𝑃 (uninit);

Transformations of LPEs are correct if they are behavior preserving. For this, we use a generalization of strong bisimulation to 
linear processes [22]. Two LPEs 𝑃 and 𝑃 ′ with initial values 𝑒 and 𝑒′, respectively, are strongly bisimilar if and only if the labeled 
transition systems induced by 𝑃 (𝑒) and 𝑃 ′(𝑒′) are strongly bisimilar. In this case, we write 𝑃 (𝑒) � 𝑃 ′(𝑒′). For ease of definition, 
we assume that the process parameters and summation variables in the processes are disjoint (since this can easily be achieved by 
renaming, this does not affect generality). Formally, strong bisimulation of LPEs is defined as follows.

Definition 8 (Strong bisimulation of LPEs   [22]). Let  = (Σ,𝐸) be a data specification, and let �⃗� = 𝐷1,… ,𝐷𝑛, �⃗�′ = 𝐷′
1,… ,𝐷′

𝑚. 
Consider the following two LPEs.

𝑃 (𝑑 ∶ �⃗�) =
∑
𝑖∈𝐼 

∑
𝑒𝑖 ∶ 𝐸𝑖

𝑐𝑖 → 𝑎𝑖(𝑓𝑖) ⋅ 𝑃 (𝑔𝑖)

𝑄(𝑑′ ∶ �⃗�′) =
∑
𝑖∈𝐼 ′

∑
𝑒′
𝑖
∶ 𝐸′

𝑖

𝑐′𝑖 → 𝑎′𝑖(𝑓
′
𝑖 ) ⋅𝑄(𝑔

′
𝑖 )

Relation 𝑅⊆ (𝑀𝐷1
×⋯×𝑀𝐷𝑛

)×(𝑀𝐷′
1
×⋯×𝑀𝐷′

𝑚
) is a strong bisimulation iff for all terms 𝑒, 𝑒′ and valuations 𝜎 and 𝜎′, if �𝑒�𝜎 𝑅 �𝑒′�𝜎

′
, 

then:

• for all 𝑖 ∈ 𝐼 , �⃗�𝑖 ∈𝑀𝐸𝑖
, such that �𝑐𝑖�𝜎[�𝑒�

𝜎∕𝑑,�⃗�𝑖∕𝑒𝑖] = 𝐭𝐫𝐮𝐞 there is some 𝑖′ ∈ 𝐼 ′ and �⃗�′
𝑖′

such that

– �𝑐′
𝑖′
�𝜎

′[�𝑒′�𝜎∕𝑑′ ,𝑤𝑖′ ∕𝑒𝑖′ ] = 𝐭𝐫𝐮𝐞,
– 𝑎𝑖 = 𝑎′𝑖′ ,

– �𝑓𝑖�
𝜎[�𝑒�𝜎∕𝑑,𝑤𝑖∕𝑒𝑖] = �𝑓 ′

𝑖′
�𝜎

′[�𝑒′�𝜎∕𝑑′ ,𝑤𝑖′ ∕𝑒𝑖′ ], and

– �𝑔𝑖�
𝜎[�𝑒�𝜎∕𝑑,�⃗�𝑖∕𝑒𝑖] 𝑅 �𝑔′

𝑖′
�𝜎

′[�𝑒′�𝜎∕𝑑′ ,𝑤𝑖′ ∕𝑒𝑖′ ].
• vice versa.

Process terms 𝑃 (�⃗�) and 𝑄(𝑡′) are strongly bisimilar w.r.t. data specification , denoted 𝑃 (�⃗�) �𝑄(𝑡′), iff for all -models 𝕄 and valu-

ations 𝜎 and 𝜎′ there is a bisimulation relation 𝑅 such that ��⃗��𝜎 𝑅 �𝑡′�𝜎
′
. It is well known that the composition of strong bisimulation 

relations is again a strong bisimulation relation.

Note that Groote and Lisser adapted the standard definition of strong bisimulation [49] to LPEs: if process 𝑃 can do an action 
𝑎𝑖(𝑓𝑖), since its condition 𝑐𝑖 is true, process 𝑄 can do the same action, and the target states are related by the strong bisimulation 
relation. If the LPEs do not refer to global variables, the valuations are fully defined by the assignment of values to process parameters 
and sum variables. As a consequence, their version of strong bisimulation is an equivalence relation (in particular, it is a reflexive 
relation).

The fact that we allow for global variables in the definition of processes means that strong bisimulation is no longer reflexive. 
However, global variables are generally assumed to not have any significant effect on the behavior of a process. This is captured by 
the reflexivity property (Refl).

(Refl) Let 𝐿 = (,𝑔, 𝑃 , 𝑒) be an LPS. Then 𝑃 (𝑒) � 𝑃 (𝑒).

By the definition of strong bisimulation, this implies that for every pair of valuations 𝜎,𝜎′ there exists a strong bisimulation relation 
𝑅 such that �𝑒�𝜎 𝑅 �𝑒�𝜎

′
. As 𝑒 is a vector of terms over 𝑔 , the only (potentially) relevant difference is in the assignment to global 

variables, but any assignment to the variables leads to bisimilar processes. When discussing the correctness of our transformations, 
we implicitly assume that the input LPS satisfies the (Refl) property.
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5.3. Unfolding process parameters in an LPE

The basic definition of the unfolding of process parameters using 𝖼𝗉, and without pattern match unfolding, was described by 
Groote and Lisser [22].

Definition 9 (Unfolding of process parameters   [22]). Let 𝐿 = (,𝑔, 𝑃 , 𝑒) be an LPS, where 𝑃 is the following LPE.

𝑃 (𝑑 ∶ 𝐷) =
∑
𝑖∈𝐼 

∑
𝑒𝑖 ∶ 𝐸𝑖

𝑐𝑖 → 𝑎𝑖(𝑓𝑖) ⋅ 𝑃 (𝑔𝑖)

The result of unfolding process parameter 𝑑 ∶ 𝐷 in 𝐿 is the LPS (′,𝑔, 𝑃
′,𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)), where ′ is data specification  in which sort 

𝐷 is unfolded, and LPE 𝑃 ′ is as follows:

𝑃 ′(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)) =
∑
𝑖∈𝐼 

∑
𝑒𝑖 ∶ 𝐸𝑖

𝖼𝗉(𝑐𝑖, 𝑑)→ 𝑎𝑖(𝖼𝗉(𝑓𝑖, 𝑑)) ⋅ 𝑃 ′(𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖), 𝑑))

So, essentially, unfolding parameter 𝑑 replaces 𝑑 by the vector 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑). In recursive calls to 𝑃 , the term 𝑔𝑖 assigned to the 
unfolded parameter is also unfolded using 𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖). Similarly, using 𝗎𝗇𝖿𝗈𝗅𝖽(𝑒), the initial process is unfolded. Finally, in the right 
hand side of the equation, default case placement is used to replace every occurrence of 𝑑 by an application of the corresponding 
case function.

We illustrate the combined application of all transformations on our running example.

Example 14. Recall our example with global variables from Example 13, for which we have described the unfolding of sort Sys in 
the data specification in Example 3. If we unfold parameter 𝑠, we get the LPE and initialization shown below.

glob dc1,dc2∶ Nat;
proc 𝑃 (𝑒𝑠 ∶ 𝑈Sys, 𝑠

1
sys ∶ State, 𝑠2sys ∶ Nat) =

(CSys(𝑒𝑠,uninit, sys(s1
sys, s

2
sys)) ≈ uninit)

→ initialize ⋅ 𝑃 (detSys(sys(p_off ,dc1)), 𝜋1
sys(sys(p_off ,dc1)), 𝜋2

sys(sys(p_off ,dc1)))
+
∑
𝑛 ∶ Nat(¬(CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys)) ≈ uninit) ∧ get_state(CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys))) ≈ p_off )

→ on ⋅ 𝑃 (detSys(set_state(set_ip(CSys(𝑒𝑠,uninit, sys(s1
sys, s

2
sys)), 𝑛),p_on)),

𝜋1
sys(set_state(set_ip(CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys)), 𝑛),p_on)),

𝜋2
sys(set_state(set_ip(CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys)), 𝑛),p_on)))

+(¬(CSys(𝑒𝑠,uninit, sys(s1
sys, s

2
sys)) ≈ uninit) ∧ get_state(CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys))) ≈ p_on)

→ off ⋅ 𝑃 (detSys(set_state(set_ip(CSys(𝑒𝑠,uninit, sys(s1
sys, s

2
sys)),dc2),p_off )),

𝜋1
sys(set_state(set_ip(CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys)),dc2),p_off )),

𝜋2
sys(set_state(set_ip(CSys(𝑒𝑠,uninit, sys(s1

sys, s
2
sys)),dc2),p_off )));

init 𝑃 (detSys(uninit), 𝜋1
sys(uninit), 𝜋2

sys(uninit));

It has three parameters. As before, parameter 𝑒𝑠 keeps track of the constructor of the term in 𝑠, e.g., initially 𝑠 is uninit, so the 
corresponding value in 𝑒𝑠 is 𝑐uninit . Parameters 𝑠1sys and 𝑠2sys are used to track the arguments of the constructor sys. If 𝑒𝑠 is 𝑐sys, then 
sys(𝑠1sys, 𝑠

2
sys) is equivalent to 𝑠 (the original parameter that is unfolded). As uninit does not have arguments, no parameters need to be 

introduced for its arguments. The original term 𝑠 is then reconstructed in the process by replacing 𝑠 with CSys(𝑒𝑠,uninit, sys(s1
sys, s

2
sys)). 

The functions detSys, 𝜋1sys and 𝜋2sys are used to move from a term of sort Sys to terms of sort 𝑈Sys, State and Nat.
Using the equations for detSys, 𝜋1sys and 𝜋2sys this can be simplified slightly. The recursion of the first summand then becomes 

𝑃 (𝑐sys,p_off ,dc1) and the initialization becomes 𝐢𝐧𝐢𝐭 𝑃 (𝑐uninit,p_on,0), as per the default values of 𝜋𝑖sys(uninit). The resulting LPE cannot 
be simplified further. Since parameters 𝑠1sys and 𝑠2sys appear in the conditions of each of the summands, existing static analysis tools 
for constant elimination and parameter elimination are not able to remove any of the parameters from this process.

Alternative case placement If, in Definition 9, we use 𝖺𝖼𝗉 instead of 𝖼𝗉, the changed level of placement of case functions dramatically 
affects the simplifications that are allowed after the transformation. We show the result of the unfolding using alternative case 
placement.

Example 15. Recall our example with global variables from Example 13 which we have unfolded using 𝖼𝗉 in Example 14. We now 
instead transform terms using alternative case placement (𝖺𝖼𝗉).
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glob dc1,dc2∶ Nat;
proc 𝑃 (𝑒𝑠 ∶ 𝑈Sys, 𝑠

1
sys ∶ State, 𝑠2sys ∶ Nat) =

(CSys(𝑒𝑠,uninit ≈ uninit, sys(s1
sys, s

2
sys) ≈ uninit)

→ initialize ⋅ 𝑃 (detSys(sys(p_off ,dc1)), 𝜋1
sys(sys(p_off ,dc1)), 𝜋2

sys(sys(p_off ,dc1)))
+
∑
𝑛 ∶ Nat(¬CSys(𝑒𝑠,uninit ≈ uninit, sys(s1

sys, s
2
sys) ≈ uninit)∧

CSys(𝑒𝑠,get_state(uninit) ≈ p_on,get_state(sys(s1
sys, s

2
sys)) ≈ p_off ))

→ on ⋅ 𝑃 (CSys(𝑒𝑠,detSys(set_state(set_ip(uninit, 𝑛),p_on)),
detSys(set_state(set_ip(sys(s1

sys, s
2
sys), 𝑛),p_on))),

CSys(𝑒𝑠, 𝜋1
sys(set_state(set_ip(uninit, 𝑛),p_on)),

𝜋1
sys(set_state(set_ip(sys(𝑠1sys, 𝑠

2
sys), 𝑛),p_on))),

CSys(𝑒𝑠, 𝜋2
sys(set_state(set_ip(uninit, 𝑛),p_on)),

𝜋1
sys(set_state(set_ip(sys(𝑠1sys, 𝑠

2
sys), 𝑛),p_on))))

+(¬CSys(𝑒𝑠,uninit ≈ uninit, sys(s1
sys, s

2
sys) ≈ uninit)∧

CSys(𝑒𝑠,get_state(uninit) ≈ p_on,get_state(sys(s1
sys, s

2
sys)) ≈ p_on))

→ off ⋅ 𝑃 (CSys(𝑒𝑠,detSys(set_state(set_ip(uninit,dc2),p_off )),
detSys(set_state(set_ip(sys(s1

sys, s
2
sys),dc2),p_off ))),

CSys(𝑒𝑠, 𝜋1
sys(set_state(set_ip(uninit,dc2),p_off )),

𝜋1
sys(set_state(set_ip(sys(s1

sys, s
2
sys),dc2),p_off ))),

CSys(𝑒𝑠, 𝜋2
sys(set_state(set_ip(uninit,dc2),p_off )),

𝜋2
sys(set_state(set_ip(sys(s1

sys, s
2
sys),dc2),p_off ))));

init 𝑃 (detSys(uninit), 𝜋1
sys(uninit), 𝜋2

sys(uninit));

As explained in Example 8, the case functions appear at a higher level, such that the case functions can be simplified further using 
the equations for ≈, detSys, 𝜋1sys, 𝜋

2
sys, 𝑠𝑒𝑡_𝑖𝑝 and 𝑠𝑒𝑡_𝑠𝑡𝑎𝑡𝑒. Using these, the last summand is simplified to:

(¬CSys(𝑒𝑠, true, false) ∧ CSys(𝑒𝑠,get_state(uninit) ≈ p_on, 𝑠1sys ≈ p_on))
→ off ⋅ 𝑃 (CSys(𝑒𝑠, 𝑐uninit , 𝑐sys),CSys(𝑒𝑠,p_on,p_off ),CSys(𝑒𝑠,0,dc2))

We thus obtained more concise terms than those in Example 14. In particular, this summand no longer contains any reference to 
unfolded parameter 𝑠2sys. The same applies to the other two summands, hence parameter 𝑠2sys can be eliminated using static analysis 
techniques [22]. As a result, the sum over 𝑛 in the second summand is not used and can be eliminated as well. The final LPE we 
obtain is:

proc 𝑃 (𝑒𝑠 ∶ 𝑈Sys, 𝑠
1
sys ∶ State) =

CSys(𝑒𝑠, true, false)
→ initialize ⋅ 𝑃 (𝑐sys,p_off )

+(¬CSys(𝑒𝑠, true, false) ∧ CSys(𝑒𝑠,get_state(uninit) ≈ p_off , 𝑠1sys ≈ p_off ))
→ on ⋅ 𝑃 (CSys(𝑒𝑠, 𝑐uninit , 𝑐sys),p_on)

+(¬CSys(𝑒𝑠, true, false) ∧ CSys(𝑒𝑠,get_state(uninit) ≈ p_on, 𝑠1sys ≈ p_on))
→ off ⋅ 𝑃 (CSys(𝑒𝑠, 𝑐uninit , 𝑐sys),CSys(𝑒𝑠,p_on,p_off ))

init 𝑃 (𝑐uninit ,p_on);

Note that the original state space before the unfolding is infinite while after unfolding with alternative case placement the state 
space has only three states.

5.4. Global variables

Some static analysis techniques in mCRL2 use global variables to more effectively simplify the process. For instance, when constant 
elimination observes that the only change to a parameter is assigning a global variable to that parameter, the global variable can be 
replaced by a constant. This is safe since all values for global variables lead to bisimilar processes (by Property (Refl)). The technique 
from [22] does not give special treatment to such global variables. We first describe why global variables need special treatment, and 
subsequently describe how they should be treated.

When unfolding a process parameter, the value assigned to it in the initialization or recursion may be a global variable dc ∈ 𝑔 . 
Applying the unfoldings described so far results in 𝗎𝗇𝖿𝗈𝗅𝖽(dc), which contains terms such as det𝐷(dc) and 𝜋𝑗

𝑓𝑖
(dc) that cannot be 

simplified further. These more complex terms cannot be used directly for simplification in static analysis, leaving the resulting LPE 
more complicated than it needs to be. This results in longer verification times. We illustrate the issue using an example that is based 
on board games such as tic-tac-toe, which often represent the board using (lists of) lists.

Example 16. Process 𝑃 is initialized with a singleton list [𝑜] of sort List(Piece) representing the board. It also has parameters 𝑝, 
keeping track of the player whose turn it is, and done to indicate that the game ends. As long as done is false, and 𝑙 contains a piece 
of player 𝑝 whose turn it is, 𝑝 is updated to the next player. If 𝑙 contains a piece of the other player, a 𝜏 transition is taken, the values 
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of 𝑙 and 𝑝 are set to global variables, and done is set to true. If done is true, the process deadlocks. This resembles what happens in 
models of board games such as tic-tac-toe when the game ends.

sort Piece = 𝐬𝐭𝐫𝐮𝐜𝐭 𝑥 ∣ 𝑜;
map other∶ Piece → Piece;
eqn other(𝑥) = 𝑜;other(𝑜) = 𝑥;
act 𝑖𝑠 ∶ Piece;
glob dc1∶ List(Piece);dc2∶ Piece;
proc 𝑃 (𝑙∶ List(Piece), 𝑝  ∶ Piece,done∶ Bool) =

(¬done ∧ 𝑙 ≈ [other(𝑝)])→ 𝜏.𝑃 (𝑑𝑐1, 𝑑𝑐2, 𝑡𝑟𝑢𝑒)
+(¬done ∧ 𝑙 ≈ [𝑝])→ 𝑖𝑠(𝑝).𝑃 ([𝑝],other(𝑝),done);

init 𝑃 ([𝑜], 𝑜, false);

Unfolding parameter 𝑙 yields the following LPE.

proc 𝑃 (𝑒  ∶ 𝑈Piece, 𝑙𝑝 ∶ Piece, 𝑙𝑙 ∶ 𝐿𝑖𝑠𝑡(Piece), 𝑝  ∶ Piece,done∶ Bool) =
(¬done ∧ CList(Piece)(𝑒, [], 𝑙𝑝 ⊳ 𝑙𝑙) ≈ [other(𝑝)])

→ 𝜏.𝑃 (detList(Piece)(𝑑𝑐1), 𝜋1
⊳
(𝑑𝑐1), 𝜋2

⊳
(𝑑𝑐1), 𝑑𝑐2, true)

+(¬done ∧ CList(Piece)(𝑒, [], 𝑙𝑝 ⊳ 𝑙𝑙) ≈ [𝑝])
→ 𝑖𝑠(𝑝).𝑃 (detList(Piece)([𝑝]), 𝜋1

⊳
([𝑝]), 𝜋2

⊳
([𝑝]),other(𝑝));

init 𝑃 (detList(Piece)([𝑜]), 𝜋1
⊳
([𝑜]), 𝜋2

⊳
([𝑜]), 𝑜, false);

The recursion in the first summand cannot be simplified further, and no parameters can be removed during static analysis.

Since the behavior of a process is not affected by (the value of) a global variable, the individual arguments of the term assigned 
to that global variable also do not affect the behavior of the process. Therefore, instead of applying projection functions to a global 
variable, fresh global variables can be introduced for each of the new process parameters when unfolding a global variable. We extend 
the definition of 𝗎𝗇𝖿𝗈𝗅𝖽 from Definition 6 as follows.

Definition 10. Let 𝑒 be a term of constructor sort 𝐷. Then

𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒) =

{
dc𝑒,dc1

𝑓0
,… ,dc𝑚0

𝑓0
,… ,dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
if 𝑒 = dc ∈ 𝑔

𝗎𝗇𝖿𝗈𝗅𝖽(𝑒) otherwise

where dc𝑒,dc1
𝑓0
,… ,dc𝑚0

𝑓0
,…dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
are fresh global variables, and 𝑚𝑖 denotes the index of the last argument of constructor 𝑓𝑖 .

The unfolded LPE taking global variables into account is obtained using 𝗎𝗇𝖿𝗈𝗅𝖽𝑔 instead of 𝗎𝗇𝖿𝗈𝗅𝖽 in Definition 9. However, we 
need to take care that any other occurrences of the same global variable that is being replaced are updated consistently. This results 
in the following definition.1

Definition 11 (Unfolding of process parameters with global variable replacement). Let 𝐿= (,𝑔, 𝑃 , 𝑒) be an LPS, where 𝑃 is the following 
LPE.

𝑃 (𝑑 ∶ 𝐷) =
∑
𝑖∈𝐼 

∑
𝑒𝑖 ∶ 𝐸𝑖

𝑐𝑖 → 𝑎𝑖(𝑓𝑖) ⋅ 𝑃 (𝑔𝑖)

The result of unfolding process parameter 𝑑 ∶ 𝐷 in 𝐿 is the LPS

𝐿′ = (′, ′
𝑔, 𝑃

′,𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟 )

where ′ is data specification  in which sort 𝐷 is unfolded, and LPE 𝑃 ′ is as follows:

𝑃 ′(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑))

=
∑
𝑖∈𝐼 

∑
𝑒𝑖 ∶ 𝐸𝑖

𝖼𝗉(𝑐𝑖, 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟

→ 𝑎𝑖(𝖼𝗉(𝑓𝑖, 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟 )

⋅ 𝑃 ′(𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑔𝑖), 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟 )

where 𝑟 ⊆ 𝑔 is the set of all global variables dc∶ 𝐷 that have been replaced by a vector of fresh global variables 𝗎𝗇𝖿𝗈𝗅𝖽𝑔(dc).  ′
𝑔 is 

the set 𝑔 extended with these fresh global variables.

1 The definition using alternative case placement can be modified to take global variables into account in the same way.
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We apply this improved definition to the specification in Example 16.

Example 17. Recall the specification from Example 16. When using 𝗎𝗇𝖿𝗈𝗅𝖽𝑔 instead of 𝗎𝗇𝖿𝗈𝗅𝖽, the recursion in the first summand 
becomes 𝑃 (dc1𝑒,dc1lp,dc1ll,dc2, true).

This allows further simplification using constant elimination and parameter elimination to the LPE below.

proc 𝑃 (𝑙𝑝 ∶ Piece, 𝑝  ∶ Piece,done∶ Bool)
= (¬done ∧ 𝑙𝑝 ≈ 𝑝)→ 𝑖𝑠(𝑝).𝑃 (𝑝,other(𝑝),done)
+(¬done ∧ 𝑙𝑝 ≈ other(𝑝))→ 𝜏.𝑃 (dc1lp,dc2, true);

init 𝑃 (𝑜, 𝑜, false);

In particular, all case functions, determinizers and projection functions are fully removed. The transformation now essentially replaced 
the (fixed-length) list in the original process by its individual elements.

When unfolding parameters in other examples, for instance board games such as tic-tac-toe or four in a row, replacing global 
variables in the way described proves essential for eliminating all lists from the specification. In our experiments in Section 6 we will 
demonstrate that this results in a dramatic performance increase for symbolic reachability.

5.5. Correctness

We describe correctness of the unfolding with standard placement of case functions. A similar result was given, without proof, 
in [22]. The result in [22] does not allow for global variables in an LPE.

Theorem 1. Let  = (Σ,𝐸), and consider LPE 𝐿= (,𝑔, 𝑃 , 𝑒), where 𝑃 is defined as:

𝑃 (𝑑 ∶ 𝐷) =
∑
𝑖∈𝐼 

∑
𝑒𝑖 ∶ 𝐸𝑖

𝑐𝑖 → 𝑎𝑖(𝑓𝑖) ⋅ 𝑃 (𝑔𝑖)

Also consider the result 𝐿′ = (′,𝑔, 𝑃
′,𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)) of unfolding parameter 𝑑, as in Definition 9,

𝑃 ′(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)) =
∑
𝑖∈𝐼 

∑
𝑒𝑖 ∶ 𝐸𝑖

𝖼𝗉(𝑐𝑖, 𝑑)→ 𝑎𝑖(𝖼𝗉(𝑓𝑖, 𝑑)) ⋅ 𝑃 ′(𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖), 𝑑))

Then 𝑃 (𝑒) � 𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)).

Proof. We need to show that for all valuations 𝜎′ and 𝜎, there exists a bisimulation relation 𝑅𝑃,𝑃 ′ such that �𝑒�𝜎′ 𝑅𝑃,𝑃 ′ �𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�𝜎 . 
Fix 𝜎′ and 𝜎. As 𝑃 (𝑒) � 𝑃 (𝑒), there exists a bisimulation relation 𝑅𝑃,𝑃 such that �𝑒�𝜎′ 𝑅𝑃,𝑃 �𝑒�𝜎 . So, it suffices to prove there exists 
a bisimulation relation 𝑅 such that �𝑒�𝜎 𝑅 �𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�𝜎 . It then follows that 𝑅𝑃,𝑃 ′=𝑅𝑃,𝑃 ◦ 𝑅 is a bisimulation relation such that 
�𝑒�𝜎

′
𝑅𝑃,𝑃 ′ �𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)�𝜎 .

Define relation 𝑅 as follows:

𝑅= {(�𝑡�𝜎 , �𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�𝜎) ∣ 𝑡 is a term of sort 𝐷}

We prove 𝑅 is a strong bisimulation relation. So, fix arbitrary term 𝑡 such that �𝑡�𝜎 𝑅 �𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�𝜎 , and fix arbitrary 𝑖 ∈ 𝐼 , value 
𝑤𝑖 ∈𝑀𝐸𝑖

such that �𝑐𝑖�𝜎[�𝑡�
𝜎∕𝑑,𝑤𝑖∕𝑒𝑖] = 𝐭𝐫𝐮𝐞. That is, the condition of summand 𝑖 is satisfied. We need to show there exists a summand 

𝑖′ ∈ 𝐼 ′ and value 𝑤′
𝑖′ ∈𝑀𝐸′

𝑖′
such that the condition of summand 𝑖′ is satisfied, the action and its parameters match those of summand 

𝑖, and the target states are related. We prove that this is witnessed by summand 𝑖 and value 𝑤𝑖.
First, we show that �𝖼𝗉(𝑐𝑖, 𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�

𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖] = �𝑐𝑖�
𝜎[�𝑡�𝜎∕𝑑,𝑤𝑖∕𝑒𝑖]. As �𝑐𝑖�

𝜎[�𝑡�𝜎∕𝑑,𝑤𝑖∕𝑒𝑖] = 𝐭𝐫𝐮𝐞, it then follows that 
�𝖼𝗉(𝑐𝑖, 𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�

𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖] = 𝐭𝐫𝐮𝐞. The derivation is as follows.

�𝖼𝗉(𝑐𝑖, 𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�
𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖]

= {𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) fresh}

�𝖼𝗉(𝑐𝑖, 𝑑)�𝜎[𝑤𝑖∕𝑒𝑖][�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�
𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑)]

= {Corollary 1}

�𝑐𝑖�
𝜎[𝑤𝑖∕𝑒𝑖][�𝑡�𝜎∕𝑑]

= {𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) fresh}

�𝑐𝑖�
𝜎[�𝑡�𝜎∕𝑑,𝑤𝑖∕𝑒𝑖]

By construction of the unfolded LPE, 𝑎𝑖 = 𝑎𝑖. The proof that �𝖼𝗉(𝑓𝑖, 𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�
𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖] = �𝑓𝑖�

𝜎[�𝑡�𝜎∕𝑑,𝑤𝑖∕𝑒𝑖] is analogous 
to the case for 𝑐𝑖.
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Finally, we prove that �𝑔𝑖�𝜎[�𝑡�
𝜎∕𝑑,𝑤𝑖∕𝑒𝑖] 𝑅 �𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖), 𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�

𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖].

�𝑔𝑖�
𝜎[�𝑡�𝜎∕𝑑,𝑤𝑖∕𝑒𝑖]

= {By assumption, every 𝑤𝑖 has closed term 𝑡𝑖 s.t. �𝑡𝑖� =𝑤𝑖; �𝑡𝑖� = �𝑡𝑖�
𝜎 since 𝑡𝑖 closed}

�𝑔𝑖�
𝜎[�𝑡�𝜎∕𝑑,�𝑡𝑖�𝜎∕𝑒𝑖]

= {Lemma 2}

�𝑔𝑖[𝑑 ∶= 𝑡, 𝑒𝑖 ∶= 𝑡𝑖]�𝜎

𝑅 {Definition of 𝑅}

�𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖[𝑑 ∶= 𝑡, 𝑒𝑖 ∶= 𝑡𝑖])�𝜎

= {Definitions of substitution, 𝗎𝗇𝖿𝗈𝗅𝖽}

�𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖)[𝑑 ∶= 𝑡, 𝑒𝑖 ∶= 𝑡𝑖]�𝜎

= {Lemma 2}

�𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖)�𝜎[�𝑡�
𝜎∕𝑑,�𝑡𝑖�𝜎∕𝑒𝑖]

= {Corollary 2}

�𝗎𝗇𝖿𝗈𝗅𝖽(𝖼𝗉(𝑔𝑖, 𝑑))�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�
𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),�𝑡𝑖�𝜎∕𝑒𝑖]

= {�𝑡𝑖�𝜎 =𝑤𝑖, see first step in derivation}

�𝗎𝗇𝖿𝗈𝗅𝖽(𝖼𝗉(𝑔𝑖, 𝑑))�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�
𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖]

= {Lemma 9}

�𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽(𝑔𝑖), 𝑑)�𝜎[�𝗎𝗇𝖿𝗈𝗅𝖽(𝑡)�
𝜎∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖]

This concludes the first direction of the proof that both processes are strongly bisimilar. The other direction is symmetric. □

Corollary 3. Consider the LPEs from Theorem 1. Then it holds that 𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)) � 𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)).

Proof. Theorem 1 shows that 𝑃 (𝑒) � 𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)). Using similar arguments we can also show that 𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽(𝑒)) � 𝑃 (𝑒). The result 
then follows from transitivity of strong bisimulation. □

We next show that also the variant where global variables are replaced with fresh global variables preserves strong bisimulation.

Theorem 2. Let  = (Σ,𝐸), and consider LPE 𝐿= (,𝑔, 𝑃 , 𝑒), where 𝑃 is defined as:

𝑃 (𝑑 ∶ 𝐷) =
∑
𝑖∈𝐼 

∑
𝑒𝑖 ∶ 𝐸𝑖

𝑐𝑖 → 𝑎𝑖(𝑓𝑖) ⋅ 𝑃 (𝑔𝑖)

Also consider the result of unfolding parameter 𝑑 using the global variables optimization from Definition 11

𝐿′ = (′, ′
𝑔, 𝑃

′,𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟 )

where 𝑃 ′ is defined as

𝑃 ′(𝗉𝖺𝗋𝖺𝗆𝗌(𝑑))

=
∑
𝑖∈𝐼 

∑
𝑒𝑖 ∶ 𝐸𝑖

𝖼𝗉(𝑐𝑖, 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟

→ 𝑎𝑖(𝖼𝗉(𝑓𝑖, 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟 )

⋅ 𝑃 ′(𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑔𝑖), 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟 )

Then 𝑃 (𝑒) � 𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟 ).

Proof. Fix arbitrary valuation 𝜎. Let 𝑟 be as in Definition 11. We define valuation 𝜎𝑟 as follows:

𝜎𝑟 = 𝜎[�C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))�𝜎∕dc]dc∈𝑟
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Also, define relation 𝑅 such that for every term 𝑡 of sort 𝐷,

�𝑡�𝜎𝑟 𝑅 �𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑡)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎

Before we continue our proof, note that it follows immediately from Lemma 2 and the definition of 𝜎𝑟 that

�𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑡)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎 = �𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑡)�𝜎𝑟

So, an equivalent definition of 𝑅 is, for any 𝑡 of sort 𝐷,

�𝑡�𝜎𝑟 𝑅 �𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑡)�𝜎𝑟

We prove that 𝑅 is a strong bisimulation relation.

To this end, fix arbitrary term 𝑡 such that �𝑡�𝜎𝑟 𝑅 �𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑡)�𝜎𝑟 , and fix arbitrary 𝑖 ∈ 𝐼 , value 𝑤𝑖 ∈𝑀𝐸𝑖
such that �𝑐𝑖�𝜎𝑟[�𝑡�

𝜎𝑟 ∕𝑑,𝑤𝑖∕𝑒𝑖]

= 𝐭𝐫𝐮𝐞. So, the condition of summand 𝑖 is satisfied. We show that summand 𝑖 and 𝑤𝑖 witness the transfer condition.

First, we show that

�𝖼𝗉(𝑐𝑖, 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎𝑟[�𝗎𝗇𝖿𝗈𝗅𝖽𝑔 (𝑡)�𝜎𝑟 ∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖]

=�𝑐𝑖�
𝜎𝑟[�𝑡�𝜎𝑟 ∕𝑑,𝑤𝑖∕𝑒𝑖]

It then follows immediately that the left hand side of this equality is 𝐭𝐫𝐮𝐞 as well.

For the sake of brevity, in the remainder of the proof, we write 𝜎𝑟,𝑖 for 𝜎𝑟[�𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑡)�𝜎𝑟∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖]. The derivation is as 
follows.

�𝖼𝗉(𝑐𝑖, 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎𝑟,𝑖

= {Lemma 2}

�𝖼𝗉(𝑐𝑖, 𝑑)�
𝜎𝑟,𝑖[�C𝐷(dc𝑒,𝑓0(dc1

𝑓0
,…,dc

𝑚0
𝑓0

),…,𝑓𝑛(dc1
𝑓𝑛
,…,dc𝑚𝑛

𝑓𝑛
))�𝜎𝑟,𝑖 ∕dc]dc∈𝑟

= {𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) and 𝑒𝑖 are not global variables}

�𝖼𝗉(𝑐𝑖, 𝑑)�
𝜎𝑟,𝑖[�C𝐷(dc𝑒,𝑓0(dc1

𝑓0
,…,dc

𝑚0
𝑓0

),…,𝑓𝑛(dc1
𝑓𝑛
,…,dc𝑚𝑛

𝑓𝑛
))�𝜎𝑟 ∕dc]dc∈𝑟

= {Fresh global variables are not in 𝑟}

�𝖼𝗉(𝑐𝑖, 𝑑)�
𝜎𝑟,𝑖[�C𝐷(dc𝑒,𝑓0(dc1

𝑓0
,…,dc

𝑚0
𝑓0

),…,𝑓𝑛(dc1
𝑓𝑛
,…,dc𝑚𝑛

𝑓𝑛
))�𝜎∕dc]dc∈𝑟

= {Definition of 𝜎𝑟; dc not in 𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) or 𝑒𝑖}

�𝖼𝗉(𝑐𝑖, 𝑑)�𝜎𝑟,𝑖

= {𝗉𝖺𝗋𝖺𝗆𝗌(𝑑) fresh, Corollary 1, analogous to case 𝑐𝑖 in the proof of Theorem 1}

�𝑐𝑖�
𝜎𝑟[�𝑡�𝜎𝑟 ∕𝑑,𝑤𝑖∕𝑒𝑖]

The proofs for 𝑎𝑖 and 𝑓𝑖 are analogous to the proof of Theorem 1 and that of 𝑐𝑖 above. So we finally need to prove that

�𝑔𝑖�
𝜎𝑟[�𝑡�𝜎𝑟 ∕𝑑,𝑤𝑖∕𝑒𝑖]

𝑅

�𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑔𝑖), 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎𝑟,𝑖

Using a similar line of reasoning as the case for 𝑐𝑖 , it follows that

�𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑔𝑖), 𝑑)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎𝑟,𝑖

= �𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑔𝑖), 𝑑)�𝜎𝑟,𝑖

So, using 𝜎𝑟,𝑖 = 𝜎𝑟[�𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑡)�𝜎𝑟∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖], it remains to show that

�𝑔𝑖�
𝜎𝑟[�𝑡�𝜎𝑟 ∕𝑑,𝑤𝑖∕𝑒𝑖] 𝑅 �𝖼𝗉(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑔𝑖), 𝑑)�𝜎𝑟[�𝗎𝗇𝖿𝗈𝗅𝖽𝑔 (𝑡)�

𝜎𝑟 ∕𝗉𝖺𝗋𝖺𝗆𝗌(𝑑),𝑤𝑖∕𝑒𝑖]

The proof of this is analogous to that of the case for 𝑔𝑖 in the proof of Theorem 1.

This concludes the first direction of the proof that 𝑅 is a strong bisimulation relation. The other direction is symmetric.

Finally we show that for all valuations 𝜎′ and 𝜎, there exists a bisimulation relation 𝑅𝑃,𝑃 ′ such that �𝑒�𝜎′ 𝑅𝑃,𝑃 ′ �𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒)[dc ∶=
C𝐷(dc𝑒, 𝑓0(dc1

𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎 . Using 𝜎𝑟 and 𝑅 as defined above, we have that

�𝑒�𝜎𝑟 𝑅 �𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟�

𝜎
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As 𝑃 (𝑒) � 𝑃 (𝑒), it also follows that there is a bisimulation relation 𝑅𝑃,𝑃 such that �𝑒�𝜎 𝑅𝑃 ,𝑃 �𝑒�𝜎𝑟 . From this it follows that 𝑅𝑃,𝑃 ′ =
𝑅𝑃,𝑃 ◦𝑅 is a strong bisimulation. This concludes the proof. □

Using similar arguments as before, it follows that, after unfolding it still remains the case that global variables do not affect the 
behavior of the processes.

Corollary 4. Consider the LPEs from Theorem 2. Then it holds that

𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟 )

�

𝑃 ′(𝗎𝗇𝖿𝗈𝗅𝖽𝑔(𝑒)[dc ∶= C𝐷(dc𝑒, 𝑓0(dc1
𝑓0
,… ,dc𝑚0

𝑓0
),… , 𝑓𝑛(dc1

𝑓𝑛
,… ,dc𝑚𝑛

𝑓𝑛
))]dc∈𝑟 )

6. Experiments

The original parameter unfolding technique from [22] has been available in the tool lpsparunfold in the mCRL2 toolset [14] 
for over a decade. We have extended the C + + implementation with the ideas described in this article. The tool allows selecting which 
parameters to unfold, and the number of times a parameter should be unfolded using command-line options. Multiple parameters 
can be unfolded in a single run; this is achieved by iterating the unfolding of a single parameter.

In previous experiments reported in [26], we compared the original definition of parameter unfolding from Groote and Lisser [22] 
to our description in which distribution laws, pattern match unfolding and the global variables optimization were always enabled. 
We compared the effect of default and alternative case placement in this setting. In this article we extend the experiment, and focus 
on the effect of (default vs alternative) case placement, pattern match unfolding and global variables replacement.2 We run all eight 
combinations of these options to allow studying the effectiveness of the single optimizations.

By default, the tool lpsparunfold performs parameter unfolding with distribution laws, pattern match unfolding and global 
variables replacement using default case placement. Command line arguments -x can be used to switch off pattern match unfolding, 
and -g disables replacement of global variables. To evaluate the effect of our improvements on further analysis of LPEs and the 
generation of the underlying state space using symbolic reachability, we compare the following nine workflows:

• standard: standard static analysis workflow: instantiate finite summations, eliminate constant and redundant parameters and 
superfluous summation variables [22] (using the mCRL2 tools lpssuminst, lpsconstelm, lpsparelm and lpssumelm). 
Finally, perform symbolic reachability (lpsreach). No parameter unfolding is applied.

• cp-x-g: perform parameter unfolding with default case placement (cp), where pattern matching functions are not unfolded 
(-x) and global variables are not replaced (-g). After that, apply the steps from standard.

• cp-x: perform parameter unfolding with our extension for global variables with default case placement (cp), where pattern 
matching functions are not unfolded (-x). After that, apply the steps from standard.

• cp-g: perform parameter unfolding with pattern matching rules with default case placement (cp), where global variables are 
not replaced (-g). After that, apply the steps from standard.

• cp: perform parameter unfolding with our extension for global variables and pattern matching rules with default case placement 
(cp). After that, apply the steps from standard. 

• acp-x-g, acp-x, acp-g, and acp: these are the same as the workflows for cp, but use alternative case placement instead of 
default case placement.

The workflows are executed on various mCRL2 specifications, including our running example (onoff). We consider models of 
two-player games, often used to teach formal methods: four-in-a-row, with varying numbers of rows and columns and tic-tac-toe on 
a standard 3x3 board, in which the board is encoded using fixed length lists of lists. First, the board is unfolded, and then each of the 
rows resulting from this first unfolding. The sliding window protocol [50], that forms the basis of the TCP protocol used for reliable 
in-order delivery of packets, as it occurs in [25], with window size 𝑛 and 𝑚 messages (swp-𝑛-𝑚) for different values of 𝑛 and 𝑚 is a 
representative of communication protocols. For this the send and receive windows are unfolded. Moreover, we include models based 
on industrial applications: a UML state machine diagram of an industrial pneumatic cylinder (cylinder) [51] and of an industrial lift 
(left-lift); the protocol negotiating a service level agreement (sla) between two parties communicating via message passing along reliable 
channels encoded using fixed length lists [52]; a model of the Workload Management System (wms) of the DIRAC Community Grid 
Solution for the LHCb experiment at CERN [53]; two configurations of the model of session setup of the IEEE 11073-20601 standard 
for communication between personal health devices, with two unidirectional buffers of size 𝑛 for communication (ieee-11073-𝑛) [54]. 
Note that the use of complex data structures for industrial case studies is wide-spread, allowing the creation of concise and elegant 
models.

2 Experiments run one single time over each of the specifications show that adding distribution laws never negatively effects the running time, we hence always 
include them in our experiments.
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Table 1
Experimental results for symbolic reachability, reporting size of the underlying labeled transition system, and the mean total time of each of the tool 
executions out of 10 runs.

Model Size (# states) Time (s) 
standard cp-x-g cp-x cp-g cp acp-x-g acp-x acp-g acp 

cylinder 1 593 209 27.0 15.9 15.6 15.9 15.6 15.9 15.8 16.0 15.8 
fourinarow3-4 12 305 62.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 
fourinarow3-5 (*)171 243 t-o 9.0 9.1 9.0 9.0 9.2 9.2 9.2 9.2 
fourinarow4-3 6 214 14.5 1.0 1.1 1.1 1.0 1.1 1.1 1.1 1.1 
fourinarow4-4 (*)187 928 t-o 9.3 9.3 9.3 9.3 9.6 9.6 9.4 9.4 
fourinarow4-5 (*)5 464 759 t-o 312.6 311.8 313.0 312.4 316.1 315.2 316.5 316.0 
fourinarow5-3 44 131 842.4 3.1 3.1 3.1 3.1 3.2 3.1 3.1 3.2 
fourinarow5-4 (*)2 788 682 t-o 146.2 146.3 145.9 146.1 149.4 148.6 148.8 147.8 
onoff (*)3 t-o t-o t-o t-o t-o 0.0 0.0 0.0 0.1 
sla7 7 918 2.0 2.5 2.5 2.6 2.5 2.6 2.5 2.5 2.5 
sla10 238 931 30.4 17.2 17.1 16.5 16.4 14.2 14.2 14.3 14.3 
sla13 (*)6 693 054 t-o 383.7 385.5 375.4 375.5 301.0 295.9 304.9 291.9 
swp2-2 14 064 1.2 1.3 1.4 1.3 1.3 1.3 1.3 1.2 1.3 
swp2-4 140 352 2.3 2.6 2.6 2.4 2.5 2.6 2.6 2.4 2.4 
swp2-6 598 320 3.4 3.6 3.7 3.3 3.2 3.6 3.6 3.3 3.2 
swp2-8 1 731 840 4.1 4.8 4.8 4.0 4.3 4.8 4.8 4.0 4.0 
swp4-2 2 589 056 5.8 9.5 9.5 7.2 7.4 9.8 9.4 7.2 7.6 
swp4-4 292 878 336 130.9 163.1 161.5 100.2 100.8 162.5 162.1 100.2 100.5 
swp4-6 5 729 304 960 3 040.8 1 071.1 1 071.4 669.4 668.5 1 075.1 1 073.4 669.5 671.0 
swp4-8 (*)50 128 191 488 t-o t-o t-o 2 746.3 2 740.6 t-o t-o 2 754.5 2 745.7 
tictactoe3-3 5 479 12.3 8.0 1.5 4.7 1.4 2.3 1.4 2.3 1.4 
wms 155 034 776 17.4 17.7 17.5 17.6 17.6 17.5 17.5 17.4 17.6 
ieee-11073-2 9 874 3.7 3.9 3.8 3.8 3.8 3.9 3.9 3.9 3.9 
ieee-11073-3 54 147 12.7 8.1 8.0 8.4 8.1 7.8 7.9 7.8 7.8 
left-lift 13 212 954 983 2 145.4 2 780.2 2 778.2 2 770.0 2 783.1 2 780.9 2 764.4 2 844.3 2 770.6 

A reproduction package including all tool versions and mCRL2 specifications used is available from https://doi.org/10.5281/

zenodo.12705700, also in [55]. The used mCRL2 version is 202307.1.

6.1. Results

All experiments were run 10 times, on a machine with 4 Intel 6136 CPUs and 3TB of RAM, running Ubuntu 20.04. The results are 
presented in Table 1. We used a time-out of 1 hour (3600 seconds) and a memory limit of 64 GB. Every experiment is limited to the 
use of a single thread. We report the size of the explored state space in number of states and the mean total running time of 10 runs in 
seconds. The reported running time is only for symbolic reachability. The reason for this is that the running time for standard static 
analysis tools and parameter unfolding are insignificant compared to that of symbolic reachability. For each model we report the size, 
in terms of the number of states, only once in the table. This is because, for a single model, the workflows that do not timeout result 
in the same state space. For all models, apart from onoff, parameter unfolding does not enable other static analysis tools to achieve a 
reduction of the state space size. Therefore, the size of the state space is the same for all the workflows that terminate. If a workflow 
times out, ‘t-o’, no size for the state space is reported. With the (*) symbol we indicate that the reported size is for the workflows that 
did not result in a timeout. For example, the fourinarow3-5 model has a state space of size 171 243 for all workflows but standard, 
for the latter no size is reported since the workflow times out.

For each model, we highlight the fastest runs as follows. Let 𝑚 be the running time of the fastest run. We highlight in bold all 
running times that are at most 10% higher than 𝑚. For most of the experiments, the standard deviation is below 10% of the mean.3

6.2. Discussion

The experiments show that our improvements typically reduce the total running time of the verification. In particular, our extension 
for global variables reduces the running time for tic-tac-toe, i.e., in Table 1 workflows cp-x, cp, acp-x and acp have a lower running 
time than the other workflows. The simplifications for pattern matching rules show a reduction in the running time for the sliding 
window protocol (swp). For model swp4-8, in Table 1, workflows cp-g, cp, acp-g and acp have a running time of ∼ 45 minutes while 
the other workflows result in a timeout. Alternative case placement reduces the infinite state space of our running example (onoff) 
to only three states; for the service-level-agreement protocol (sla) it reduces the total running time, mostly for larger configurations 
as it is shown by the results for sla13.

3 The cases where the standard deviation exceeds 10% of the mean, with their standard deviation, are: sla-13 acp-g: 37.8, swp2-6 standard: 0.6, swp2-8 cp: 0.8, 
swp4-2 cp: 0.8, acp-x-g: 1.3, acp: 1.4, 11073-3 acp-g: 1.2.

https://doi.org/10.5281/zenodo.12705700
https://doi.org/10.5281/zenodo.12705700
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Even when the size of the state space is not changed, our improvements often reduce the running time of symbolic reachability. 
This is due to the simplification of data in the processes, and the reduction of dependencies between process parameters. Although in 
theory alternative case placement could lead to an exponential blow-up of the terms in the LPE, this is not observed in our experiments.

In some cases, our parameter unfolding techniques do not manage to improve the results of static analysis. This typically happens 
when the unfolded data structures do not have a fixed size. In Table 1, models ieee-11073-n and left-lift have data structures with a 
dynamic size which, as clearly shown by the results of left-lift, negatively affects our parameter unfolding techniques. We demonstrate 
this in the below example, which is inspired by the ieee-11073 model.

Example 18. Consider the following process that models a buffer that can store up to two natural numbers:

proc Buf (𝑙∶ List(Nat),broken∶ Bool)
= Σ𝑛 ∶ Nat(#𝑙 ≤ 2 ∧ ¬broken)→ receive(𝑛).Buf (𝑙 ⊲ 𝑛,broken)
+(𝑙 ≉ [] ∧ ¬broken)→ send(head(𝑙)).Buf (tail(𝑙),broken)
+destroy.Buf ([], true);

init Buf ([], false);

Here, ⊲ is a mapping that appends a single element to the back of a list and #𝑙 is the length of list 𝑙 (the corresponding equations in 
the data specification are straightforwardly defined using recursion). This buffer operates in a first-in first-out manner: when a number 
is received it is placed at the back of the list and the number at the head of the list can be sent. In case the buffer is destroyed in an 
accident, it ceases all operations.

We unfold the parameter 𝑙∶ List(Nat) twice with alternative case placement and pattern match unfolding. The new process now 
has the following parameters:

Buf ′(𝑒1
𝑙
, 𝑒2
𝑙
∶ 𝑈List(Nat), 𝑝1, 𝑝2 ∶ Nat, 𝑞∶ List(Nat),broken∶ Bool)

Parameters 𝑒1
𝑙

and 𝑒2
𝑙

indicate whether the first and second positions of the original list are occupied, respectively. The corresponding 
values are stored in 𝑝1 and 𝑝2, while the remainder of the list is stored in parameter 𝑞. Note that 𝑞 ≈ [] is an invariant of Buf ′, since 
the original list never grows beyond size 2.

The difficulty of deducing this invariant lies in the first summand, where the list is extended. After unfolding and rewriting, this 
summand is as follows (for conciseness we refer to CList(Nat) simply as C).

Σ𝑛 ∶ Nat(C(𝑒2
𝑙
, true,C(𝑒1

𝑙
, true, false)) ∧ ¬broken)→ receive(𝑛).

Buf ′(𝑐⊳, 𝑒1𝑙 ,C(𝑒1
𝑙
, 𝑛, 𝑝1),C(𝑒2

𝑙
,C(𝑒1

𝑙
,0, 𝑛),C(𝑒1

𝑙
,0, 𝑝2)),C(𝑒2

𝑙
,[],C(𝑒1,[], 𝑞 ⊲ 𝑛)))

The invariant can only be deduced if we can show that �C(𝑒2
𝑙
, true,C(𝑒1

𝑙
, true, false)) ∧ ¬broken�𝜎 implies �C(𝑒2

𝑙
,[],C(𝑒1,[], 𝑞 ⊲ 𝑛)) ≈

[]�𝜎 for all 𝜎. This requires a careful analysis of the equations in the data specification, something our static analysis tools are 
currently not capable of.

Similar to the example, in the case of ieee-11073 our static analysis tools are not able to deduce invariants of the form 𝑞 ≈ []; the 
case of left-lift is comparable. Despite this unused potential, parameter unfolding still helps speed up symbolic exploration in the case 
of ieee-11073 with buffer size 3.

Overall, the results show that generally pattern match unfolding and the unfolding of global variables have a positive effect on 
the performance. Our experiments show that pattern match unfolding and the unfolding of global variables are safe to be used by 
default. They never have a significant negative effect on the performance. Case placement and alternative case placement are often 
close in terms of performance, where alternative case placement is potentially more powerful. The models where alternative case 
placement is clearly beneficial are those where distribution of function symbols over case functions can be exploited for simplification. 
In particular when there are many comparisons, e.g., using ≈,<,>,…, with a constant, alternative case placement can speed up the 
running time, or, as in our running example, reduce the size of the state space. The presence of (many) such comparisons can be 
deduced by inspecting the structure of the specification. Since alternative case placement is susceptible to exponential blow-up, even 
though we did not observe such blow-up in our experiments, we keep it as an option to the tool, but refrain from making it the 
default. Unfortunately, it is not possible to detect a priori which specification would lead to a blow-up.

7. Conclusion

In this article we have described a general approach to unfold state variables in a specification of a distributed system. We have 
presented our technique, based on Groote and Lisser’s parameter unfolding [22], for models that describe the behavior of a system 
using state variables and (terms over) algebraic data types. In particular, we have presented (alternative) case placement and pattern 
match unfolding in detail. In the context of mCRL2, we have added global variables unfolding. We have proven the correctness of 
each of the transformations.

We have experimentally evaluated the effect of case placement and alternative case placement, pattern match unfolding and global 
variables unfolding in mCRL2. In general, we observe that, even if the size of the state space is not reduced, the unfolding of state 
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variables improves the performance of symbolic reachability. Pattern match unfolding and global variables unfolding typically have 
a positive effect; the performance of case placement and alternative case placement are mostly comparable.

We believe the effect of lpsparunfold should be investigated in relation to other static analysis techniques such as dead 
variable analysis [23]. Together these have the potential to speed up the model checking of industrial systems, e.g., described by OIL 
models [48] and Cordis models [51] using mCRL2. The effect of lpsparunfold could also be investigated in the context of PBESs.

The general nature of our techniques also warrants further study in the context of other formalisms that use algebraic data types. 
Examples are constrained Horn clause (CHC) solvers [56] and compilers for functional programming languages.
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