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Abstract. Partial-order reduction (POR) is a well-established technique
to combat the problem of state-space explosion. Most approaches in lit-
erature focus on Kripke structures or labelled transition systems and
preserve a form of stutter/weak trace equivalence or weak bisimulation.
Therefore, they are at best applicable when checking weak modal mu-
calculus. We propose to apply POR on parity games, which can encode
the combination of a transition system and a temporal property. Our
technique allows one to apply POR in the setting of mu-calculus model
checking. We show with an example that the reduction achieved on par-
ity games can be significantly larger. Furthermore, we identify and repair
an issue where stubborn sets do not preserve stutter equivalence.

1 Introduction

In the field of formal methods, model checking [2] is a popular technique to anal-
yse the behaviour of concurrent processes. However, the arbitrary interleaving
of these parallel processes can cause an exponential blowup, which is known as
the state-space explosion problem. Several approaches have been identified to
alleviate this issue, by reducing the state space on-the-fly, i.e., while generating
it. Two established techniques are symmetry reduction [10] and partial-order re-
duction (POR) [7,18,20]. Whereas symmetry reduction can only be applied to
systems that contain several copies of a component, POR also applies to hetero-
geneous systems. However, a major drawback of POR is that most variants at
best preserve only a fragment of a given logic, such as LTL or CTL* without the
next operator (LTL−X/CTL∗−X) [6] or the weak modal mu-calculus [19]. Fur-
thermore, the variants of POR that preserve a branching logic impose significant
restrictions on the reduction by only allowing the prioritisation of exactly one
action at a time. This decreases the amount of reduction achieved.

In this paper, we address these shortcomings by applying POR on parity
games. A parity game is a directed graph with decorations on the nodes that
is played between two players, even (3) and odd (�). An application of parity
games is encoding a model checking question: a combination of a model, in
the form of a labelled transition system (LTS) or Kripke structure (KS), and a
formal property, formulated in the modal mu-calculus [12]. In such games, every
node v represents the combination of a state s from the transition system and



a (sub)formula ϕ. Under a typical encoding, player 3 wins in v if and only if ϕ
holds in s. In the context of model checking, parity games suffer from the same
state-space explosion that models do. Exploring the state space of a parity game
under POR can be a very effective way to address this. Our contributions are as
follows:

– We propose conditions under which a parity game can be reduced. We prove
that the reduction is correct, i.e., it preserves the winning player of the parity
game (Theorem 1).

– We show with an example that one of the POR conditions, called D1 in [23],
often found in literature contains a subtle mistake. When applied to LTSs
or KSs, this means that LTL−X is not necessarily preserved. This omission
is addressed by the strengthened version of condition D1 that we propose.

– We identify improvements for the reduction by investigating the typical
structure of a parity game that encodes a model checking question.

– We give details of a possible implementation, using parameterised Boolean
equation systems (PBESs) [9] as a high-level representation. The implemen-
tation is based on the generic framework of [14], but extends it with support
for non-determinism.

The proposed approach has two benefits over traditional POR techniques that
operate on LTSs or KSs. First, it enables the use of partial-order reduction in the
setting of mu-calculus model checking. This improves on previous works, since
they only support the weak mu-calculus [19] or LTL−X [23]/CTL∗−X [6], which
are even less expressive logics. Furthermore, the conditions that we propose are
strictly weaker than those necessary to preserve the branching structure of an
LTS or KS [6,19].

The rest of the paper is structured as follows. Section 2 compares the cur-
rent work to existing literature. Then, we introduce several basic concepts in
Section 3. Our main ideas are presented in Section 4 and further improved in
Section 5. Section 6 gives an introduction to PBESs and explains how they relate
to parity games. Details of a possible implementation with PBESs are given in
Section 7 and the results of a first experiment are presented in Section 8. Finally,
Section 9 concludes and provides possible directions for future work.

2 Related Work

There are several related works on partial-order reduction for branching-time
logics. First, Groote and Sellink [8] propose several forms of confluence reduction
and prove which behavioural equivalences are preserved. In confluence reduction,
one tries to identify inert τ -transitions that do not influence the rest of the
system. The state space can be reduced by prioritising those transitions.

The work of Ramakrishna and Smolka [19] is also based on inert τs and
prioritisation. What they propose coincides with strong confluence from [8], and
thus their algorithm preserves weak bisimulation and the corresponding logic
weak modal mu-calculus. Since they only present an algorithm that is tightly
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integrated into a local model checking procedure, it is not immediately clear
what the essence of their idea is. They do not present the concept of a reduction
function or conditions thereon separately.

Similar ideas are presented by Gerth et al. in [6], but their setting of Kripke
structures matches ours more closely. Their approach is based on the ample set
method [18] and preserves a relation they call visible bisimulation, which is more
commonly known as divergence-preserving branching bisimulation. As a result,
they preserve CTL−X .

POR has also been applied to other models of computation, such as proba-
bilistic processes [1] and real-time models [3].

To obtain more insight into the difference between POR applied on processes
or on parity games, we consider the ideas of Gerth et al. [6] in more detail.
Their conditions C1-C3 preserve LTL−X and are approximately equal to our
conditions. However, to preserve the branching structure, they introduce the
following singleton proviso:

C4 Either enabledG(s) ⊆ r(s) or |r(s)| = 1.

This extra condition can severely impact the amount of reduction achieved, as
shown by the following example.

Example 1. Consider the process P , defined as follows.

A(n:N) = (n 6= 0)→ (a+ a′) ·A(n− 1)

B(n:N) = (n 6= 0)→ (b+ b′) ·B(n− 1)

P = ∇{a,a′,b,b′}(A(N) ‖ B(N))

Where N is a large natural number. Due to C4, neither {a, a′} nor {b, b′}
is a valid stubborn set. However, when constructing a PBES for the formula
[true∗]〈true∗.a〉true, we obtain a parity game with a very similar shape that can
be reduced by prioritising transitions that correspond to b or b′. Note that this
mu-calculus formula cannot be represented in LTL. Therefore, condition C4 is
in general required to preserve its validity. ut

Several optimisations for CTL model checking under POR are proposed
in [15]. They show that condition C4 is not required to preserve certain com-
mon classes of CTL formulas. This can significantly improve the reduction, as
the above example also demonstrates.

3 Preliminaries

In this section, we give the standard definition of a parity game and its related
concepts.

Definition 1. A parity game is a directed graph G = (V,→, Ω,P), where

– V is a finite set of nodes, called the state space;
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– →⊆ V × V is a total transition relation;
– Ω : V → N is a function that assigns a priority to each node; and
– P : V → {3,�} is a function that assigns a player to each node. The players

are called even (3) and odd (�).

We write s −→ t whenever (s, t) ∈→. The set of successors of a node s is
denoted with succ(s) = {t | s→ t}. We use # to denote an arbitrary player and
#̄ to denote its opponent.

A parity game is played as follows: initially, a token is placed on some node
of the graph. The owner of the node can decide where to move the token; the
token may be moved along one of the outgoing edges. This process continues ad
infinitum, yielding an infinite path of nodes that the token moves through. Such
a path is called a play. A play π is won by player 3 if the minimal priority that
occurs infinitely often along π is even. Otherwise, it is won by player �.

To reason about moves that a player may want to take, we use the con-
cept of strategies. A strategy σ# : V + → V for player # is a partial func-
tion that determines where # moves the token next, after the token has passed
through a finite sequence of nodes. More formally, for all sequences s1 . . . sn
such that P(sn) = #, it holds that σ#(s1 . . . sn) ∈ succ(sn). If sn belongs to
#̄, σ#(s1 . . . sn) is undefined. A play s1, s2, . . . is consistent with a strategy σ if
and only if σ(s1 . . . si) = si+1 for all i such that σ(s1 . . . si) is defined. A player
# wins in a node s if and only if there is a strategy σ# such that all plays that
start in s and that are consistent with σ# are won by player #.

Example 2. Consider the parity game below. Here, priorities are inscribed in the
nodes and the nodes are shaped according to their owner (3 or �).

1s1 0 s2

1s3 2 s4

In this game, the strategy σ3, partially defined as σ3(s1) = s2 and σ3(s2) = s1,
is winning for 3 in s1 and s2. After all, the minimal priority that occurs infinitely
often along (s1s2)ω is 0, which is even. Player� can win node s3 with the strategy
σ�(s3) = s4. Note that player 3 is always forced to move the token from node
s4 to s3.

4 Partial-Order Reduction

A popular application of parity games is the encoding of model checking prob-
lems. Given a labelled transition system (LTS) and a formula in the modal mu-
calculus, one can construct a parity game that expresses whether the formula
holds for the LTS. In a typical translation, a (sub)formula holds for a given state
if and only if the corresponding node in the parity game is won by player even.
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However, in model checking, arbitrary interleaving of concurrent processes
can lead to an exponential blowup in the size of the state space. Hence, most
parity games that are constructed from those state spaces also grow rapidly in
size. A popular technique to deal with this state-space explosion is partial-order
reduction (POR). Several variants of POR exist, such as ample sets [18], persis-
tent sets [7] and stubborn sets [20,21]. The current work is based on the stubborn
set theory, since it does not depend on any knowledge about the underlying con-
current processes of a semantic model and it can deal with nondeterminism [22].

Since POR not only relies on node labels but also on edge labels, we as-
sume the existence of some fixed set of edge labels S, which we will call events.
Events are typically denoted with the letter j. In Section 6, we will see where
events originate, and how they relate to parity game transitions. We extend the
standard definition of parity games to incorporate the edge labels:

Definition 2. A labelled parity game is a directed graph G = (V,→, Ω,P),
where V , Ω and P are as before and →⊆ V ×S×V is a total transition relation.

We write s
j−→ t whenever (s, j, t) ∈→ and s → t when s

j−→ t for some j. The
same notation is used to indicate the existence of longer paths s

j1...jn−−−−→ t. We
say an event j is enabled in a node s, notation s

j−→, if and only if there is a
transition s

j−→ t for some t. For a given parity game G, the set of all enabled
events in a node s is denoted with enabledG(s). An event j is invisible if and
only if for all transitions s

j−→ t labelled with j, it holds that P(s) = P(t) and
Ω(s) = Ω(t). Otherwise, j is visible. From here on, we assume every parity game
is labelled.

A central concept in POR is that of a reduction function, which indicates
which edges to explore in each node. Given some initial node ŝ, a reduction
function induces a unique reduced parity game as follows.

Definition 3. Let G = (V,→, Ω,P) be a parity game, ŝ ∈ V a node and r :
V → 2S a reduction function. Then the reduced parity game induced by r and
starting from ŝ is defined as Gr = (Vr,→r, Ω,P), where:

– →r is the transition relation under r: →r=→ ∩{(s, j, t) | j ∈ r(s)};
– Vr is the set of reachable nodes with →r: Vr = {s | ŝ →∗r s}, where →∗r is

the transitive closure of →r.

Note that a reduced parity game induced by some reduction function r only
has a total transition relation if r(s) ∩ enabled(s) 6= ∅ for every reachable node
s (this is enforced by the conditions we define below).

To really solve the issue of state-space explosion, one should not have to gen-
erate the full parity game. Instead, the reduction function should be computed
either a priori [13] or on-the-fly, i.e., during the exploration procedure. We take
the latter approach.

In the general case, a reduction function is not guaranteed to preserve the
winning player of a game. We identified the following properties from stubborn
set theory which are required to preserve the winning player.
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Definition 4. Let G = (V,→, Ω,P) be a parity game. A reduction function
r : V → 2S is a weak stubborn set iff for all nodes s ∈ V , the following
conditions hold:

D1 For all j ∈ r(s) and j1, . . . , jn /∈ r(s), if s
j1−→ s1

j2−→ · · · jn−→ sn
j−→ s′n, then

there are nodes s′, s1, . . . , s
′
n−1 such that s

j−→ s′
j1−→ s′1

j2−→ · · · jn−→ s′n and
si

j−→ s′i for every 1 ≤ i < n.
D2w There is an event j ∈ r(s) such that for all j1, . . . , jn /∈ r(s), if s

j1...jn−−−−→ s′,
then s′

j−→. Such an event is called a key event.
V If r(s) contains an enabled visible event, then it contains all visible events.
I If an invisible event is enabled, then r(s) contains an invisible key event.
L For every visible event j, every cycle in the reduced game contains a node

s such that j ∈ r(s).

Below, we also use (weak) stubborn set to refer to the set of events r(s) is
some node s. First, note that every key event in a node s is enabled in s, by
taking n = 0 in D2w. Condition D1 ensures that whenever an enabled event is
selected for the stubborn set, it should not disable other behaviour that is not
in r(s). Figure 1 shows a graphical representation of condition D1. A stubborn
set can never be empty, due to D2w. In a traditional setting where POR is
applied on an LTS, the combination of D1 and D2w is sufficient to preserve
deadlocks. Condition V enforces that either all visible events are selected for the
stubborn set, or none are. Condition L prevents the so called action-ignoring
problem, where a certain event is never selected for the stubborn set and ignored
indefinitely. Since we assume that the state space is finite, it suffices to reason
about the cycles of the reduced game. Finally, the combination of I and L helps
to preserve divergences.

s s1 . . . sn−1 sn

s′n

j1 jn

j ⇒

s s1 . . . sn−1 sn

s′ s′1 . . . s′n−1 s′n

j1 jn

j

j1 jn

j j j

Fig. 1. Visual representation of condition D1.

Example 3. To further illustrate the purpose of conditions V, I and L, we give
examples that show that the winning player in the original game and the reduced
game might be different if one of these conditions is not satisfied. See Figure 2.
From left to right, these games show a reduced game under a reduction function
that does not satisfy V, I or L, respectively. In each case, we start exploration
from the node called ŝ and the winning strategy for player 3 in the original
game is lost.

Note that the games in Figure 2 are from a subclass of parity games called
weak solitaire. A game is considered weak when the priorities along all its paths
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1ŝ 2

3 5

k

j

l

j

k
l

σ3: klω

D1, D2w, I, L

0

ŝ

1

j

k

j

σ3: jω

D1, D2w, V, L

1

ŝ

2

j

k

j

σ3: kjω

D1, D2w, V, I

Fig. 2. Three games that show the winner is not necessarily preserved if we drop one
of the conditions V, I or L, respectively. The dashed nodes and edges are present in
the original game, but not in the reduced game. The edges taken from ŝ by the winning
strategy for player 3 in the original game are indicated below each game.

are non-decreasing, i.e., if s → t then Ω(s) ≤ Ω(t). A game is a #-solitaire
game if all nodes belonging to player #̄ have exactly one successor. We call a
game solitaire if it is #-solitaire for some # ∈ {3,�}. Weak solitaire games can
encode the model checking of safety properties. ut

4.1 Strengthened condition D1

The condition D1 that we propose is slightly stronger than the version that can
be found in literature [14,20,23], which is as follows.

D1’ For all j ∈ r(s) and j1, . . . , jn /∈ r(s), if s
j1−→ · · · jn−→ sn

j−→ s′n, then there
are nodes s′, s1, . . . , s

′
n−1 such that s

j−→ s′
j1−→ s′1

j2−→ · · · jn−→ s′n.

However, this weaker condition may lead to the reduced game having a different
winner than the original game, as shown by the following example. Consider the
parity game below.

1ŝ 0 1

1 1 1

1 0 1

j

j1 j2

j3

jk

j1 j2
j3

j1 j2

j

jkjk

First, note that this game is deterministic. The events j1 and j2 are visible and j,
jk and j3 are invisible. By setting r(ŝ) = {j, jk}, which is valid under conditions
D1’, D2w, V, I and L, the reduced game that starts from ŝ does not contain the
dashed nodes. The winning strategy for player 3 that moves through the node
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with priority 0, via the edges labelled j1j2jj3, is thus lost in the reduced game.
A similar example can be constructed in the setting of POR for (deterministic)
Kripke structures to show that LTL−X is not necessarily preserved, contrary to
what is suggested in [20,23].

We remark that this problem does not occur when applying strong stubborn
sets [23] on a deterministic system, a more widely studied setting. In strong
stubborn sets, D2w is replaced by condition D2 below.

D2 For all events j ∈ r(s) and j1, . . . , jn /∈ r(s), if s
j1...jn−−−−→ s′, then s′

j−→.

In the deterministic case, conditions D1’ and D2 together imply D1.

4.2 Correctness

To show that the approach presented above is correct, we show in Theorem 1
that the winner is preserved in every node of the reduced game. We do this by
constructing a strategy in the reduced game that mimics the strategy in the
original game. The paths that are consistent with the two strategies must be
stutter equivalent to preserve the winner.

Definition 5. Let G be a parity game and π = s0s1s2 . . . and π′ = t0t1t2 . . . be
two paths in G. We say π and π′ are stutter equivalent, notation π , π′, if and
only if one of the following conditions holds:

– π and π′ are both finite and there exists a non-decreasing partial function
f : ω → ω, with f(0) = 0 and f(|π|−1) = |π′|−1, such that for all 0 ≤ i < |π|
and i′ ∈ [f(i), f(i+ 1)), it holds that P(si) = P(ti′) and Ω(si) = Ω(ti′).

– π and π′ are both infinite and there exists an unbounded, non-decreasing total
function f : ω → ω, with f(0) = 0, such that for all i and i′ ∈ [f(i), f(i+1)),
it holds that P(si) = P(ti′) and Ω(si) = Ω(ti′).

Lemma 1. All infinite stutter equivalent paths have the same winner.

Proof. Since both paths have the same set of priorities that occur infinitely often,
they also have the same winner. ut

In the lemmata and proofs below, we often use →r to indicate which transi-
tions must occur in the reduced state space.

Lemma 2. Let r be a weak stubborn set and π = s0
j1−→ · · · jn−→ sn

j−→ s′n be a
path such that j1, . . . , jn /∈ r(s) and j ∈ r(s). Then, there is a path π′ = s0

j−→r

s′
j1−→ · · · jn−→ s′n such that π and π′ are stutter equivalent.

Proof. The existence of π′ follows directly from condition D1. Due to condition
V and our assumption that j1, . . . , jn /∈ r(s0), it cannot be the case that j is
visible and at least one of j1, . . . , jn is visible. If j is invisible, then s0

j1−→ · · · jn−→
sn and s′0

j1−→ · · · jn−→ s′n have the same sequence of node labels, since D1 implies
that si

j−→ s′i for every 0 ≤ i ≤ n. Otherwise, if all of j1, . . . , jn are invisible,
then the sequence of labels observed along π and π′ has the shape pnq and pqn,
respectively, where p represents the labels of s0 and q represents the labels of s′0.
We conclude that π and π′ are stutter equivalent. ut
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Lemma 3. Let r be a weak stubborn set and π = s
j1−→ s1

j2−→ . . . be a path such
that ji /∈ r(s) for any ji that occurs in π. Then, the following holds:

– If π is of finite length n, there exists a node s′n such that sn
jk−→ s′n and a

path π′ = s
jk−→r s

′ j1−→ · · · jn−→ s′n.
– If π is infinite, there exists a path π′ = s

jk−→r s
′ j1−→ s′1

j2−→ . . . .

In either case, π , π′.

Proof. Let K be the set of key events in s. If j1 is invisible, K contains at least
one invisible event, due to I. Otherwise, if j1 is visible, we reason that K is not
empty (condition D2w) and all events in r(s), and thus also all events in K, are
invisible, due to V. In the remainder, let jk be an invisible key event.

In case π has finite length n, the existence of sn
jk−→ s′n and s

jk−→r s
′ j1−→

· · · jn−→ s′n follows from D2w and D1, respectively.
If π is infinite, we can apply D2w and D1 successively to obtain a path

πi = s
jk−→ s′

j1−→ · · · ji−→ s′i for every i ≥ 0. Since the state space is finite, at least
one jk-successor of s, which we refer to as t, must occur on infinitely many πi.
Thus, for every i, we have t

j1...ji−−−−→, since t also occurs on some πi′ with i′ > i.
We conclude the existence of π′ = s

jk−→r t
j1−→ s′1

j2−→ . . . .
Since jk is invisible, we use the same reasoning as in the proof of Lemma 2

to conclude π , π′. ut

We remark that Lemma 3 also holds for parity games that have an infinite
state space, but where all the invisible events are finitely branching. Lemma 3
thus shows that conditions Ä1 and Ä2 together imply Ä3 (all from [22]) in
LTSs that have finite branching of invisible actions.

The proof of the main theorem, Theorem 1, relies heavily on the constructions
described by Lemma 2 and 3. The following example provides insight into the
application of the lemmata.

Example 4. Consider the path j1j2j3 in Figure 3. This path is mimicked by the
path jkj2j1j

′
kj3, drawn with dashes. The new path reorders the events j1, j2 and

j3 according to the construction of Lemma 2 and introduces the key events jk
and j′k according to the construction of Lemma 3.

We need one additional lemma to show that the initial event of a path will
be selected for the stubborn set if Lemma 2 cannot be applied to that path.

Lemma 4. Let r be a weak stubborn set and s
j1−→ j2−→ · · · jn−→ sn be a path such

that j2, . . . , jn are disabled in s and jn ∈ r(s). Then, it must be the case that
j1 ∈ r(s).

Proof. By induction. The base case, where n = 1, trivially satisfies the condi-
tion, since jn coincides with j1. For the inductive case, we assume as induc-
tion hypothesis that for all paths s

j1−→ · · · jl−→ sl with l ≤ i, it holds that
if j2, . . . , jl are disabled in s and jl ∈ r(s), then it holds that j1 ∈ r(s). Let
s

j1−→ · · · ji−→ si
ji+1−−−→ si+1 be some path of length i + 1 that fulfils these same
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j1

j2

j3

jk

j′k

Fig. 3. Example of how the trace j1, j2, j3 can be mimicked (dashed trace) by in-
troducing additional events and moving j2 to the front. Transitions that are drawn in
parallel have the same label.

conditions, i.e., j2, . . . , ji, ji+1 are disabled in s and ji+1 ∈ r(s). Since the path
s
ji+1j1...ji−−−−−−→ is not enabled, condition D1 can only be fulfilled by setting jl ∈ r(s)

for some l ≤ i. Consequently, we obtain a path s
j1−→ · · · jl−→, where j2, . . . , jl are

disabled in s and jl ∈ r(s). Applying the induction hypothesis to this path yields
j1 ∈ r(s). ut

The following theorem shows that partial-order reduction preserves the win-
ning player in all nodes of the reduced game. Its proof is inspired by [20] and [2,
Lemma 8.21].

Theorem 1. Let G be a parity game, r a weak stubborn set and Gr the reduced
game according to r starting from some node ŝ. If Gr is finite, then it holds that
for every node s in Gr, the winner of s in Gr is equal to the winner of s in G.

Proof. Let G be a parity game and Gr a finite reduced game induced by some
reduction function r that satisfies conditions D1, D2w, V, I and L. Let player
# be the winner of some node s.

We first consider the case where P(s) = #̄. Since none of the outgoing edges
of s in → is a winning strategy of #̄ and succGr

(s) ⊆ succG(s), #̄ also does not
have a winning strategy in s under →r. Hence, the winner in s is preserved.

Otherwise, if P(s) = #, let σ be some winning strategy for # in s under →.
To prove that # also wins node s in Gr, we construct a matching strategy σ′ that
# should follow in Gr. By showing that for every path π in Gr that is consistent
with σ′, a stutter equivalent path π′ can occur in G when following the original
strategy σ, we prove that σ′ is indeed a winning strategy for # starting from s
in Gr.

Consider the path π0 = s k1−→ s1
k2−→ . . . that is generated by player #

moving the token according to σ. The path π0 is finite if and only if player # at
some point moves the token to a node owned by player #̄. We will construct a
corresponding path π̂0 in the reduced state space. Then, we define σ′ such that
player # moves the token along π̂0. Note that although this only defines σ′ on a
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part of the game, the same reasoning can be applied to all other nodes belonging
to player #.

From π0, we will step-by-step construct new paths πi that are stutter equiva-
lent to π0, by shifting events forward (construction of Lemma 2) and introducing
key events (construction of Lemma 3). Since the first step of σ can be trivially
imitated if k1 ∈ r(s), we henceforth assume that k1 /∈ r(s). Each path πi is thus
of the shape

πi = s
j1−→r t1

j2−→r · · ·
ji−→r ti

k1−→ ui0
li1−→ ui1

li2−→ . . .

where j1, . . . , ji are key events in the stubborn set. These can either originate
from k2, k3, . . . , i.e., events that are shifted forward with the construction from
Lemma 2, or they can be events that are newly introduced using the construction
from Lemma 3. The events li1, l

i
2 . . . represent the remaining subsequence of

k2, k3 . . . , i.e., those events that have not been shifted forward (yet). Note that
j1, . . . , ji can only contain a visible event if the rest of πi is invisible (cf. the
proofs of Lemma 2 and Lemma 3).

We distinguish two cases related to whether eventually k1 ∈ r(ti) for some i:

– None of the events k1, l
i
1, l

i
2, . . . is visible. In that case, player # never moves

the token to a node belonging to player #̄ and the path π0 is infinite. If
k1 is never taken, we can mimic the divergent behaviour of πi by applying
Lemma 3 ad infinitum on state ti, ti+1, . . . .

– There is a visible event m ∈ {k1, li1, li2, . . . }. We consider a πi such that all
events that fulfil the requirements of Lemma 2 have already been shifted
forward, i.e., none of li0, l

i
1, . . . is enabled in ti. This path exists due to finite-

ness of →r. Since the reduced game is finite and the event m is selected at
least once on every cycle in the reduced game (condition L), there is a πi′

with i′ ≥ i such that m ∈ r(ti′). None of the events li0, l
i
1, . . . is enabled in ti′

(they did not satisfy Lemma 2, after all), therefore – by Lemma 4 – it must
be the case that k1 ∈ r(ti′).

In either case, as i goes to ω, we obtain a path π̂0. This path is stutter
equivalent to π0, since each πi is stutter equivalent to its predecessor.

We continue by showing that for every path that is consistent with σ′, a
corresponding stutter equivalent path that is consistent with σ exists in G. In
case π̂0 does not contain a node of player #̄, then π̂0 is the only path consistent
with σ′, by construction of σ′, and π̂0 is infinite. Its corresponding path in G is
π0.

In case π̂0 ends in a node owned by #̄, π0 is also finite and we reason as
follows. From its definition, we know that the last node of π0, denoted sn, is
owned by player #̄. There is a path in the original state space from sn to the
last node of π̂0, denoted ŝ, namely along those events of π̂0 that were introduced
by Lemma 3. We call this path πkey. We obtain a path π0πkey, which is π0
extended with invisible key events introduced by Lemma 3 in π̂0. Since πkey
contains only invisible events, all nodes on πkey are owned by #̄ and π0πkey
is consistent with σ. Extending a path with finitely many invisible events is
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permitted under stutter equivalence, hence we conclude that π̂0 and π0πkey are
stutter equivalent. ut

5 Weakening the Conditions

The theory we have introduced above depends heavily on rectangular structures
in the parity game. This is especially apparent in condition D1. However, par-
ity games obtained from model checking problems also often contain triangular
structures, as the following example demonstrates.

Example 5. Consider the process (a ‖ b) · c with the mu-calculus property

µX.(
∧

α∈{a,b}

[α]X ∧
∨

α∈{a,b,c}

〈α〉true)

which expresses that the action c must unavoidably be done within a finite
number of steps. Below, the LTS is depicted on the left and a possible parity
game encoding of our liveness property on this state space is depicted on the
right. The edges in the parity game that originate from the subformula 〈true〉true
are labelled with d.

a

a

b b

c

1 1

1 1 0

a

a

b
b

d d

d

d
d

Whereas the state space can be reduced by prioritising a or b, the parity game
cannot be reduced due to the presence of a d-transition in every node. For
example, if s is the top-left node in the parity game, then r(s) = {a, d} violates
condition D1, since the trace s bd−→ exists, but s db−→ does not. ut

In order to deal with games that contain triangular structures, we need to
weaken condition D2w.

D2t There is an event j ∈ r(s) such that for all j1, . . . , jn /∈ r(s), if s
j1−→ s1

j2−→
· · · jn−→ s′n, then either s′n

j−→ or there are nodes such that s
j−→ s′

j1−→ s′1
j2−→

· · · jn−→ s′n and si = s′i or si
j−→ s′i.

Most of the correctness proofs from Section 4.2 still apply, we only have to
alter Lemma 3 to deal with the updated condition D2t.

Lemma 5. Let r be a weak stubborn set and π = s
j1−→ s1

j2−→ . . . be a path such
that ji /∈ r(s) for any ji that occurs in π. Then, the following holds:

– If π is of finite length n, there exists a node s′n and a path π′ such that:

12



• sn jk−→ s′n or sn = s′n; and
• π′ = s

jk−→r s
′ j1−→ · · · jn−→ s′n

– If π is infinite, there exists a path π′ = s
jk−→r s

′ j1−→ s′1
j2−→ . . . .

In either case, π , π′.

Proof. We follow the same reasoning as in the proof of Lemma 3 to conclude the
existence of an invisible key event jk.

In case π has finite length n, we derive the existence of s
jk−→r s

′ j1−→ · · · jn−→ s′n
either directly from D2t (if sn = s′n) or from D1 (if s′n

jk−→).
If π is infinite, we distinguish the following cases:

– If s
jkj1...ji−−−−−→ si for some i, we can trivially extend this path to obtain π′ =

s
jkj1...ji−−−−−→ si

ji+1−−−→ . . . .
– Otherwise, if there is no i such that s

jkj1...ji−−−−−→ si, we can apply the same
reasoning as in the proof of Lemma 3.

With the fact that jk is invisible and si
jk−→ s′i or si = s′i, we conclude that

π , π′. ut

We remark that these ideas are similar to the more general concept of weak
confluence from [8]. However, weak confluence is very hard to compute, so we
decided to work with a more restricted condition.

6 Parameterised Boolean Equation Systems

The previous sections explained how parity games can be reduced under POR.
In a practical setting, this reduction should be applied while generating the
parity game. In the following sections, we explain how this can be achieved
using parameterised Boolean equation systems, which can compactly represent
parity games.

In this section, we rely on abstract data types and their non-empty data
sorts, which are denoted with the letters D and E. The corresponding semantic
domains are D and E. Furthermore, B and N represent the Booleans and the
natural numbers respectively, and have B and N as semantic counterpart. The
set of data variables is V, and its elements are usually denoted with d and e. To
interpret expression with variables, we use a data environment δ, which maps
every variable in V to an element of the corresponding sort. The semantics of an
expression f in the context of an environment δ is denoted JfKδ. To update an
environment, we use the notation δ[v/d], which is defined as δ[v/d](d) = v and
δ[v/d](d′) = δ(d′) for all variables d 6= d′.

Here, we restrict ourselves to giving a short introduction to PBESs; the in-
terested reader is referred to [9].

Definition 6. A predicate formula is defined by the following grammar:

φ ::= b | φ ∨ φ | φ ∧ φ | φ⇒ φ | ∃e:E. φ | ∀e:E. φ | X(f)

13



where b is a data term of sort B, e is a variable of sort E, X is a predicate
variable of sort D → B, which is taken from some set X of sorted predicate
variables and argument f is an expression of sort D. The interpretation of a
predicate formula φ in the context of a predicate environment η : X → 2D, pro-
viding an interpretation for predicate variables from X , and a data environment
δ is denoted by JφKηδ and inductively defined as follows:

JbKηδ ⇔ JbKδ JX(f)Kηδ ⇔ JfKδ ∈ η(X)

Jϕ ∧ ψKηδ ⇔ JϕKηδ and JψKηδ hold Jϕ ∨ ψKηδ ⇔ JϕKηδ or JψKηδ hold

Jϕ⇒ ψKηδ ⇔ JϕKηδ holds implies that JψKηδ holds

J∀d : E. ϕKηδ ⇔ for all v ∈ E, JϕKηδ[v/d] holds

J∃d : E. ϕKηδ ⇔ for some v ∈ E, JϕKηδ[v/d] holds

A predicate formula is syntactically monotone iff no predicate variable occurs on
the left-hand side of an implication. Without loss of generality, in this paper we
only consider PBESs where all the predicate variables have exactly one param-
eter of the same data sort D. In the examples, we may use predicate variables
with multiple parameters.

Definition 7. A parameterised Boolean equation system (PBES) is a sequence
of equations that follow the grammar

E ::= ∅ | (νX(d:D) = ϕ)E | (µX(d:D) = ϕ)E

where ∅ is the empty PBES, µ is the least and ν the greatest fixpoint operator,
and X ∈ X is a predicate variable of sort D → B. The right-hand side ϕ is a
syntactically monotone predicate formula. Lastly, d ∈ V is a parameter of sort D.

In the remainder, we often omit the trailing ∅. The right-hand side of an
equation for X is called ϕX . The set of predicate variables that are bound in
E , i.e., those that occur on the left-hand side of an equation, is denoted with
bnd(E). Furthermore, the signature of a PBES E is defined as sig(E) = bnd(E)×D.
Every predicate variable bound in E = (σ1X1(d:D) = ϕ1) . . . (σnXn(d:D) = ϕn)
is assigned a rank, where rankE(Xi) is the number of alternations in the sequence
of fixpoint symbols νσ1σ2 . . . σi. Observe that rankE(Xi) is even iff σi = ν. A
PBES is closed if and only if all data variables occurring in a right-hand side
ϕX are either bound in a quantifier or as a parameter of X and all predicate
variables in ϕX are in bnd(E). We say a PBES is well-formed iff there is exactly
one equation for every predicate variable X ∈ bnd(E). Henceforth, we assume
all PBESs are closed and well-formed.

Definition 8. The solution JEKηδ of a PBES E in the context of a predicate
environment η and a data environment δ, is a predicate environment that is
defined inductively:

J ∅ Kηδ = η

J(µX(d:D) = ϕX)EKηδ = JEKη[µTX/X]δ

J(νX(d:D) = ϕX)EKηδ = JEKη[νTX/X]δ

14



with TX(R) = {v ∈ D | JϕXK(JEKη[R/X]δ)δ[v/d]}.

The intuition behind the solution of a PBES is that priority is given to
the fixed points of equations that occur early in the PBES, while the equalities
specified by the equations are always satisfied. The existence of the least fixpoint
µTX and the greatest fixpoint νTX in the complete lattice (2D,⊆) is ensured by
the monotonicity of the transformer TX : 2D → 2D, which follows from the
syntactic monotonicity of ϕX . Since the solution of the bound variables of a
closed PBES does not depend on the environments η and δ, we often write JEK
instead of JEKηδ.

We use a normal form called standard recursive form (SRF) [17] to facilitate
reasoning symbolically about the dependencies between predicate variables.

Definition 9. Let E be a PBES. Then E is in standard recursive form (SRF)
iff for all (σiXi(d:D) = φ) ∈ E, φ is either disjunctive or conjunctive, i.e., the
equation for Xi has the shape

σiXi(d:D) =
∨
j∈Ji

∃ej :Ej . fj(d, ej) ∧Xj(gj(d, ej))

or
σiXi(d:D) =

∧
j∈Ji

∀ej :Ej . fj(d, ej)⇒ Xj(gj(d, ej))

Furthermore, we add the semantic restriction that for every (X, v) ∈ sig(E), at
least one condition fj should evaluate to true, i.e., there is a j ∈ J , a data
environment δ and a vj ∈ Ej such that Jfj(d, ej)Kδ[vj/ej , v/d] holds.

Every clause in the right-hand side of the equation for Xi corresponds to
a unique event (cf. Section 3). Henceforth, we assume that the index sets for
events are disjunct for different equations, i.e., given predicate variables X1, X2,
then J1 ∩ J2 = ∅. This allows us to uniquely identify each event by its index
j ∈ Ji. The set of all events in a PBES E is denoted with evt(E), defined as
evt(E) =

⋃
Xi∈bnd(E) Ji. We use the function opE : bnd(E) → {∨,∧} to indicate

for each predicate variable in a PBES in SRF whether the associated equation
is disjunctive or conjunctive. We say an event j ∈ Ji is invisible if the rank and
operand are not affected by j, in other words, if rankE(Xi) = rankE(Xj) and
opE(Xi) = opE(Xj). Otherwise, it is visible.

Definition 10. Let E be a PBES in SRF, where each equation has the same
structure as in Definition 9. Then, the parity game of E is defined as G =
(sig(E),→, Ω,P), where

– → is the transition relation, which satisfies (Xi, v)
j−→ (Xj , w) for given

Xi, j ∈ Ji, v and w if and only if for some δ, both Jfj(d, ej)Kδ[v/d] and
w = Jgj(d, ej)Kδ[v/d] hold;

– Ω((X, v)) = rankE(X); and
– P((X, v)) = 3 iff opE(X) = ∨.
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We remark that parity games constructed according to the above definition
often have an infinite state space, e.g., when the PBES has a parameter that is
a natural number. In practice, we only consider the part of the parity game that
is reachable from some initial node (X, v).

The following theorem is adapted from [5] and [17], in which parity games
and winning strategies are called dependency space [17] and proof graph [5],
respectively.

Theorem 2 ([5]). Let E be a PBES with X ∈ bnd(E). Then v ∈ JEK(X) iff
there is a winning strategy for player 3 from (X, v). Dually, v /∈ JEK(X) iff
there is a winning strategy for player � from (X, v).

Example 6. Consider the PBES

νX(b:B) = (b ∧X(false)) ∨ ∃n:N.n ≤ 2 ∧ Y (b, if (b, n, 0))

µY (b:B,n:N) = Y (false, 0)

The six nodes in the parity game which are reachable from (X, true) are depicted
in Figure 4. The horizontally drawn edges all stem from the clause ∃n:N.n ≤
2 ∧ Y (b, if (b, n, 0)), and are thus labelled with the same event (not shown in
the figure). Vertical edges are labelled with b ∧ X(false) (on the left) or with
Y (false, 0) (on the right). The selfloop is also labelled with Y (false, 0). All nodes
in this game are won by player �, and thus true /∈ JEK(X) according to Theo-
rem 2. ut

0(X, true)

0(X, false)

11
1

(Y, true, 0)
(Y, true, 1)
(Y, true, 2)

1 (Y, false, 0)

Fig. 4. Reachable part of the parity game underlying the PBES of Example 6, when
starting from node (X, true).

7 Implementation

In this section, we give details of a possible implementation of POR on PBESs.
This implementation partially implements the framework of [14] and extends it
with non-determinism.

Conditions D1, D2w and L are properties of the (reduced) state space as a
whole and they are hard to check locally. Therefore, we need alternative stronger
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conditions that can help to construct a stubborn set on-the-fly. The most com-
mon local condition for L is the so called stack proviso LS [18]. This proviso
assumes that the state space is explored with depth-first search (DFS), and it
uses the Stack that stores unexplored nodes to determine whether a cycle is
being closed. If so, the node will be fully expanded, i.e., r(s) = enabledG(s).

LS For all nodes s ∈ Vr, either succGr (s) ∩ Stack = ∅ or r(s) = enabledG(s).

To decide locally whether D1 and D2w are satisfied, we need to perform
several static analyses on the PBES. To reason about which events are in some
sense independent, we rely on the idea of accordance. We define four flavours
of accordance, which are all binary relations on events: DNL, DNS , DNT and
DNA.

Definition 11. Let E be a PBES in SRF and G = (V,→, Ω,P) its parity game.
Then, we define the following accordance relations:

– An event j left-accords with an event j′ if it holds that for all nodes s, if
s
j′−→ s1

j−→ s′, then s
j−→ s2

j′−→ s′ for some node s2. If j does not left-accord
with j′, we write (j, j′) ∈ DNL.

– Two events j and j′ square-accord if it holds that for all nodes s, if s
j−→ s1

and s
j′−→ s2, then s1

j′−→ s′ and s2
j−→ s′ for some node s′. If two events j

and j′ do not accord, we write (j, j′) ∈ DNS.
– An event j triangle-accords with j′ if it holds for all nodes s, if s

j′−→ s1 and
s

j−→ s2, then s2
j′−→ s1. If j does not triangle-accord with j′, then we write

(j, j′) ∈ DNT .
– An event j accords with j′ if j and j′ square-accord or if j triangle-accords

with j′. If j does not accord with j′, we write (j, j′) ∈ DNA.

Given a relation R on events, we use R(j) to denote its left projection: R(j) =
{j′ | (j, j′) ∈ R}. The definition of left-according, square-according and triangle-
according respectively can be graphically represented as follows.

s s1

s′

j

j′

⇒

s

s2

s1

s′

j

j′

j′

j

s

s2

s1

j

j′

⇒

s

s2

s1

s′

j

j′

j′

j

s

s2

s1

j

j′

⇒

s

s2

s1

j

j′

j′

s′
j′

Note that the relations DNL and DNT are not necessarily symmetric.
Apart from computing an accordance relation between events, which may be

over-approximated, we also need to compute in which way events might become
enabled. For this, we use necessary enabling sets [7].

Definition 12. Let j be an event that is disabled in some node s. A necessary-
enabling set (NES) for j in s is a set of events NES s(j) such that for all paths
s
j1...jnj−−−−−→, there is at least one i such that ji ∈ NES s(j).
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For every node and event there might be more than one NES. In particular, ev-
ery superset of a NES is also a NES. A simple approach to calculate a NES,
in a PBES with multiple parameters per predicate variable, is investigating
which parameters influence the validity of conditions fj and which parameters
are changed in the update functions gj . More accurate results can be achieved
with advanced techniques to extract the control flow from a PBES [11]. Over-
approximating a NES does not influence the correctness of this approach.

The following three lemmata show how the accordance relations and necessary-
enabling set can be used to implement conditions D1, D2w and D2t, respec-
tively. A combination of Lemma 6 and 7 in a deterministic setting appeared as
Lemma 1 in [14]. Non-determinism does not affect the proof of Lemma 7, so the
exact same reasoning can also be found in [14].

Lemma 6. A reduction function r satisfies condition D1 in a node s if for all
j ∈ r(s):

– if j is disabled in s, then NES s(j) ⊆ r(s) for some NES s; and
– if j is enabled in s, then DNL(j) ⊆ r(s).

Proof. Let s be an arbitrary node and let r be a reduction function that sat-
isfies the conditions above. Furthermore, let s

j1...jnj−−−−−→ s′n be a path such that
j1, . . . , jn /∈ r(s) and j ∈ r(s). We distinguish the following cases:

– If j is disabled in s, it must be the case that NES s(j) ⊆ r(s) for some
NES s. However, according to the definition of a necessary-enabling set, at
least one of j1, . . . , jn is contained in NES s(j) and thus in r(s). Since this
contradicts our assumption that j1, . . . , jn /∈ r(s), we conclude that the path
s
j1...jnj−−−−−→ s′n does not exist, and so D1 is satisfied.

– If j is enabled in s, it must be that DNL(j) ⊆ r(s). Since that implies
j1, . . . , jn /∈ DNL(j), it follows that for every ji and all nodes t, t1 and t′,
the following holds:

t t1

t′

j

ji

⇒

t

t2

t1

t′

j

ji

ji

j

By inductively applying this implication from right to left on the path
s

j1...jn−−−−→ sn
j−→ s′n, we derive the existence of the dashed transitions in

the figure below.

s . . . sn

s′ . . . s′n

j1 jn

j

j1 jn

j j j
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We conclude that the conditions of D1 are satisfied.

ut

Lemma 7. A reduction function r satisfies condition D2w in a node s if there
is an enabled event j ∈ r(s) such that DNS (j) ⊆ r(s).

Proof. Let s
j1...jn−−−−→ sn be a path such that j1, . . . , jn /∈ r(s) and let j ∈ r(s) ∩

enabled(s) be an event such that DNS (j) ⊆ r(s). We deduce that j1, . . . , jn /∈
DNS (j), and thus the following implication holds for all ji and nodes t, t1 and
t2:

t

t2

t1

j

ji

⇒

t

t2

t1

t′

j

ji

ji

j

Applying this inductively from left to right on the transition s
j−→ s′ and the path

s
j1...jn−−−−→ sn, we derive the existence of the dashed transitions in the following

figure.

s . . . sn

s′ . . . s′n

j1 jn

j

j1 jn

j j j

Hence, j satisfies the conditions of D2w. ut

Lemma 8. A reduction function r satisfies condition D2t in a node s if there
is an enabled event j ∈ r(s) such that DNA(j) ⊆ r(s).

Proof. Let s
j1...jn−−−−→ sn be a path such that j1, . . . , jn /∈ r(s) and let j ∈ r(s) ∩

enabled(s) be an event such that DNA(j) ⊆ r(s). We distinguish two cases:

– It holds that j1, . . . , jn ∈ DNT (j). Since j1, . . . , jn /∈ r(s) and r(s) ⊇
DNA(j) = DNS (j) ∩ DNT (j), we can deduce that j1, . . . , jn /∈ DNS (j).
By following the same reasoning as in the proof of Lemma 7, we derive the
validity of D2t.

– There is an 0 < i ≤ n such that ji /∈ DNT (j). We consider the smallest such
i, i.e., j1, . . . , ji−1 ∈ DNT (j). With j1, . . . , jn /∈ r(s) and r(s) ⊇ DNA(j) =
DNS (j)∩DNT (j), we deduce that j1, . . . , ji−1 /∈ DNS (j) and ji /∈ DNT (j).

By first applying the square-according relation from left to right on j and
j1, . . . , ji−1 and then applying the triangle-according relation on j and ji,
we derive the existence of the dashed transitions in the following figure.
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s s1 . . . si−1 si . . . sn−1 sn

s′ s′1 . . . s′i−1

j1 jn

j

ji

j1

j j
ji

Thus j satisfies the conditions of D2t.
ut

7.1 Identifying Similar Events

In PBESs, the same transitions may be encoded in multiple equations. To iden-
tify the events that encode a similar transition, we rely on the notion of event
equivalence.

Definition 13. Let E be a PBES in SRF and X1, X2 ∈ bnd(E). Then the re-
lation ∼⊆ evt(E) × evt(E) is such that given two events j ∈ J1 and j′ ∈ J2, it
holds that j ∼ j′ if and only if for all v ∈ D:

{v′ | ∃δ. Jfj(d, ej)Kδ[v/d] ∧ v′ = Jgj(d, ej)Kδ[v/d]} =

{v′ | ∃δ. Jfj′(d, ej′)Kδ[v/d] ∧ v′ = Jgj′(d, ej′)Kδ[v/d]}

and j and j′ are both visible or both invisible.

The equivalence relation ∼ partitions evt(E) into equivalence classes. By la-
belling the parity game of E with these equivalence classes, more reduction can
be achieved in some cases.

7.2 Deterministic Events

So far, we have assumed that the PBESs we consider are non-deterministic.
This forces us to use the left-accordance relation to satisfy D1 (cf. the proof of
Lemma 6). More reduction can be achieved if a PBES is partly or completely
deterministic and some of the conditions can be relaxed. To this end, we identify
the concept of a deterministic event : an event j is deterministic if for all nodes
t, t′ and t′′, if t

j−→ t′ and t
j−→ t′′, then it must be that t′ = t′′. We can statically

compute which events are deterministic (not considering reachability) with the
following function:

det(j) = J∀d, ej , e′j . (fj(d, ej) ∧ fj(d, e′j))⇒ gj(d, ej) = gj(d, e
′
j)Kδ

where δ is an arbitrary data environment.
The following lemma expands on Lemma 6 and shows how knowledge of

deterministic summands can be applied to potentially improve the reduction.

Lemma 9. A reduction function r satisfies condition D1 in a node s if for all
j ∈ r(s):

20



– if j is disabled in s, then NES s(j) ⊆ r(s) for some NES s; and
– if j is deterministic and enabled in s, then DNS (j) ⊆ r(s) or DNL(j) ⊆ r(s).
– if j is non-deterministic and enabled in s, then DNL(j) ⊆ r(s).

Proof. Let s be an arbitrary node and let r be a reduction function that satisfies
the conditions above. For the cases where j is disabled or j is enabled and
DNL(j) ⊆ r(s), see the proof of Lemma 6. Here, we only consider the new case
where j is deterministic and enabled in s and DNS (j) ⊆ r(s).

Let s
j1...jn−−−−→ sn

j−→ s′n be a path such that j1, . . . , jn /∈ r(s) and j ∈ r(s) and
let s

j−→ s′. The following implication holds for all ji and nodes t, t1 and t2:

t

t2

t1

j

ji

⇒

t

t2

t1

t′

j

ji

ji

j

Applying this inductively from left to right on the transition s
j−→ s′ and the

path s
j1...jn−−−−→ sn, we deduce the existence of the dashed transitions for some

node s′′n.

s . . . sn

s′ . . . s′′n s′n

j1 jn

j
j

j1 jn

j j
j

Since j is deterministic it follows that s′n = s′′n, and thus D1 is satisfied. ut

The sets DNS and DNL are incomparable, so we cannot decide a priori
which should be used for deterministic transitions. However, Lemma 9 permits
choosing one of the accordance sets on-the-fly. This choice can be made based
on a heuristic function, similar to the function for NESs proposed in [14].

8 Experiments

We implemented the ideas from the previous section in a prototype tool built
on the mCRL2 toolset [4]. We performed a first experiment with a modified
version of Milner’s Scheduler [16], that includes, for each of the components,
the possibility to break down with the action disaster. Whereas the LTS of the
standard version of Milner’s Scheduler can be greatly reduced by applying τ -
confluence, this is not possible on our adapted example. Hence, the state space
grows quickly with the number of components. In this experiment, we check the
property “as long as no disaster occurs, there is no deadlock”. We construct
a PBES for several instances of the model, each with a different number of
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Table 1. Results of applying POR to Milner’s Scheduler with breakdowns. The size
of the original and the reduced state space are denoted by |V | and |Vr|, respectively.

Number of components 2 3 4 5 6 8 10 12

|V | 13 37 97 241 577 3073 15361 73729
|Vr| 10 14 18 22 26 34 42 50

components. From this PBES, we generate both the original parity game and
the reduced parity game. The results are listed in Table 1.

As can be seen on the first row of the table, the size of the original state space
grows quickly. However, the reduced state space only grows with four nodes per
added component. It is thus feasible to check much larger instances of this model
when applying POR on parity games.

9 Conclusion

We have presented an approach for applying partial-order reduction on parity
games. This has two main advantages over POR applied on LTSs or Kripke
structures: our approach supports the full modal mu-calculus, not just a frag-
ment thereof, and the potential for reduction is greater, because we do not
require a singleton proviso. Furthermore, we have shown how the ideas can be
implemented with PBESs as a high-level representation. In future work, we aim
to improve the prototype implementation and perform a complete experimental
evaluation to validate its effectiveness. We also want to investigate the possibility
of solving a reduced parity game while is it being constructed. In certain cases,
one may be able to decide the winner of the original game from this partial
solution.
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